Increasing access to local food by extending shelf life of fresh fruits and vegetables

¹Eleni Pliakoni, ¹Helena Pontes Chiebao, ²Jerry A. Bartz, and ¹Cary L. Rivard

¹Department of Horticulture and Natural Resources, Kansas State University

²Horticultural Sciences Department, University of Florida

Fresh fruits and vegetables

- Fresh fruits per capita consumption increased 19%
- Fresh vegetables (including potatoes) 29 %

Demand of local food

Local and regional food sales in the U.S. totaled US \$6.1 billion in 2012

7.8% of U.S farms sold food thought local food market channels

Increasing consumption of local food

Increase in local & regional marketing channels

Sources: USDA, Agricultural Marketing Service, Food Nutrition Service; National Farm to School Network.

Farmers' markets, 2009

Farmers' markets, 2013

Challenges for scaling up

- product volume
- quality
- consistency
- variety, or extended availability
- lack of distribution
- storage
- processing
- marketing infrastructure

Kansas Case Study

Data from the 2014 Great Plains Growers Conference, a regional growers conference held near Kansas City, indicates that:

- 70% of vegetable growers farm 1-10 acres.
- 38% have been growing for less than 5 years.
- 32% of producers have access to cooling facilities.
- 6% have access to refrigerated trucks.

Postharvest Physical Treatments to Reduce Losses of Organic and Locally-Grown Produce While Improving Quality and Extending Shelf Life

Overall objective: reduce decay of locally grown produce by optimizing postharvest treatments, develop novel digital tools for assessing crop losses on the farm, and disseminate the result of our work to stakeholders

Olathe Horticulture Research and Extension Center

- 6 replicates, RCBD
- Tomatoes 6 plants
 - 'BHN 589'
 - 'Cherokee Purple'
- Spinach 5 x 30' rows

Results

AFRI Combined Tomato Fruit Yield 2014-2015												
	Fruit Yield (# per plant)			Fruit Yield (lbs per plant)			% Marketability					
	Marketal	ole	Total		Marketa	able	Total		Numb	er	Weigh	nt
Main Effects												
High Tunnel	46.4	Α	58.7	Α	20.9	Α	26.1	Α	77.1	Α	77.2%	Α
									%			
Open Field	18.2	В	26.9	В	8.9	В	12.0	В	60.5	В	68.2%	В
									%			
Simple Effects												
High Tunnel									71.9			
Cherokee	37.0	С	50.5	В	16.3	С	22.5	В	%	В	70.7%	В
Purple									,,,			
Open Field									50.2			
Cherokee	12.6	Α	22.5	Α	6.3	Α	10.4	Α	%	Α	57.2%	Α
Purple									,,			
High Tunnel	56.0	D	67.0	С	25.3	D	29.7	С	82.3	С	83.6%	c
BHN589					25.5				%		33.070	
Open Field	23.8	l B	31.3	Α	11.4	В	13.7	Α	70.7	В	79.3%	ВС
BHN589	25.0		3	,			15.7	, ,	%)	7 3.370	

Results

P<0.01

P<0.001

Erwinia (Pectobacterium) carotovora (Bacterial Soft Rot)

Decay severity

Min.

UF FLORIDA

Extension Outcomes

Improving shelf life, quality and safety of locally grown vegetables in Kansas

Overall objective: to improve the efficiency of storage and distribution of specialty crops in Kansas using modified atmosphere packaging (MAP) and ozonated water to increase produce shelf life, quality and safety.

Results

Table 2. Shelf life of crops stored at 13°C under different washing treatments combined or not with commercial MAP bags¹.

Treatments —	Days							
Treatments —	Asparagus	Broccoli	Spinach					
CC	9.67 (1.53)*a,b	5.67 (0.58) ^a	10.25 (2.06) ^a					
WC	9.67 (1.53)a,b	5.67 (0.58)ª	13.00 (2.45)a,c					
OC	10.33 (0.58)a	5.33 (0.58) ^a	12.00 (0.00)a					
CM	12.33 (1.53)a,b	12.33 (2.89)b	15.50 (1.73)b,c					
WM	13.00 (1.73)a,b	11.67 (3.21)b	17.50 (1.00)b					
OM	12.67 (1.15)b	12.00 (0.00)b	17.00 (2.00)b					

¹Average (SD) of days of storage of three separate trials, values in column followed by unlike letters are significantly different at $p \le 0.05$

Extension Outcomes

Pre-harvest Effects on Postharvest Quality of Strawberries Grown in High Tunnels

Overall objective: to determine the effect of evaporative cooling systems and variety on postharvest quality, decay, and shelf life of day-neutral strawberries grown in a high tunnel

Conclusions

- Develop practical and applicable postharvest handling for small-scale producers.
- Provide educational materials and hands-on experience.
- Identify postharvest handling needs for specialty crops that are not grown in the area.

THANK YOU FOR YOUR ATTENTION

epliakoni@ksu.edu

