

# Managing Urban Garden Soils to Minimize Potential Soil Contaminant Transfer to Humans

Ganga Hettiarachchi, Chammi Attanayake, Phillip Defoe,
Sabine Martin

**Department of Agronomy** 



## **Contaminants in Urban Soil**



lead (Pb) from paint and leaded gasoline; arsenic (As) from pesticides or naturally occurring; polycyclic aromatic hydrocarbons (PAH) from incomplete burning of C-containing materials; DDT, and chlordane as pesticides



## **Project: Gardening Initiatives at Brownfields sites**

7 test sites across the USA: Kansas City, MO; Tacoma, WA, Seattle, WA; Indianapolis, IN; Pomona, CA; Philadelphia,

PA; Toledo, OH



Funded by the EPA Brownfields Training, Research, and Technical Assistance Grants Program





# **Example Site 1: Kansas city, MO**



Size ~ 42m x 37m

Silt loam (Sand-4%, Silt-75%, Clay-21%)

The site was screened *in situ*, every ~6 m for trace elements using x-ray fluorescence spectrometer \_

Moderately elevated Pb

Soils were also tested for chlordane







# Distribution of soil total Pb concentrations

\*\*Laboratory conformation analysis-Using EPA 3051 method

Chlordane - n.d.
DDT- 0.04 mg/kg to1.3 mg/kg
DDE - only detected in two of the submitted samples (0.03, 0.04 mg/kg)



# **Selected Soil Properties**

| Sample<br>ID | рН  | Mehlich-3<br>P | Ext. K | NH <sub>4</sub> -N | NO <sub>3</sub> -N | ОМ  |
|--------------|-----|----------------|--------|--------------------|--------------------|-----|
|              |     |                | mg/k   | (g                 |                    | %   |
| 98           | 6.6 | 130            | 624    | 53.6               | 73.2               | 3.9 |
| 9D           | 6.6 | 93             | 455    | 9.6                | 35.1               | 3.4 |
| <b>21S</b>   | 7.2 | 116            | 417    | 11.8               | 22.7               | 3.0 |
| 21D          | 7.2 | 123            | 221    | 9.3                | 15.0               | 3.1 |
| 26S          | 7.8 | 57             | 255    | 8.3                | 4.3                | 1.5 |
| 26D          | 7.6 | 80             | 260    | 8.2                | 2.2                | 1.1 |
| 39S          | 6.9 | 154            | 488    | 15.0               | 24.2               | 4.7 |
| 39D          | 6.9 | 149            | 334    | 9.6                | 13.3               | 3.3 |

S = 0-15 cm D = 15-30 cm

Texture: Silt loam with 21% clay



# Test plot-2010



**Treatments**:

No compost and compost @28 kg/m<sup>2</sup>

Crops:

**Swiss Chard** 

Carrots

Tomato

April 2010.





# Dilution effect on total contaminant concentration in soils

#### **Kansas City, MO**

Before and After Compost Addition



## **Lead Concentration in Swiss Chard**



| Treatment  | Soil Pb (mg/kg) |
|------------|-----------------|
| No compost | 128-348         |
| Compost    | 101-256         |

p<0.05 (split plot design, 4 blocks)

a, b- within a category



<sup>\*,\*\*</sup> between two categories

#### **Lead Concentration in Tomato**



p<0.05 (split plot design, 4 blocks)



<sup>\*,\*\*</sup> between two categories

a, b- within a category

#### **Lead Concentration in Carrot**



- Lab cleaned
- Kitchen cleaned
- Peeled

Compost- ↓ ~ 20 %

| Treatment  | Soil Pb (mg/kg) |  |  |
|------------|-----------------|--|--|
| No compost | 154-388         |  |  |
| Compost    | 119-161         |  |  |

p<0.05 (split plot design, 4 blocks)



<sup>\*,\*\*</sup> between two categories

a, b- within a category

# Example Site 2 Tacoma, WA

| Element | Concentration in soil (mg/kg) |  |  |
|---------|-------------------------------|--|--|
| As      | 17- 162                       |  |  |
| Pb      | 17- 427                       |  |  |

Texture: Sandy loam

Soil pH: 5.6 (soil: water)

Ref.: Defoe P.P., G.M. Hettiarachchi, C. Benedict, S. Martin. 2014. J. Environ. Qual. doi:10.2134/jeq2014.03.0099



ANSAS STATE

# Test plots-Tacoma, WA- 2010



KANSAS STATE

# Tacoma, WA- Test plots



Dolomite+Tagro added

Control

Further dilution of contaminants in plants through enhanced growth

KANSAS STATE

#### **Arsenic in Lettuce**



Vertical bars represents the means of four replicates

\* MCL- Estimated using oral exposure daily reference dose limit for inorganic As



#### **Arsenic in Tomatoes**





Vertical bars represents the means of four replicates



#### **Arsenic in Carrots**



Vertical bars represents the means of four replicates

KANSAS STATE

\* MCL- Estimated using daily reference dose limit

# Physiologically Based Extraction Test-PBET Results

# Testing gastrointestinal dissolution of soil As and Pb At pH= 2.5

|                     | DDET            |         | Bioaccessible   | DDET |         | Bioaccessible   |
|---------------------|-----------------|---------|-----------------|------|---------|-----------------|
|                     | PBET            |         | As              | PBET |         | Pb              |
| Treatment           | As <sup>†</sup> | Soil As | (% of total As) | Pb   | Soil Pb | (% of total Pb) |
|                     | m               | g/kg    |                 | mg   | J/kg    |                 |
| Control             | 5.5             | 81.9    | 6.9             | 23.8 | 171.5   | 14.2            |
| Tagro +<br>Dolomite | 5.1             | 77.6    | 6.6             | 19.2 | 192.8   | 9.2             |



<sup>†</sup>Analysis performed on AA240Z GF-AAS (Australia) with Zeeman background correction

### **Example site 3: Monon Acres- Indianapolis, IN**

#### **Inorganic contaminants**

Screen for inorganic contaminants using XRF and lab confirmation

|                    | Lead        | Arsenic | Cadmium | Chromium | Coppe   | r Zinc   |
|--------------------|-------------|---------|---------|----------|---------|----------|
|                    | mg/kg (ppm) |         |         |          |         |          |
| Site soil          | 437-513     | 23-84   | 2-16    | 69-81    | 229-308 | 576-2486 |
| Limit <sup>‡</sup> | 150<br>400† | 20      | 20      | 1500     | 750     | 1400     |

<sup>&</sup>lt;sup>‡</sup> Max. concentration allowed Agricultural soils treated with sewage sludge (McGrath et al., 1995)

#### **Organic contaminants**

Site history, located near the former Monon railroad and railroad maintenance station





<sup>†</sup> Residential soils, Children's play areas (EPA)



# **PAHs in Soils and Vegetables-2011**

| # of  | РАН                    | Range in test | <b>Tomato and Carrot</b> |                             |
|-------|------------------------|---------------|--------------------------|-----------------------------|
| rings | РАП                    | plots (ppm)   | (ppm)                    |                             |
| 2     | Naphthalene            | <0.4-1.4      | < 0.01                   |                             |
| 3     | Acenaphthylene         | <0.4-2.4      | < 0.01                   |                             |
| 3     | Acenaphthene           | <0.4-0.8      | < 0.01                   |                             |
| 3     | Fluorene               | <0.4-0.8      | < 0.01                   |                             |
| 3     | Phenanthrene           | 6.8-5.6       | < 0.01                   |                             |
| 3     | Anthracene             | 0.5-4.5       | < 0.01                   |                             |
| 4     | Fluoranthene           | 1.6-1.4       | < 0.01                   |                             |
| 4     | Pyrene                 | 1.5-1.2       | < 0.01                   |                             |
| 4     | Chrysene               | 1.4-10.4      | < 0.01                   |                             |
| 4     | Benzo (a) anthracene   | 1.1-8.2       | < 0.01                   |                             |
| 5     | Benzo(b)fluoranthene   | 2.6-18.7      | < 0.04                   |                             |
| 5     | Benzo(k)fluoranthene   | <0.4-6.0      | < 0.04                   | Attanguako ot               |
| 6     | Indeno(1,2,3-cd)pyrene | 1.1-6.8       | < 0.04                   | Attanayake et<br>al., 2015. |
| 6     | Benzo(g,h,i)perylene   | <2.2-7.2      | < 0.04                   | Journal of                  |
| 5     | Benzo(a)pyrene         | 1.4-9.9       | < 0.10                   | Environ. Qual.              |
| 5     | Dibenz(a,h)anthracene  | <0.4-2.3      | < 0.10                   | 44:930-944.                 |

-1 Toxicity

#### **Dermal transfer- PAHs**

- In the context of gardening, it can be hypothesized that dermal absorption (skin contact with contaminated soil) could be a significant pathway of transferring soil PAHs to humans. To test this hypothesis
  - an in-vitro steady fluid experiment to evaluate the potential for transfer of PAHs from soil to blood through skin, and
  - a fluorescent microscopy study to determine the penetration depths of PAHs in skin.
- soil matrix and aging of PAHs in soil restricted transfer of soil PAHsfrom soil to humans via skin.





# **Summary**

- The pathway from contaminated soil to plant to human is insignificant for most food crops- with exception of root crops
- Best management practices focusing on reducing direct exposure to contaminated soils should be a priority as it would be the main exposure pathway of the contaminants in garden soils to humans
- Compost or other suitable soil amendment additions help reducing contaminant concentration in food crops and also, bioaccessible Pb and As to humans
- Concentration of PAHs was less in biosolids-amended soils, and this effect was more prominent for two- to three-ring PAHs than four- to six-ring PAHs
- Bioaccessibility of Pb, As and PAHs in tested urban soils were low



# **Acknowledgments**





















Making a Difference









