Coat Color and Trait Certificate Laboratory #: Registration #: **Certificate Date:** 165084 DN61256407 Feb. 4, 2021 Call Name: Kiya **Registered Name:** Big Sky's Kiya Storms the North Breed: Australian Shepherd Sex: DOB: Female Feb. 2020 This canine's DNA showed the following genotype(s): | Coat Color/Trait Test | Gene | Genotype | Interpretation | | |-----------------------|------|----------|------------------------------|--| | M Locus (Merle) | PMEL | m/M | *See detailed interpretation | | ## Interpretation: M Locus Genotype: m/M²⁶⁹ This dog carries one copy of the **m** (non-merle, wild-type) allele and one copy of the **M** (merle insertion variant) allele of the *PMEL* gene. This dog will pass on one copy of the **m** (non-merle, wild-type) allele to 50% of its offspring and one copy of the **M** (merle insertion variant) allele to 50% of its offspring. The approximate size of the M allele of this dog (+/- 1 base pair) is listed in superscript in the genotype. Merle is inherited in a dominant fashion, meaning that only one copy of an M allele is necessary for a dog to display some variation of the merle coat color/pattern, which is marked by random dilution of eumelanin (black pigment) leaving patches of normal coat color within areas of diluted pigmentation. Specific sizes of the M allele have been associated with the potential to produce "classic" merle patterning or other M-associated coat color variations. Merle is most appropriately viewed as a spectrum of coat colors/patterns and the size of the variant M allele is associated with a coat color/pattern somewhere within that spectrum. Although some coat color/pattern variations have been associated with specific sizes of the M allele in certain breeds, referred to here as a 'bin', the size of the M allele does not guarantee a specific outcome. In general, dogs with M allele sizes between 200 - 246 base pairs (bp) have been associated with non-merle or minimal-merle coat colors/patterns and are often referred to as "cryptic" merle; M allele sizes between 247 - 264 bp have been associated with "atypical" or "diluted" coat colors/patterns; M allele sizes between 265 – 269 bp have been associated with the "classic" merle coat colors/patterns; and M allele sizes between 270 - 280 bp have been associated with a "tweed", "harlequin" or "patchwork" merle coat colors/patterns. Many exceptions to the coat color/pattern associations found in the various M allele bin sizes listed here have been identified. Therefore, care should be taken when correlating M allele sizes with anticipated coat color/pattern outcomes. These bin sizes should not be interpreted as having discrete boundaries but should be viewed as a range within which specific coat colors and patterns are likely. Variations in genetic background between breeds and in individual dogs within a breed may result in the identification of different coat colors/patterns not typically found in a given bin, especially when the size of an M allele is at the border between bins. Furthermore, due to the complex nature of the merle insertion variant and the limitations of currently available molecular technologies, precise sizing of the merle insertion variant is challenging. However, the sizing of the merle insertion variant in our laboratory has been validated to be accurate to within +/- 1 bp which, nevertheless, makes correlations between genotype and coat color/pattern of dogs close to the boundaries of a specific bin potentially problematic. In addition, the M allele bins defined here are only relevant to test results generated by Paw Print Genetics. The variable nature of the M gene variant and subtle differences in methodologies used by each laboratory precludes strict interlaboratory genotype comparisons. Therefore, in some cases, it may be prudent to test related dogs in a single laboratory if comparisons across related dogs or dogs within a breed are desired.