
An Introduction to Computer
Engineering using the Renesas
Sakura Microcontroller Board
BY JAMES M. CONRAD

Micri�m Press
1290 Weston Road, Suite 306
Weston, FL 33326
USA

www.micrium.com

Designations used by companies to distinguish their products are often claimed as trademarks. In all instances where
Micri�m Press is aware of a trademark claim, the product name appears in initial capital letters, in all capital letters, or
in accordance with the vendor’s capitalization preference. Readers should contact the appropriate companies for more
complete information on trademarks and trademark registrations. All trademarks and registered trademarks in this book
are the property of their respective holders.

Copyright © 2014 by James M. Conrad except where noted otherwise. Published by Micri�m Press. All rights reserved.
Printed in the United States of America. No part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher; with the ex-
ception that the program listings may be entered, stored, and executed in a computer system, but they may not be repro-
duced for publication.

The programs and code examples in this book are presented for instructional value. The programs and examples have
been carefully tested, but are not guaranteed to any particular purpose. The publisher and content contributors do not
offer any warranties and does not guarantee the accuracy, adequacy, or completeness of any information herein and
is not responsible for any errors or omissions. The publisher and content contributors assume no liability for damages
resulting from the use of the information in this book or for any infringement of the intellectual property rights of
third parties that would result from the use of this information.

Library of Congress subject headings:

1. Embedded computer systems
2. Real-time data processing
3. Computer software—Development

For bulk orders, please contact Micriµm Press at: �1 954 217 2036

ISBN: 978-1-935772-92-7

Please report errors or forward any comments and suggestions to jmconrad@uncc.edu.

iii

This book is the result of a long relationship the author has enjoyed with Renesas
ElectronicsAmerica, Inc. (and one of its predecessors, Mitsubishi Electronics). I originally
worked with this company because of their commitment to providing a low-cost evaluation
board and free development software that students could purchase and use in classes and
senior design projects. Over the years the boards have remained as affordable (and popu-
lar) as ever, and the software development tools available have added more functionality
while still available for free to our students.

I have been teaching embedded systems courses for over fourteen years (and working
in the field even longer). I had not been able to find a book suitable for using in an
Introduction to Computer Engineering course that would lend itself to the theoretical and
applied nature of the discipline and embedded systems design. When Renesas released the
GR-SAKURA board, I knew I have the perfect platform to use in the course. This book
was developed to augment the hands-on exercises we use. This book also has a radical fea-
ture not seen in many books currently on the market (if any). It is freely available for down-
load. It is also available for purchase in hardcopy form for a modest price.

This book would not have been possible had it not been for the assistance of numerous
people. Several students and educators contributed to and extensively tested some of the
chapters, including:Yevgeny Fridlyand (2, 3, 4), Adam Harris (1, 2, 3), Anthony Harris (3),
Onkar Raut (2, 4) Suganya Jebasingh (2, 4), and Steven Erdmanczyk (4) . Thanks go to the
publisher, Linda Foegen, and especially June Harris, Rob Dautel and Todd DeBoer of
Renesas for their help in getting this book produced and published (and for their patience!).
Many, many thanks go to the reviewers who offered valuable suggestions to make this
book better, especially David Brown and students from my UNC Charlotte Introduction to
Engineering and Embedded Systems courses.

I would like to personally thank my parents, the Conrads, and my in-laws, theWarrens,
for their continued assistance and guidance through the years while I worked on books.
Also, I would especially like to thank my children, Jay, Mary Beth, and Caroline, and my
wife Stephanie for their understanding when I needed to spend more time on the book than
I spent with them.

James M. Conrad, March 2014

Preface

vii

Preface iii

Foreword v

CHAPTER 1

Introduction to Embedded Systems 1

1.1 Learning Objectives 1

1.2 Concepts 1

1.2.1 Economics and Microcontrollers 1

1.2.2 Embedded Networks 2

1.3 Typical Benefits of Embedded Systems 2

1.3.1 Greater Performance and Efficiency 3

1.3.2 Lower Costs 3

1.3.3 More Features 4

1.3.4 Better Dependability 4

1.4 Embedded System Functions 4

1.5 Attributes of Embedded Systems 5

1.6 Constraints on Embedded Systems 6

1.7 Developing Embedded Systems 6

1.7.1 Product Development 7

1.7.2 Designing and Manufacturing Embedded Systems 8

1.7.3 The Role of a Computer Engineer 9

1.8 An Example of an Embedded System: The Renesas Sakura Board 10

1.9 Summary of Book Contents 10

1.10 Recap 10

1.11 References 11

Contents

Chapter 1

1

1.1 LEARNING OBJECTIVES

In this chapter the reader will learn:

� What an embedded system is
� Why to embed a computer
� What functions and attributes embedded systems need to provide
� What constraints embedded systems have

1.2 CONCEPTS

An embedded system is an application-specific computer system which is built into a
larger system or device. Using a computer system rather than other control methods (such
as non-programmable logic circuits, electro-mechanical controls, and hydraulic controls)
offers many benefits such as sophisticated control, precise timing, low unit cost, low de-
velopment cost, high flexibility, small size, and low weight. These basic characteristics can
be used to improve the overall system or device in various ways:

� Improved performance
� More functions and features
� Reduced cost
� Increased dependability

Because of these benefits, billions of microcontrollers are sold each year to create embed-
ded systems for a wide range of products.

1.2.1 Economics and Microcontrollers

Microcontrollers are remarkably inexpensive yet offer tremendous performance. The mi-
croprocessor for a personal computer may cost $100 or more, while microcontrollers typi-
cally cost far less, starting at under $0.25. Why is this so?

Introduction to Embedded Systems

16 RENESAS SAKURA MICROCONTROLLER BOARD

2.3 MICROCONTROLLER BASICS

2.3.1 Bits and Bytes

The basic concept of an embedded system is electricity. If we ignore the underlying volt-
age value and just consider the maximum voltage of the system, it is easy to recognize two
conditions:

� presence of the maximum voltage of the system—we’ll call this state “1”
� absence of a voltage of the system (most often 0 (zero) volts)—we’ll call this state “0”

This basic unit of information is the binary digit, or bit. Values with more than two states
require multiple bits. Therefore a collection of two bits has four possible states: 00, 01,
10, and 11. A collection of eight bits is called a byte. Often we group bits together to rep-
resent them in a larger number representation, called hexadecimal. A grouping of four bits
is represented by one hexadecimal digit, usually preceded by an ‘x,’ as represented in
Table 2.1. As an example, the binary number 1010 is xA in hexadecimal and 10 in deci-
mal. Binary number 01011100 is hexadecimal x5C.

TABLE 2.1 Hexadecimal Representation

BINARY HEXADECIMAL DECIMAL BINARY HEXADECIMAL DECIMAL

0000 x0 0 1000 x8 8

0001 x1 1 1001 x9 9

0010 x2 2 1010 xA 10

0011 x3 3 1011 xB 11

0100 x4 4 1100 xC 12

0101 x5 5 1101 xD 13

0110 x6 6 1110 xE 14

0111 x7 7 1111 xF 15

These values are moved around inside the microcontroller and stored in memory locations
called registers. Each register has a unique location which will be addressed. These mem-
ory locations are in addition to larger stores of useable memory.

18 RENESAS SAKURA MICROCONTROLLER BOARD

union of variables within that structure. An example of how the PDR is defined inside a
port structure as follows:

1. struct st_port4 {
2. union {
3. unsigned char BYTE;
4. struct {
5. unsigned char B0:1;
6. unsigned char B1:1;
7. unsigned char B2:1;
8. unsigned char B3:1;
9. unsigned char B4:1;

10. unsigned char B5:1;
11. unsigned char B6:1;
12. unsigned char B7:1;
13. } BIT;
14. } PDR;
15. }

Line 1 shows that port4 has been defined as a structure. Lines 2 to 14 suggest that the Port
Direction Register (PDR) has been defined as a union with the variable BYTE and a struc-
ture called BIT. This organization helps in easy access of the bits of the PDR. Unsigned
char Bn:1(n: 0 to 7) indicates that the character variable is assigned one bit.

To select a particular pin as the input pin, the corresponding bit of the PDR has to be
set to ‘0’; and to select a pin as output, the corresponding bit of the PDR has to be set to ‘1.’
The general syntax to set a bit of the PDR is PORTx.PDR.BIT.Bn (x � 0 to 5, A to G, J;
and n � 0 to 7) since ports are defined as structures, hence accessing structure members is
done in this way. To configure multiple pins at the same time, the char variable BYTE can
be used. All pins are configured as inputs at reset, by default.

Set Switch 1 (Port A bit 7) as Input

1. PORTA.PDR.BIT.B7 = 0;

When a pin is selected as an input from a peripheral, the Input Buffer Control Register
(ICR) has to be enabled. The ICR will be explained a little later. Selecting a pin as an out-
put involves setting the Data Register (DR) and the Port Direction Register (PDR).

Port Output Data Register (PODR)

The Port Output Data Register (PODR) is also defined as a union of variables inside the
port structure, in the ‘iodefine_gcc63n.h’ file. It is presented just like the PDR. Unsigned
char: 1 is used to represent reserved pins.

CHAPTER 2 / INTRODUCTION TO SOFTWARE DEVELOPMENT 19

B7 B6 B5 B4 B3 B2 B1 B0

0 0 0 0 0 0 0 0Value after reset:

Figure 2.6 Port Output Data Register [1], page 662.

The syntax to access the bits of the Data Registers (DR) is PORTx.PIDR.BIT.Bn
(x � 0 to 9, A to G, J; and n � 0 to 7) for those port pins configured as inputs and
PORTx.PODR.BIT.Bn for those port pins configured as outputs. To select a pin as an output
pin, first set the Port Output Data Register (PODR) to a known value, preferably 0, so that
changes in the output can be easily observed. The char variable BYTE can be used to set
multiple pins as output at the same time.

Set LED0 (Port A bit 0) as Output

1. PORTA.PDR.BIT.B0 = 1;
2. PORTA.PODR.BIT.B0 = 0;

Line 1 sets LED0 as an output and line 2 switches on the LED.

Sets LEDs 1, 2, 3, and 4 (Port A bit 0, 1, 2, and 3) as Outputs

1. PORTA.PDR.BYTE = 0x47;
2. PORTA.PODR.BYTE = 0xB8;

Line 1 sets LED1, 2, 3, and 4 as outputs and line 2 switches on the LEDs.

Port Input Data Register (PIDR)

The Port Input Data Register is also defined as a union of variables inside the port structure
in the ‘iodefine_gcc63n.h’ file. PORTx.PIDR.BIT.Bn (x � 0 to 9, A to G, J; and n � 0 to 7)
is used to read the state of a pin and the state is stored in the Port Input Data Register re-
gardless of the value in the Port Mode Register (PMR). This register also has some re-
served bits. These bits are read as 1 and cannot be modified.

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0Value after reset:

Figure 2.7 Port Input Data Register [1], Page 663.

CHAPTER 3 / GETTING STARTED WITH GR-SAKURA 39

Port 0

Port 1

Port 2

Port 3

Port 4

Port 5

Port 6

Port 7

Port 8

Port 9

Port A

Port B

Port C

Port D

Port E

Port F

Port G

Port H

Port J

DEU

E2 Data Flash

WDTA

IWDTa

CRC

SCIc 3 12 channels

SCId 3 1 channel

USB 2.0 host/function module

USB 2.0 function module

RSPI (unit 0)

RSPI (unit 1)

RSPI (unit 2)

CAN 3 3 channels

MTU2a 3 6 channels

POE2a

TPUa 3 6 channels (unit 0)

TPUa 3 6 channels (unit 1)

PPG (unit 0)

PPG (unit 1)

TMR 3 2 channels (unit 0)

TMR 3 2 channels (unit 1)

CMT 3 2 channels (unit 0)

CMT 3 2 channels (unit 1)

RTCa

RIIC 3 4ch

IEB

12-bit ADC 3 21 channels

10-bit ADC 3 8 channels

10-bit DAC 3 2 channels

Temperature sensor

In
te

rn
al

pe
rip

he
ra

lb
us

es
1

to
6

BSC

ETHERC

EDMAC

ICUb

DTCa

DMACA 3
4 channels

In
te

rn
al

m
ai

n
bu

s
2

EXDMACa

ROM

RAM

RX CPU

MPU

Clock
generation

circuit

ETHERC :Ethernet controller
EDMAC :DMA controller for Ethernet controller
ICUb :Interrupt controller
DTCa :Data transfer controller
DMACA :DMA controller
EXDMACa :EXDMA controller
BSC :Bus controller
WDTA :Watchdog timer
IWDTa :Independent watchdog timer
CRC :CRC (cyclic redundancy check) calculator
SCIc, SCId :Serial communincations interface
MPU :Memory protection unit

RSP1 :Serial peripheral interface
CAN :CAN module
MTU2a :Multi-function timer pulse unit 2
POE2a :Port output enable 2
TPUa :16-bit timer pulse unit
PPG :Programmable pulse generator
TMR :8-bit timer
CMT :Compare match timer
RTCa :Realtime clock
RIIC :I2C bus interface
IEB :IEBus controller
DEU :Data encryption unit

External bus

In
st

ru
ct

io
n

bu
s

O
pe

ra
nd

bu
s

In
te

rn
al

m
ai

n
bu

s
1

Figure 3.4 Block diagram [1], page 66.

46 RENESAS SAKURA MICROCONTROLLER BOARD

3.4 SAKURA EXAMPLE PROJECT

Let’s go through the sample project to get better acclimated with the development tools for
the GR-SAKURA board. From the SAKURA board website, click on the “Try Guest
Login” link.

When you first login, a window will pop-up asking you to create a project. You will
need to select a “template” and a project name as seen below. Let’s use the name
“GR_SAKURA_Lab1” for this project.

XCreate Project

Select a Template
Place Template files (.zip) in the templates directory

Template Description :

Create Cancel

New Project Name :

GR-SAKURA-SA_Sketch_E0.50.zip
GR-SAKURA_3GShield_V1.02.zip
GR-SAKURA_3GShield_V1.03.zip
GR-SAKURA_Sketch_V1.06.zip
GR-SAKURA_Sketch_V1.07.zip

Project template
for GR-SAKURA (Ver 1.07)

This is a standard template for GR-SAKURA.
This includes SAKURA libraries compatible with
Arduino libraries.
It allows to create application easily without

Figure 3.9 Create a project from a template.

CHAPTER 3 / GETTING STARTED WITH GR-SAKURA 71

Calculate how many rotations of the wheels we will need to travel one meter. To do this we
will need to compute the circumference of the wheel then divide the forward distance by
the circumference.

Now that we know how many rotations of the wheel we will need, we can compute the to-
tal rotations of the motor by multiplying the wheel rotations by the gear ratio.

Lastly, let’s identify the total time that we will need to enable the motors in forward mo-
tion by taking the total motor rotations and dividing it by the rated RPM and converting
to milliseconds.

We need to calculate the total distance that the wheels will need to rotate in opposite direc-
tions to make a 90 degree turn. First, calculate the distance from one wheel to the other.
This can be achieved by simply measuring the platform from the center of one wheel to the
other. To achieve a 90 degree turn, each wheel will need to travel 1⁄4 of the total circumfer-
ence in opposite directions.

Figure 3.39 shows a diagram of how we would expect the vehicle to move about its
axis when the wheels are turning in opposite directions.

0.00666418 min �
60 sec

1 min
�
1000 ms

1 sec
� 399.85 ms

44.65 motor rotations

6700 motor rotations>min � 0.00666418 min

0.8425 wheel rotations �
53 motor rotations

1 wheel rotation
� 44.65 motor rotations

6.61685 in

7.854 in>rotation � 0.8425 wheel rotations

0.039647 min �
60 sec

1 min
�
1000 ms

1 sec
� 2378.82 ms

265.636 motor rotations

6700 rotations>min � 0.039647 min

5.012 wheel rotations �
53 motor rotations

1 wheel rotation
� 265.636 motor rotations

39.37 in

7.854 in/rotation
� 5.012 rotations

2pr � dp � 2.5 in � p � 7.854 in

CHAPTER 3 / GETTING STARTED WITH GR-SAKURA 73

8. Update the direction of the left wheel to backward, keep the right wheel direction
forward

9. Enable the motors for 0.399 seconds to make a 90 degree turn
10. Disable the motors for 0.5 seconds (keep H-bridge from shorting)
11. Update the direction of the left wheel to forward, keep the right wheel direction

forward
12. Repeat steps 6–11 three more times
13. Disable the motors

Once we are done with our algorithm, we can begin to code. The below code example sat-
isfies the algorithm that we have created. But does it satisfy the customer requirements?
Build the project using the code below and download it to the Sakura board. Make sure to
connect the connectors to the pins defined in the code.

1. /*GR-SAKURA Sketch Template Version: V1.08*/
2. #include <rxduino.h>
3.
4. #define directionA 2 //Port 2 pin 2 – motor A direction
5. #define enableA 3 //Port 2 pin 3 – motor A on/off
6. #define directionB 4 //Port 2 pin 4 - motor B direction
7. #define enableB 5 //Port 2 pin 5 – motor B on/off
8. #define Aforward 1
9. #define Abackward 0

10. #define Bforward 1
11. #define Bbackward 0
12. #define FORWARDTIME 2380 //forward delay in milliseconds
13. #define TURNTIME 400 //turn delay in milliseconds
14. #define PAUSE 500 //Pause between switching directions
15. #define ON 1
16. #define OFF 0
17. int i; //counter variables
18. //***********************************
19. //setup input/output pins
20. //
21. //***********************************
22. void setup() {
23. pinMode(directionA,OUTPUT);
24. pinMode(enableA,OUTPUT);
25. pinMode(directionB,OUTPUT);
26. pinMode(enableB,OUTPUT);

CHAPTER 3 / GETTING STARTED WITH GR-SAKURA 75

66. }
67. } //end program

Did the robot complete a 1 x 1 meter square? If the answer is yes then consider yourself
lucky. If no, then it should not be a surprise. There are many variables that the above
code does not consider. We use the rated speed for the motors, but it is more than likely
that the RPM varies slightly from motor to motor. In fact, it could possibly be off by as
much as 500 rpm. We also did not accommodate for or considered the weight of the ro-
bot, otherwise known as the payload. The more weight on the motors the slower they
will rotate. How about the terrain? It would make a substantial difference in the rpm of
the motors from riding on a smooth wooden surface or on a grassy field. How about
slippage? It is quite possible for one of the wheels to slip slightly or even rotate faster
than the other. To accommodate for our environment we will require feedback mecha-
nisms, counters, and pulse width modulators. All this we will learn in Chapter 4, where
we will attempt to utilize our knowledge to achieve the functionality dictated by our
requirements.

3.9 RECAP

The GR-Sakura is one of the Gadget Renesas board series. It is based on RX63N series
32-bit MCU. The MCU has on-chip flash memory and enhanced communication func-
tions, including an Ethernet controller and USB 2.0 Host/Function. The on-chip flash
memory of RX63N is programmable by USB mass storage mode, and the on-chip flash
memory is visible as a drive on your PC. This chapter presented the tools and processes to
use the Sakura embedded board. The board is easy to program and use for many applica-
tions, including sensing applications and robotics.

3.10 REFERENCES

[1] Renesas Electronics, Inc. (February, 2013). RX63N Group, RX631 Group User’s Manual: Hardware,

Rev.1.60.

[2] Conrad, James M. (2013). Embedded Systems: An Introduction using the RX63N Microcontroller.Mi-

crium Press.

[3] Digilent Inc. (August, 2012). Motor Robot Kit (MRK) Reference Manual, Rev.

[4] Digilent Inc. (February 28, 2012). Digilent PmodHB5™ 2A H-Bridge Reference Manual, Circuit Rev D,

Document Rev.

[5] ShayangYe. (April, 2010). DC Carbon-brush motors, IG-22 Geared Motor Series: IG-22GP Type 01 & 02.

80 RENESAS SAKURA MICROCONTROLLER BOARD

In
te

rn
al

bu
s

TCORA

Comparator A1

Comparator B1

TCORB

TCSR

TCR

TCCR

Channel 1
(TMR1)

Interrupt signal

Clock select

Control logic

Counter clock 1
Counter clock 0

Compare match A1
Compare match A0

Overflow 1

Overflow 0

Counter clear 0

Counter clear 1

Compare match B1

Compare match B0

TMCI0

TMCI1

TO SCI5, SCI12

TMO0

TMO1

TMRI0

TMRI1

A/D conversion

start request signal*1

PCLK
PCLK/2
PCLK/8
PCLK/32
PCLK/64
PCLK/1024
PCLK/8192

Frequency dividing clock

CMIA0
CMIA1
CMIB0
CMIB1
OVI0
OVI1

TCORA

Comparator A0

Comparator B0

TCORB

TCSR

Channel 0
(TMR0)

TCNT TCNT

TCORA: Time constant register A
TCNT: Timer counter
TCORB: Time constant register B

Note: * For the corresponding A/D converter channels, see section 40, 12-Bit A/D Converter (S12ADa),
and section 41, 10-Bit A/D Converter (ADb).

TCSR: Timer control/status register
TCR: Timer control register
TCCR: Timer counter control register

TCCR

TCR

Figure 4.2 Block diagram of TMR Unit 0 [1], page 1014.

CHAPTER 4 / INTERFACING WITH THE OUTSIDE WORLD 81

4.2.1 Setting Up a Timer for Counting Events

Timer Count Register

The TCNT (Timer Counter) register holds the current timer value at any time after the timer
has been configured. Whenever you want to know the value of the timer or counter you will
read the value in this register. Also, when not currently operating the timer, you can load a
value into this register and the timer will begin counting from that value when restarted. Note
that in the 16-bit mode TMR0.TCNT and TMR1.TCNT (TMR2.TCNT and TMR3.TCNT as
well) cascade into one 16-bit register. This holds true for the timer constant registers as well.

b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Value after reset:

Address(es): TMR0.TCNT 0008 8208h, TMR1.TCNT 0008 8209h
TMR2.TCNT 0008 8218h, TMR3.TCNT 0008 8219h

Address(es): TMR0.TCCR 0008 820Ah, TMR1.TCCR 0008 820Bh
TMR2.TCCR 0008 821Ah, TMR3.TCCR 0008 821Bh

TMR0.TCNT (TMR2.TCNT) TMR1.TCNT (TMR3.TCNT)

Figure 4.3 Timer Counter (TCNT) Register [1], page 1017.

The TCNT register is where the count is held. After the timer is started this register will in-
crement every time a count is detected. If you want to know the current count, you can read
this register. If the timer is stopped you can write a value to this register and it will begin
counting from the written value when re-started.

Timer Counter Control Register

The Timer Counter Control Register (TCCR) controls where the timers count source comes
from. Dependent on what value is set here, it will be determined if the count comes from the
internal peripheral clock, a pre-scaled peripheral clock, an external count source, or from an-
other timer overflowing. This register also enables the timer’s interrupts on the peripheral level.

TMRIS — —

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0Value after reset:

Figure 4.4 Timer Counter Control Register [1], page 1019.

CSS[1:0] CKS[1:0]

82 RENESAS SAKURA MICROCONTROLLER BOARD

BIT SYMBOL BIT NAME DESCRIPTION R/W

b2 to b0 CKS[2:0] Clock Select* See table below. R/W

b4, b3 CSS[1:0] Clock Source Select See table below. R/W

b6, b5 — (Reserved) These bits are always read as 0. The write
value should always be 0.

R/W

b7 TMRIS Timer Reset
Detection
Condition Select

0: Cleared at rising edge of the external reset R/W

1: Cleared when the external reset is high

Note: * To use an external clock, set the Pn.PDR.Bi bit for the corresponding pin to “0” and the PORTn.PMR.Bi bit to “1“.
For details, see [1] section 21, I/O Ports.

Figure 4.5 TCCR (Timer Counter Control Register) description [1], page 1019.

CHANNEL

TCCR REGISTER

DESCRIPTION

CSS[1:0] CKS[2:0]

B4 B3 B2 B1 B0

TMR0
(TMR2)

0 0 — 0 0 Clock input prohibited.

1 Uses external clock. Counts at rising edge*1.

1 0 Uses external clock. Counts at falling edge*1.

1 Uses external clock. Counts at both rising and falling
edges*1.

0 1 0 0 0 Uses internal clock. Counts at PCLK.

1 Uses internal clock. Counts at PCLK/2.

1 0 Uses internal clock. Counts at PCLK/8.

1 Uses internal clock. Counts at PCLK/32.

1 0 0 Uses internal clock. Counts at PCLK/64.

1 Uses internal clock. Counts at PCLK/1024.

1 0 Uses internal clock. Counts at PCLK/8192.

1 Clock input prohibited.

1 0 — — — Setting prohibited.

1 1 — — — Counts at TMR1.TCNT (TMR3.TCNT) overflow
signal*2.

Figure 4.6 Clock input to TCNT and count condition [1], page 1020.

CHAPTER 4 / INTERFACING WITH THE OUTSIDE WORLD 83

CHANNEL

TCCR REGISTER

DESCRIPTION

CSS[1:0] CKS[2:0]

B4 B3 B2 B1 B0

TMR1
(TMR3)

0 0 — 0 0 Clock input prohibited.

1 Uses external clock. Counts at rising edge*1.

1 0 Uses external clock. Counts at falling edge*1.

1 Uses external clock. Counts at both rising and falling
edges*1.

0 1 0 0 0 Uses internal clock. Counts at PCLK.

1 Uses internal clock. Counts at PCLK/2.

1 0 Uses internal clock. Counts at PCLK/8.

1 Uses internal clock. Counts at PCLK/32.

1 0 0 Uses internal clock. Counts at PCLK/64.

1 Uses internal clock. Counts at PCLK/1024.

1 0 Uses internal clock. Counts at PCLK/8192.

1 Clock input prohibited.

1 0 — — — Setting prohibited.

1 1 — — — Counts at TMR0.TCNT (TMR2.TCNT) overflow
signal*2.

Notes:
1. To use an external clock, set the PORTn.PDR.Bi bit for the corresponding pin to “0” and the PORTn.OPMR.Bi bit to “1”.

For details, see [1] section 21, I/O Ports.
2. If the clock input of TMR0 (TMR2) is the overflow signal of the TMR1.TCNT (TMR3.TCNT) counter and that of TMR1

(TMR3) is the compare match signal of the TMR0.TCNT (TMR2.TCNT) counter, no incrementing clock is generated. Do
not use this setting.

Figure 4.6 Clock input to TCNT and count condition [1], page 1020.—Continued.

Time Constant Register

The TCORA (Time Constant Register A) and TCORB (Time Constant Register B) are
used to store constants to compare against the TCNT register. Every time the TCNT incre-
ments it is constantly being compared against either of these registers. When TCNT
matches either of these registers, a compare match event occurs. Compare match events
have many uses depending on what mode we are using the timer in.

84 RENESAS SAKURA MICROCONTROLLER BOARD

Timer Control/Status Register

The TCSR (Timer Control/Status Register) register controls compare match output. Each
timer has an output port assigned to it which is controlled via compare match events. This
is one of many uses of the compare match events. When a compare match event occurs this
register can set the output of the timer’s port to 1 or 0, or toggle it. This register is used
when we want the timer to control a pulse output.

b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1Value after reset:

Address(es): TMR0.TCORA 0008 8204h, TMR1.TCORA 0008 8205h
TMR2.TCORA 0008 8214h, TMR3.TCORA 0008 8215h

TMR0.TCORA (TMR2.TCORA) TMR1.TCORA (TMR3.TCORA)

Figure 4.7 Time Constant Register A[1], page 1017.

Address(es): TMR0.TCSR 0008 8202h, TMR2.TCSR 0008 8212h

— — — ADTE

b7 b6 b5 b4 b3 b2 b1 b0

x x x 0 0 0 0 0Value after reset:

Figure 4.8 Timer Control/Status Register [1], page 1021.

OSB[1:0] OSA[1:0]

Address(es): TMR0.TCSR 0008 8203h, TMR3.TCSR 0008 8213h

— — — —

b7 b6 b5 b4 b3 b2 b1 b0

x x x 1 0 0 0 0Value after reset:

OSB[1:0] OSA[1:0]

CHAPTER 4 / INTERFACING WITH THE OUTSIDE WORLD 119

Input Signal

Sampling Switch

Output Signal

Hold Capacitor
AC

Figure 4.18 Sample and Hold Circuit.

Signal from the sample and hold circuit is then given to the comparator. The comparator
compares the input signal with a reference signal and gives the digital output. The refer-
ence voltage of an ADC is the maximum analog voltage that can be converted by an ADC.

The digital value for a particular analog value can be found mathematically. This can
be useful as a guide to see if the ADC output obtained is correct.

If is the sampled input voltage, is the upper end of input voltage range,
is the lower end of input voltage range, and N is the number of bits of resolution in ADC,
the digital output (n) can be found using the following formula:

Let us assume that the analog voltage to be calculated is 2.7 V and the 12-bit ADC has to
be used. The digital value will be:

The GR-SAKURA has one 10-bit A/D converter unit and one 12-bit A/D converter unit.
However, the GR-SAKURA is designed specifically to use as little real-estate as possible,
hence there are not enough designated pins on the board to support all of the RX63NMCU
functionality at the same time. There are six designated A/D pins (AN0 to AN5) that can
only be used for the 12-bit A/D.

n � 335210

n� c(Vin)(2
N� 1)

V�ref
�
1

2
d int (Since V�ref� 0)� c(2.7)(2

12� 1)

3.3
�
1

2
d int� c(2.7)(4095)

3.3
�
1

2
d int

n � c (Vin � V�ref)(2
N � 1)

V�ref � V�ref
�
1

2
d int

Vin V�ref V�ref

n � c (Vin)(2
N � 1)

V�ref
�
1

2
d int (if V�ref � 0)

120 RENESAS SAKURA MICROCONTROLLER BOARD

TABLE 4.3 GR-Sakura 12-bit A/D Converter Port Map [8].

CN15

PIN NUMBER
100 PIN
LQFP I/O PORT

BUS
EXDMAC

TIMER
(MTU, TPU, TMR,
PPG, RTC, POE)

COMMUNICATIONS
(ETHERC, SCIc, SCId, RSPI,
RIIC, CAN, IEB, USB) INTERRUPT

S12AD,
AD,
DA

AD0 95 P40 IRQ8-DS AN000

AD1 93 P41 IRQ9-DS AN001

AD2 92 P42 IRQ10-DS AN002

AD3 91 P43 IRQ11-DS AN003

AD4 90 P44 IRQ12-DS AN004

AD5 89 P45 IRQ13-DS AN005

The 10-bit ADC cannot be utilize with the defined A/D pins AN001-AN005. However, the
GR-SAKURA does provide access to the 10-bit ADC using the pins shown in Table 4.4A.

TABLE 4.4A GR-Sakura 10-bit A/D Converter Port Map[8].

CN15

PIN NUMBER
100 PIN
LQFP I/O PORT

BUS
EXDMAC

TIMER
(MTU, TPU, TMR,
PPG, RTC, POE)

COMMUNICATIONS
(ETHERC, SCIc, SCId, RSPI,
RIIC, CAN, IEB, USB) INTERRUPT

S12AD,
AD,
DA

IO44 78 PE0 D8[A8/D8] SCK12/ SSLB1 ANEX0

IO45 77 PE1 D9[A9/D9] MTIOC4C/
PO18

TXD12/ SMOSI12/
SSDA12/ TXDX12/
SIOX12/ SSLB2/ RSPCKB

ANEX1

IO46 76 PE2 D10[A10/D10] MTIOC4A/
PO23

RXD12/ SMISO12/
SSCL12/ RXDX12/
SSLB3/MOSIB

IRQ7-DS AN0

IO47 75 PE3 D11[A11/D11] MTIOC4B/
PO26/ POE8#

CTS12#/ RT S12#/ SS12#/
MISOB/ ET_ERXD3

AN1

IO48 74 PE4 D12[A12/D12] MTIOC4D/
MTIOC1A/
PO28

SSLB0/ ET_ERXD2 AN2

IO49 73 PE5 D13[A13/D13] MTIOC4C/
MTIOC2B

RSPCKB/ ET_RX_CLK/
REF50CK

IRQ5 AN3

IO50 72 PE6 D14[A14/D14] MOSIB IRQ6 AN4

IO51 71 PE7 D15[A15/D15] MOSIB IRQ7 AN5

IO42 80 PD6 D6[A6/D6] MTIC5V/POE1# IRQ6 AN6

IO43 79 PD7 D7[A7/D7] MTIC5U/POE0# IRQ7 AN7

124 RENESAS SAKURA MICROCONTROLLER BOARD

A
D

C
S

R

A
D

D
R

A

A
D

D
R

B

A
D

D
R

C

A
D

D
R

D

A
D

D
R

E

A
D

D
R

F

A
D

D
R

G

A
D

D
R

H

A
D

C
R

A
D

C
R

2

A
D

S
S

T
R

A
D

D
IA

G
R

10-bit
D/A

Control circuit

I/O
bl

oc
k

Ta
gg

er
se

le
ct

io
n

Clock
selection

B
us

in
te

rf
ac

e

Internal
peripheral

bus 2Module data bus

VREFH

VREFL

AN0
AN1
AN2
AN3
AN4
AN5
AN6
AN7

ANEX0
ANEX1

ADDRA: A/D data register A
ADDRB: A/D data register B
ADDRC: A/D data register C
ADDRD: A/D data register D
ADDRE: A/D data register E
ADDRF: A/D data register F
ADDRG: A/D data register G
ADDRH: A/D data register H

ADCSR: A/D control/status register
ADCR: A/D control register
ADCR2: A/D control register 2
ADSSTR: A/D sampling state register
ADDIAGR: A/D self-diagnostic register

S
uc

es
si

ve
ap

pr
ox

im
a

tio
n

re
gi

st
er

Comparator

Software trigger

Sample-and-
hold circuit

ADCLK

PCLK

PCLK/2

PCLK/4

PCLK/8

10-bit A/D converter
synchronous
D/A conversion
enable signal

ADI0 interrupt signal

Synchronous triggers
(MTU, TMR)

Asynchronous trigger
(ADTRG#)

Internal
clock

1

2

Synchronization
circuit

Figure 4.20 Block Diagram of the 10-bit A/D Converter [1], page 1684.

126 RENESAS SAKURA MICROCONTROLLER BOARD

The width of the ADDRn (16-bit) is greater than the width of the ADC output (10-bit). To
avoid reading wrong data, the output has to be aligned either to the right or left of ADDRn.
This can be done by setting the ADCR2.DPSEL bit. This will be explained a little later.

4.3.2 Initializing the 10-bit A/D Converter

Module Stop Control Register A (MSTPCRA)

The module-stop control registers is a 32-bit register and can be used to place modules in
and release modules from the module-stopped state. The several modules that realize fre-
quency measurement are all stopped in their initial state. Releasing the modules from the
stopped state makes operations for frequency measurement possible. Before we can utilize
the 10-bit A/D converter, we would need to release the module from the stopped state by
configuring bit 23 of the MSTPCRA[31:0] register.

TABLE 4.5 List of 10-bit A/D Converter Registers [2], page 77.

ADDRESS
MODULE
SYMBOL REGISTER NAME

REGISTER
SYMBOL

NUMBER
OF BITS

ACCESS
SIZE

NUMBER OF ACCESS
STATES

RELATED
FUNCTIONICLK �� PCLK ICLK �� PCLK

0008 9800h AD A/D data register A ADDRA 16 16 2, 3 PCLKB 2 ICLK ADb

0008 9802h AD A/D data register B ADDRB 16 16 2, 3 PCLKB 2 ICLK

0008 9804h AD A/D data register C ADDRC 16 16 2, 3 PCLKB 2 ICLK

0008 9806h AD A/D data register D ADDRD 16 16 2, 3 PCLKB 2 ICLK

0008 9808h AD A/D data register E ADDRE 16 16 2, 3 PCLKB 2 ICLK

0008 980Ah AD A/D data register F ADDRF 16 16 2, 3 PCLKB 2 ICLK

0008 980Ch AD A/D data register G ADDRG 16 16 2, 3 PCLKB 2 ICLK

0008 980Eh AD A/D data register H ADDRH 16 16 2, 3 PCLKB 2 ICLK

0008 9810h AD A/D control/status
register

ADCSR 8 8 2, 3 PCLKB 2 ICLK

0008 9811h AD A/D control register ADCR 8 8 2, 3 PCLKB 2 ICLK

0008 9812h AD A/D control register 2 ADCR2 8 8 2, 3 PCLKB 2 ICLK

0008 9813h AD A/D sampling state
register

ADSSTR 8 8 2, 3 PCLKB 2 ICLK

0008 981Fh AD A/D self- diagnostic
register

ADDIAGR 8 8 2, 3 PCLKB 2 ICLK

CHAPTER 4 / INTERFACING WITH THE OUTSIDE WORLD 127

A/D Control/Status Register (ADCSR)

The Control/Status Register is used to select the input channels, start or stop A/D conversion,
and enable or disable the ADI interrupt. The CH[2:0] register is used to select the analog
channels which have to be A/D converted. The channels can be selected using the Table 4.6.

ACSE — MSTPA
29

MSTPA
28

MSTPA
27 — — MSTPA

24
MSTPA
23 — — — MSTPA

19 — MSTPA
17 —

b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16

0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1Value after reset:

Address(es): 0008 0010h

MSTPA
15

MSTPA
14

MSTPA
13

MSTPA
12

MSTPA
11

MSTPA
10

MSTPA
9 — — — MSTPA

5
MSTPA

4 — — — —

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1Value after reset:

Figure 4.22 Module Stop Control Register A (MSTPCRA) Description [1], page 282.

b23 MSTPA23 10-bit A/D Converter
Module Stop

Target module: AD R/W

0: The module- stop state is canceled

1: Transition to the module- stop state is made

TABLE 4.6 Channel Selection [1], page 1690.

WHEN ADCR.MODE[1:0] � 00B WHEN ADCR.MODE[1:0] � 10B OR 11B

B2 B1 B0 B2 B1 B0

0 0 0 AN0 0 0 0 AN0

0 0 1 AN1 0 0 1 AN0, AN1

0 1 0 AN2 0 1 0 AN0 to AN2

0 1 1 AN3 0 1 1 AN0 to AN3

1 0 0 AN4 1 0 0 AN0 to AN4

1 0 1 AN5 1 0 1 AN0 to AN5

1 1 0 AN6 1 1 0 AN0 to AN6

1 1 1 AN7 1 1 1 AN0 to AN7

136 RENESAS SAKURA MICROCONTROLLER BOARD

When used as an analog sensor, the QTI can detect shades of gray on paper and distances
over a short range if the light in the room remains constant. The QTI sensor has 2 inputs
and one output. When W is connected to Vdd (5V) and B is connected to Vss (GND), the
R terminal’s voltage will drop or rise based on the shade of the surface. If all you want to
know is whether a line is black or white, the QTI can be converted to a digital sensor by
adding a 10 k resistor across its W and R terminals. After doing so, the QTI behaves sim-
ilarly to the circuit in figure 4.28. When W is connected to Vdd and B is connected to Vss,
the R terminal’s voltage will drop below 1.4 V when the IR transistor sees infrared re-
flected from the IR LED. When the IR LED’s signal is mostly absorbed by a black surface,
the voltage at R goes above 1.4 V [7].

Q

W

R

B

220 V

470 V

QRD1114

0.01 mF
10 kV

QTI

10 kV

220 V

W

R

B

470 V

W

B

Figure 4.28 QTI sensor electrical characteristics using a 10K resistor [7].

Since we have made the design decision to use the QTI sensor, we have implied several de-
rived requirements. (1) The surface of the environment will need to be white and (2) we
will need to outline our borders in black. Can you think of any other requirements that can
be derived from the design decision of using the QTI sensor to meet our initial set of re-
quirements? Note that the QTI sensor needs to be very close to the surface/ground to get an
appropriate reading.

Given the specification of the QTI sensor we know that our threshold voltage that will
determine if the robot has reached the border will be 1.4V. We also know that our board
Vref� is 3.3V and Vref� GND or 0V. Given this we can calculate the integer value for our
threshold.

c 1.4V(2
10 � 1)

3.3V
�
1

2
d int � 434 � 0x1B2

149

Index

A
A/D control register (ADCR),

129, 130
A/D control register 2 (ADCR2),

129, 131
A/D control/status register

(ADCSR), 127–28
A/D converter. see analog to

digital converter
A/D data registers (ADDRn),

125–26
ADC. see analog to digital

converter
ADCR, 129, 130
ADCR2, 129, 131
ADCSR, 127–28
ADDRn, 125–26
Algorithms
code, converting to, 31–33
code development,
description, 30

robotics application, 72
Aliasing, 119
ALU, 14
Analog to digital converter
10-bit converter (see 10-bit
A/D converter)

conversion rate, 118
description of, 117–19
digital value, of analog
value, 119

Nyquist frequency, 118–19
output of, 126
resolution of, 118
robotics application, 135–47
of RX63N microprocessor, 43
Sakura, port map for, 120–21
sample and hold circuit, 119
sensors, 135–47
voltage, reference, 118

Android system, 44
Applet, 44
Architecture, of code

development, 30
Arduino, 35, 36, 50
Arithmetic and Logic Unit

(ALU), 14

B
Baud rate clock, 78
BCLK, 40
Big up-front design, 27
Binary digit, 16
Bits, 16
Bitwise operations, 21
Bytes, 16

C
CAN, 3
Cascading timers, 87, 88–92
Central processing unit (CPU),

14–15, 38
Clock generation circuit, 40
Clock oscillator, 40
Clocks. see also timers
CMIEA Bit, 101, 112
CMIEB Bit, 101, 112
CMT, 41
Code
algorithm, converting to code,
31–33

algorithm, starting with, 30
coding standards, 32
description of, 30
design margins, tracking
of, 32

principles when
implementing, 32

robotics application, 72–74
Coding standards, 32

Communication function, of
RX63N, 42–43

Communications and
networking, 5

Compare match interrupt enable
A (CMIEA bit), 101, 112

Compare match interrupt enable
B (CMIEB bit), 101, 112

Compare match timer
(CMT), 41

Compilation mechanism, 22–23
Compiler
for embedded systems,
23–24

of GR Sakura, 44
Component costs, 3
Computer engineer, role of,

9–10
Computers, architecture of,

13–15
Const variable, 32
Constraints, of system

requirements, 29
Contact bounce, 60–61
Continuous scan mode, 10-bit

converter, 122
Control Area Network

(CAN), 3
Control mechanism, of

computer, 14
Control systems, 4
Control unit, 14
Controller Area Network (CAN)

module, 43
Conversion rate, of ADC, 118
Cost, of embedded systems,

1–2, 3, 6
CPU, 14–15, 38
Crank and start, 4
Customer requirements, 28

	00.ES_Sakura_FM.qxd
	01.ES_Sakura_CH01.qxd
	02.ES_Sakura_CH02.qxd
	03.ES_Sakura_CH03.qxd
	04.ES_Sakura_CH04.qxd
	05.ES_Sakura_Index.qxd

