# **Pressed to Fresh Pet Odour Elminator** # **Western Paradise Limited** Part Number: X001413AE5 Version No: 1.2 Safety Data Sheet (Conforms to Annex II of REACH (1907/2006) - Regulation 2020/878) Issue Date: 02/12/2023 L.REACH.GBR.EN # SECTION 1 Identification of the substance / mixture and of the company / undertaking #### 1.1. Product Identifier | Product name | Pressed to Fresh Pet Odour Elminator | |-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Synonyms | Not Available | | Proper shipping name | EXTRACTS, LIQUID, for flavour or aroma (having a flash-point below 23 °C and viscous according to 2.2.3.1.4) (vapour pressure at 50 °C not more than 110 kPa); EXTRACTS, LIQUID, for flavour or aroma (having a flash-point below 23 °C and viscous according to 2.2.3.1.4) (vapour pressure at 50 °C more than 110 kPa); EXTRACTS, LIQUID, for flavour or aroma | | Other means of identification | Not Available | # 1.2. Relevant identified uses of the substance or mixture and uses advised against | Relevant identified uses | Deodoriser | |--------------------------|--------------------------------------------------| | Uses advised against | No specific uses advised against are identified. | # 1.3. Details of the manufacturer or supplier of the safety data sheet | Registered company name | Vestern Paradise Limited | | | |-------------------------|---------------------------------------------|--|--| | Address | 6 Ambleside Avenue Beckenham London BR3 3RW | | | | Telephone | 5633 | | | | Fax | Not Available | | | | Website | www.Pressedtofresh.co.uk | | | | Email | support@pressedtofresh.co.uk | | | # 1.4. Emergency telephone number | Association / Organisation | Western Paradise Limited | Not Ava | |-----------------------------------|--------------------------|---------| | Emergency telephone numbers | 02039185633 | Not Ava | | Other emergency telephone numbers | 111 | Not Ava | # **SECTION 2 Hazards identification** # 2.1. Classification of the substance or mixture | Classification according to | H226 - Flammable Liquids Category 3, H315 - Skin Corrosion/Irritation Category 2, H317 - Sensitisation (Skin) Category 1, H319 | |-----------------------------|---------------------------------------------------------------------------------------------------------------------------------| | regulation (EC) No | - Serious Eye Damage/Eye Irritation Category 2, H335 - Specific Target Organ Toxicity - Single Exposure (Respiratory Tract | | 1272/2008 [CLP] and | Irritation) Category 3, H336 - Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, H410 - Hazardous | | amendments [1] | to the Aquatic Environment Long-Term Hazard Category 1 | | Legend: | 1. Classification by vendor; 2. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | #### 2.2. Label elements Part Number: X001413AE5 Version No: 1.4 #### **Pressed to Fresh Pet Odour Elminator** Signal word DANGER # Hazard statement(s) | H226 | Flammable liquid and vapour. | |------|-------------------------------------------------------| | H304 | May be fatal if swallowed and enters airways. | | H315 | Causes skin irritation. | | H317 | May cause an allergic skin reaction. | | H319 | Causes serious eye irritation. | | H335 | May cause respiratory irritation. | | H336 | May cause drowsiness or dizziness. | | H410 | Very toxic to aquatic life with long lasting effects. | # Supplementary statement(s) | EUH019 | May form explosive peroxides. | |--------|-------------------------------| |--------|-------------------------------| # Precautionary statement(s) Prevention | P210 | Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. | |--------------|----------------------------------------------------------------------------------------------------| | P271 | Use only a well-ventilated area. | | P280 | Wear protective gloves, protective clothing, eye protection and face protection. | | P240 | Ground and bond container and receiving equipment. | | P241 | Use explosion-proof electrical/ventilating/lighting/intrinsically safe equipment. | | P242 | Use non-sparking tools. | | P243 | Take action to prevent static discharges. | | P261 | Avoid breathing mist/vapours/spray. | | P273 | Avoid release to the environment. | | P264 | Wash all exposed external body areas thoroughly after handling. | | P272 | Contaminated work clothing should not be allowed out of the workplace. | | P273<br>P264 | Avoid release to the environment. Wash all exposed external body areas thoroughly after handling. | # Precautionary statement(s) Response | P370+P378 | n case of fire: Use alcohol resistant foam or normal protein foam to extinguish. | | | | | | |----------------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--| | P302+P352 | ON SKIN: Wash with plenty of water. | | | | | | | P305+P351+P338 | N EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | | | | | | P312 | OISON CENTER/doctor/physician/first aider/if you feel unwell. | | | | | | | P333+P313 | ritation or rash occurs: Get medical advice/attention. | | | | | | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | | | | | | P362+P364 | Take off contaminated clothing and wash it before reuse. | | | | | | | P391 | Collect spillage. | | | | | | | P303+P361+P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water [or shower]. | | | | | | | P304+P340 | IF INHALED: Remove person to fresh air and keep comfortable for breathing. | | | | | | | | | | | | | | # Precautionary statement(s) Storage | P403+P235 | Store in a well-ventilated place. Keep cool. | |-----------|----------------------------------------------| | P405 | Store locked up. | # Precautionary statement(s) Disposal | P501 Dispose of | of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. | |-----------------|--------------------------------------------------------------------------------------------------------------------------| Material contains orange, sweet, Valencia extract, sorbitan monooleate, ethoxylated. #### 2.3. Other hazards ${\sf REACH-Art.57-59:}\ The\ mixture\ does\ not\ contain\ Substances\ of\ Very\ High\ Concern\ (SVHC)\ at\ the\ SDS\ print\ date.$ **Pressed to Fresh Pet Odour Elminator** # **SECTION 3 Composition / information on ingredients** #### 3.1. Substances See 'Composition on ingredients' in Section 3.2 #### 3.2. Mixtures | 1. CAS No<br>2. EC No<br>3. Index No<br>4. REACH No | %[weight] | Name | Classification according to regulation (EC) No 1272/2008 [CLP] and amendments | SCL /<br>M-Factor | Nanoform<br>Particle<br>Characteristics | |----------------------------------------------------------------------|-----------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------| | 1. 97766-30-8<br>2.307-891-8<br>3. Not Available<br>4. Not Available | 95 | orange.<br>sweet.<br>Valencia<br>extract | Flammable Liquids Category 3, Skin Corrosion/Irritation Category 2, Sensitisation (Skin) Category 1, Serious Eye Damage/Eye Irritation Category 2, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Hazardous to the Aquatic Environment Long-Term Hazard Category 1; H226, H315, H317, H319, H335, H336, H410, EUH019 [1] | Not<br>Available | Not Available | | 1. 9005-65-6<br>2.500-019-9<br>3. Not Available<br>4. Not Available | 5 | sorbitan<br>monooleate,<br>ethoxylated | Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2, Specific Target Organ Toxicity - Single Exposure (Respiratory Tract Irritation) Category 3, Germ Cell Mutagenicity Category 2, Carcinogenicity Category 2; H302, H315, H319, H335, H341, H351, EUH205 [1] | Not<br>Available | Not Available | #### **SECTION 4 First aid measures** # 4.1. Description of first aid measures | Eye Contact | If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. | |--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Skin Contact | Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | <ul> <li>If fumes or combustion products are inhaled remove from contaminated area.</li> <li>Lay patient down. Keep warm and rested.</li> <li>Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.</li> <li>Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.</li> <li>Transport to hospital, or doctor, without delay.</li> </ul> | | Ingestion | <ul> <li>If swallowed do NOT induce vomiting.</li> <li>If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.</li> <li>Observe the patient carefully.</li> <li>Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.</li> <li>Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.</li> <li>Seek medical advice.</li> </ul> | # 4.2 Most important symptoms and effects, both acute and delayed See Section 11 # 4.3. Indication of any immediate medical attention and special treatment needed In acute poisonings by essential oils the stomach should be emptied by aspiration and lavage. Give a saline purgative such as sodium sulfate (30 g in 250 ml water) unless catharsis is already present. Demulcent drinks may also be given. Large volumes of fluid should be given provided renal function is adequate. [MARTINDALE: The Extra Pharmacopoeia, 28th Ed.] Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator Treat symptomatically. ## **SECTION 5 Firefighting measures** #### 5.1. Extinguishing media - Foam. - Dry chemical powder. - ▶ BCF (where regulations permit). - Carbon dioxide - Water spray or fog Large fires only. #### 5.2. Special hazards arising from the substrate or mixture Fire Incompatibility Fire Fighting Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result ### 5.3. Advice for firefighters # Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - If safe, switch off electrical equipment until vapour fire hazard removed. - ▶ Use water delivered as a fine spray to control fire and cool adjacent area. - ▶ Avoid spraying water onto liquid pools. - ▶ DO NOT approach containers suspected to be hot. - ▶ Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. #### Liquid and vapour are flammable. - Moderate fire hazard when exposed to heat or flame. - Vapour forms an explosive mixture with air. - Moderate explosion hazard when exposed to heat or flame. - Vapour may travel a considerable distance to source of ignition. - ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. - On combustion, may emit toxic fumes of carbon monoxide (CO). #### Fire/Explosion Hazard Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) other pyrolysis products typical of burning organic material. WARNING: Long standing in contact with air and light may result in the formation of potentially explosive peroxides. CARE: Water in contact with hot liquid may cause foaming and a steam explosion with wide scattering of hot oil and possible severe burns. Foaming may cause overflow of containers and may result in possible fire. # **SECTION 6 Accidental release measures** #### 6.1. Personal precautions, protective equipment and emergency procedures See section 8 #### 6.2. Environmental precautions See section 12 #### 6.3. Methods and material for containment and cleaning up - ▶ Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - ▶ Control personal contact with the substance, by using protective equipment. - ▶ Contain and absorb small quantities with vermiculite or other absorbent material. - Collect residues in a flammable waste container. Minor Spills CARE: Absorbent materials wetted with occluded oil must be moistened with water as they may auto-oxidize, become self heating and ignite. #### **Major Spills** Some oils slowly oxidise when spread in a film and oil on cloths, mops, absorbents may autoxidise and generate heat, smoulder, ignite and burn. In the workplace oily rags should be collected and immersed in water. Part Number: X001413AE5 Page 5 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator - Clear area of personnel and move upwind. - Alert Fire Brigade and tell them location and nature of hazard. - May be violently or explosively reactive. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - Consider evacuation (or protect in place). - ▶ No smoking, naked lights or ignition sources. - Increase ventilation. - Stop leak if safe to do so. - ▶ Water spray or fog may be used to disperse /absorb vapour. - ▶ Contain spill with sand, earth or vermiculite. - Use only spark-free shovels and explosion proof equipment. - ▶ Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite. - Collect solid residues and seal in labelled drums for disposal. - ▶ Wash area and prevent runoff into drains. - If contamination of drains or waterways occurs, advise emergency services. #### 6.4. Reference to other sections Personal Protective Equipment advice is contained in Section 8 of the SDS. ## **SECTION 7 Handling and storage** #### 7.1. Precautions for safe handling Safe handling - ▶ Containers, even those that have been emptied, may contain explosive vapours. - ▶ Do NOT cut, drill, grind, weld or perform similar operations on or near containers. The 38th Amendment to the IFRA Standard (Nov 2003) states that "linalool and natural products known to be rich in linalool should only be used when the level of peroxides is kept to the lowest practical value. It is recommended to add antioxidants at the time of production of the raw material. The addition of 0.1% BHT or a-tocopherol has shown great efficiency. The maximum peroxide level for products in use should be 20mmol/l." - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of overexposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ▶ DO NOT enter confined spaces until atmosphere has been checked. - ▶ Avoid smoking, naked lights or ignition sources. - Avoid generation of static electricity. - DO NOT use plastic buckets. - ▶ Earth all lines and equipment. - ▶ Use spark-free tools when handling. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - ▶ Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - ▶ Work clothes should be laundered separately. - Use good occupational work practice. - Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - ▶ DO NOT allow clothing wet with material to stay in contact with skin # Fire and explosion protection See section 5 Consider storage under inert gas. - Store in original containers in approved flammable liquid storage area. - Store away from incompatible materials in a cool, dry, well-ventilated area. - ▶ DO NOT store in pits, depressions, basements or areas where vapours may be trapped. - ▶ No smoking, naked lights, heat or ignition sources. - Storage areas should be clearly identified, well illuminated, clear of obstruction and accessible only to trained and authorised personnel adequate security must be provided so that unauthorised personnel do not have access. - Store according to applicable regulations for flammable materials for storage tanks, containers, piping, buildings, rooms, cabinets, allowable quantities and minimum storage distances. - Use non-sparking ventilation systems, approved explosion proof equipment and intrinsically safe electrical systems. - Have appropriate extinguishing capability in storage area (e.g. portable fire extinguishers dry chemical, foam or carbon dioxide) and flammable gas detectors. - ▶ Keep adsorbents for leaks and spills readily available. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. # Other information Part Number: X001413AE5 Page 6 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator In addition, for tank storages (where appropriate): - Store in grounded, properly designed and approved vessels and away from incompatible materials. - For bulk storages, consider use of floating roof or nitrogen blanketed vessels; where venting to atmosphere is possible, equip storage tank vents with flame arrestors; inspect tank vents during winter conditions for vapour/ ice build-up. - Storage tanks should be above ground and diked to hold entire contents. Essential oil oxidation accelerates with the concentration of dissolved oxygen, which in turn depends largely on oxygen partial pressure in the head-space as well as ambient temperature. Depending on the particular essential oil and the ambient temperature, oxidation will not necessarily be prevented by avoidance of container head-space. Instead essential oils should be treated with inert gas such as argon, cautiously flushed through to displace remaining air, to prevent the formation of peroxides efficiently. #### 7.2. Conditions for safe storage, including any incompatibilities - Packing as supplied by manufacturer. - Plastic containers may only be used if approved for flammable liquid. - ▶ Check that containers are clearly labelled and free from leaks. - For low viscosity materials (i): Drums and jerry cans must be of the non-removable head type. (ii): Where a can is to be used as an inner package, the can must have a screwed enclosure. - For materials with a viscosity of at least 2680 cSt. (23 deg. C) - For manufactured product having a viscosity of at least 250 cSt. (23 deg. C) - Manufactured product that requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. - Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages - In addition, where inner packagings are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. #### d-Limonene: - ▶ forms unstable peroxides in storage, unless inhibited; may polymerise - ▶ reacts with strong oxidisers and may explode or combust - is incompatible with strong acids, including acidic clays, peroxides, halogens, vinyl chloride and iodine pentafluoride - If flow or agitation may generate electrostatic charges due to low conductivity Due to their structural relationship within the same chemical group, essential oil components are known to easily convert into each other by oxidation, isomerisation, cyclisation, or dehydrogenation reactions, triggered either enzymatically or chemically. Temperature, light, and oxygen availability are recognised to have a crucial impact on essential oil integrity. Susceptibility of essential oils to degradation largely depends on compound spectra as components molecular structures have a substantial effect on the degree of oxidation. Constituting an array of many lipophilic and highly volatile components derived from a great range of different chemical classes, essential oils are known to be susceptible to conversion and degradation reactions. Oxidative and polymerization processes may result in a loss of quality and pharmacological properties. Upon distillation in primitive stills or during storage in metallic containers, impurities of metals can be released into essential oils. Equal to light and heat, heavy metals, especially copper and ferrous ions, are considered to promote autoxidation, in particular if hydroperoxides are already present. By catalysing hydroperoxide decomposition, Fe2+ or Cu+ as well as Fe3+ or Cu2+ give rise to alkoxy and peroxyl radicals, respectively, which, in turn, promote radical oxidation reactions. Moisture has been considered as a possible reason for essential oil spoilage. Peroxyl radicals as well as hydroperoxides have been reported to be the most numerous compounds upon oxidation of essential oils (as well as edible unsaturated fixed oils) at lower temperatures. Compounds formed through termination reactions such as polymers were only built up at later oxidation stages and at the end of the induction period, when either the amount of oxygen or oxidisable substrate was exhausted. On the other hand, alkyl or hydroxyl radicals and reactions thereof, became more important at elevated temperature as oxygen availability was limited. For the most part, essential oil components can be assigned as lipophilic terpenoids, phenylpropanoids, or short-chain aliphatic hydrocarbon derivatives of low molecular weight, with the first being the most frequent and characteristic constituents. A multitude of different, but often structurally closely related, components have been identified in essential oils. Each oil in turn can be composed of only a few up to a complex mixture of far more than 100 single substances, respectively. Flavour contribution of single compounds though does not strictly depend on their respective concentration but relies on the specific odor threshold that is determined by structure and volatility. Consequently, even minor components deriving from oxidation or degradation reactions may have a strong impact on the flavour if their aroma value is high enough. The chemical composition of essential oils is moreover dependent on the conditions during processing and storage of the plant material, upon distillation as well as in the course of subsequent handling of the oil itself. Upon stability evaluation of essential oils, it needs to be kept in mind that the chemical composition may already vary in the starting material, being influenced by plant health, growth stage, habitat including climate, edaphic factors (those pertaining to soil), as well as harvest time. Terpenoids and terpenes, are generally unsaturated, are thermolabile, are often volatile and may be easily oxidised or hydrolysed depending on their respective structure. Terpenoids are subject to autoxidation. Autoxidation is any oxidation that occurs in open air or in presence of oxygen (and sometimes UV radiation) and forms peroxides and hydroperoxides. Though autoxidation has been particularly investigated in the field of fatty oils, it also plays a most crucial part for terpenoid deterioration. Although virtually all types of organic materials can undergo air oxidation, certain types are particularly prone to autoxidation, including unsaturated compounds that have allylic or benzylic hydrogen atoms (C6H5CH2-); these materials are converted to hydroperoxides by autoxidation. Promoted by heat, catalytic quantities of redox-reactive metals, and exposure to light, autoxidation may result in the formation of explosive peroxides which may become explosive upon concentration. As a rule, however, primary autoxidation products such as hydroperoxides eventually break down during advanced stages of #### Storage incompatibility Suitable container Part Number: X001413AE5 Page 7 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator oxidation depending on their individual stability. Thereby they give rise to a range of stable oxidised secondary products such as mono- to polyvalent alcohols, aldehydes, ketones, epoxides, peroxides, or acids as well as highly viscous, often oxygen-bearing polymers. Light, heat, or increasing acidity often promote this breakdown. Compounds rich in allylic hydrogen atoms (2HC=CHCH2-R), found in most terpenoids, make up the most probable targets for autoxidation. Several terpenoids (typically oxygen containing derivatives) are saturated and do not react in a similar fashion to their unsaturated congeners. Thermolabile terpenoids, especially mere terpenes and aldehydes, are susceptible to rearrangement processes at elevated temperatures. Terpenic conversion reactions, upon heating, have been reported both for isolated compounds as well as for essential oils.(which tend to be rich in mono-, and sesqui-terpenes. Mono-, bi-, or tricyclic mono- terpenoids (those containing two isoprene units, dienes) and sesquiterpenoids (with three isoprene units, trienes) of different chemical classes, such as hydrocarbons, ketones, alcohols, oxides, aldehydes, phenols, or esters, make up the major part in essential oils. Electron-donating groups and increasing alkyl substitution contribute to a stronger carbon-peroxide bond through a hyperconjugative effect, thus leading to more stable and subsequently built-up hydroperoxides. Some oxygen-bearing terpenoids such as menthol, eucalyptol (1,8-cineol), and menthone do not form hydroperoxides upon oxidation but are directly converted into ketones, acids, and aldehydes. None of these are unsaturated compounds. Due to their low volatility, diterpenes (with four isoprenes, tetraenes) are barely encountered in genuine essential oils obtained by distillation, while tri- and higher terpenoids such as sterols or carotenoids are only present in the nonvolatile fractions such as plant resins or gums and will remain in the residue Aging processes generally come along with a more or less pronounced quality loss In addition to the frequent development of unpleasant and often pungent flavours, shifting colors such as the formation of a yellow staining or changes in consistency up to resinification have been reported both upon degradation of single terpenoids as well as of essential oils. Unsaturated mono- and sesquiterpenes, typically found in essential oils such as those from pine and turpentine, are readily altered upon storage Moreover, electron-donating groups and increasing alkyl substitution contribute to a stronger carbon-peroxide bond through a hyperconjugative effect, thus leading to more stable and subsequently built-up hydroperoxides - The various oxides of nitrogen and peroxyacids may be dangerously reactive in the presence of alkenes. BRETHERICK L.: Handbook of Reactive Chemical Hazards - Avoid reaction with strong Lewis or mineral acids. - ▶ Reaction with halogens requires carefully controlled conditions. - ▶ Free radical initiators should be avoided. #### **HAZARD** - Although anti-oxidants may be present, in the original formulation, these may deplete over time as they come into contact with air. - Rags wet / soaked with unsaturated hydrocarbons / drying oils may auto-oxidise; generate heat and, in-time, smoulder and ignite. This is especially the case where oil-soaked materials are folded, bunched, compressed, or piled together this allows the heat to accumulate or even accelerate the reaction - Oily cleaning rags should be collected regularly and immersed in water, or spread to dry in safe-place away from direct sunlight.or stored, immersed, in solvents in suitably closed containers. - The interaction of alkenes and alkynes with nitrogen oxides and oxygen may produce explosive addition products; these may form at very low temperatures and explode on heating to higher temperatures (the addition products from 1,3-butadiene and cyclopentadiene form rapidly at -150 C and ignite or explode on warming to -35 to -15 C). These derivatives ("pseudo- nitrosites") were formerly used to characterise terpene hydrocarbons. - Exposure to air must be kept to a minimum so as to limit the build-up of peroxides which will concentrate in bottoms if the product is distilled. The product must not be distilled to dryness if the peroxide concentration is substantially above 10 ppm (as active oxygen) since explosive decomposition may occur. Distillate must be immediately inhibited to prevent peroxide formation. The effectiveness of the antioxidant is limited once the peroxide levels exceed 10 ppm as active oxygen. Addition of more inhibitor at this point is generally ineffective. Prior to distillation it is recommended that the product should be washed with aqueous ferrous ammonium sulfate to destroy peroxides; the washed product should be immediately re-inhibited. - · A range of exothermic decomposition energies for double bonds is given as 40-90 kJ/mol. The relationship between energy of decomposition and processing hazards has been the subject of discussion; it is suggested that values of energy released per unit of mass, rather than on a molar basis (J/g) be used in the assessment. For example, in "open vessel processes" (with man-hole size openings, in an industrial setting), substances with exothermic decomposition energies below 500 J/g are unlikely to present a danger, whilst those in "closed vessel processes" (opening is a safety valve or bursting disk) present some danger where the decomposition energy exceeds 150 J/g. BRETHERICK: Handbook of Reactive Chemical Hazards, 4th Edition - The reaction of ozone with alkenes is believed to proceed *via* the formation of a vibrationally excited Primary Ozonide (POZ) which falls apart to give a vibrationally excited Criegee Intermediate (CI) The CI can decompose to give OH radicals, or be stabilised. This may be of relevance in atmospheric chemistry. - · Violent explosions at low temperatures in ammonia synthesis gas units have been traced to the addition products of dienes and nitrogen dioxide - Avoid reaction with oxidising agents #### Hazard categories in accordance with Regulation (EC) No 2012/18/EU (Seveso III) P5a: Flammable Liquids, P5b: Flammable Liquids, E1: Hazardous to the Aquatic Environment in Category Acute 1 or Chronic 1 Qualifying quantity (tonnes) of dangerous substances as referred to in Article 3(10) for the P5a Lower- / Upper-tier requirements: 10 / 50 P5b Lower- / Upper-tier requirements: 50 / 200 P5c Lower- / Upper-tier requirements: 5 000 / 50 000 E1 Lower- / Upper-tier requirements: 100 / 200 #### **Pressed to Fresh Pet Odour Elminator** # application of - X Must not be stored together - 0 May be stored together with specific preventions - + May be stored together Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly. #### 7.3. Specific end use(s) See section 1.2 # SECTION 8 Exposure controls / personal protection # 8.1. Control parameters | Ingredient | DNELs<br>Exposure Pattern Worker | PNECs<br>Compartment | |------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | orange, sweet, Valencia<br>extract | Dermal 8.89 mg/kg bw/day (Systemic, Chronic) Inhalation 31.1 mg/m³ (Systemic, Chronic) Dermal 185.8 µg/cm² (Local, Acute) Dermal 4.44 mg/kg bw/day (Systemic, Chronic) * Inhalation 7.78 mg/m³ (Systemic, Chronic) * Oral 4.44 mg/kg bw/day (Systemic, Chronic) * Dermal 92.9 µg/cm² (Local, Acute) * | 5.4 μg/L (Water (Fresh)) 5.77 μg/L (Water - Intermittent release) 0.54 μg/L (Water (Marine)) 1.3 mg/kg sediment dw (Sediment (Fresh Water)) 0.13 mg/kg sediment dw (Sediment (Marine)) 0.261 mg/kg soil dw (Soil) 2.1 mg/L (STP) | <sup>\*</sup> Values for General Population # Occupational Exposure Limits (OEL) # INGREDIENT DATA | Source | Ingredient | Material name | TWA | STEL | Peak | Notes | |---------------|---------------|---------------|---------------|---------------|---------------|---------------| | Not Available # Not Applicable # **Emergency Limits** | Ingredient | TEEL-1 | TEEL-2 | TEEL-3 | |-----------------------------------------|---------------|---------------|---------------| | Pressed to Fresh Pet Odour<br>Elminator | Not Available | Not Available | Not Available | | Ingredient | Original IDLH | Revised IDLH | |----------------------------------|---------------|---------------| | orange, sweet, Valencia extract | Not Available | Not Available | | sorbitan monooleate, ethoxylated | Not Available | Not Available | # Occupational Exposure Banding | Ingredient | Occupational Exposure Band Rating | Occupational Exposure Band Limit | | |----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--| | orange, sweet, Valencia extract | Е | ≤ 0.1 ppm | | | sorbitan monooleate, ethoxylated | Е | ≤ 0.1 ppm | | | Notes: | Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health. | | | # MATERIAL DATA Fragrance substance with is an established contact allergen in humans. Scientific Committee on Consumer Safety SCCS OPINION on Fragrance allergens in cosmetic products 2012 Part Number: X001413AE5 Page 9 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator Tenth Annual Report on Carcinogens: Substance anticipated to be Carcinogen [National Toxicology Program: U.S. Dep. of Health & Human Services 2002] for d-Limonene: CEL TWA: 30 ppm, 165.6 mg/m3 (compare WEEL-TWA\*) (CEL = Chemwatch Exposure Limit) A Workplace Environmental Exposure Level\* has been established by AIHA (American Industrial Hygiene Association) who have produced the following rationale: d-Limonene is not acutely toxic. In its pure form it is not a sensitiser but is irritating to the skin. Although there is clear evidence of carcinogenicity in male rats, the effect has been attributed to an alpha-2u-globin (a2u-G) renal toxicity which is both species and gender specific. Humans do not synthesise a2u-G, and metabolism studies indicate that 75% to 95% of d-limonene is excreted in 2-3 days with different metabolites identified between humans and rats. In a 2-year study, liver effects were noted in male mice at 500 mg/kg and reduced survival was noted in female rats at 600 mg/kg. The no observable effect levels (NOELs) were 250 and 300 mg/kg, respectively. A WEEL of 30 ppm is recommended to protect against these effects. #### 8.2. Exposure controls Care: Atmospheres in bulk storages and even apparently empty tanks may be hazardous by oxygen depletion. Atmosphere must be checked before entry. Requirements of State Authorities concerning conditions for tank entry must be met. Particularly with regard to training of crews for tank entry; work permits; sampling of atmosphere; provision of rescue harness and protective gear as needed Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. For flammable liquids and flammable gases, local exhaust ventilation or a process enclosure ventilation system may be required. Ventilation equipment should be explosion-resistant. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | | |---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s<br>(50-100<br>f/min.) | | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s<br>(100-200<br>f/min.) | | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s<br>(200-500<br>f/min.) | | 8.2.1. Appropriate engineering controls Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | | |------------------------------------------------------------|----------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. - · Adequate ventilation is typically taken to be that which limits the average concentration to no more than 25% of the LEL within the building, room or enclosure containing the dangerous substance. - · Ventilation for plant and machinery is normally considered adequate if it limits the average concentration of any dangerous substance that might potentially be present to no more than 25% of the LEL. However, an increase up to a maximum 50% LEL can be acceptable where additional safeguards are provided to prevent the formation of a hazardous explosive atmosphere. For example, gas detectors linked to emergency shutdown of the process might be used together with maintaining or increasing the exhaust ventilation on solvent evaporating ovens and gas turbine enclosures. - Temporary exhaust ventilation systems may be provided for non-routine higher-risk activities, such as cleaning, repair or maintenance in tanks or other confined spaces or in an emergency after a release. The work procedures for such activities should be carefully considered. The atmosphere should be continuously monitored to ensure that ventilation is adequate and the Part Number: X001413AE5 Page 10 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator area remains safe. Where workers will enter the space, the ventilation should ensure that the concentration of the dangerous substance does not exceed 10% of the LEL (irrespective of the provision of suitable breathing apparatus) # 8.2.2. Individual protection measures, such as personal protective - equipment - Safety glasses with side shields. - ▶ Chemical goggles. [AS/NZS 1337.1, EN166 or national equivalent] - Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. #### Skin protection See Hand protection below - ▶ Wear chemical protective gloves, e.g. PVC. - Wear safety footwear or safety gumboots, e.g. Rubber #### NOTE: - F The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact. - ▶ Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - · frequency and duration of contact. - · chemical resistance of glove material, - · glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - · When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161,10.1 or national equivalent) is recommended. - · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - · Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: - · Excellent when breakthrough time > 480 min - · Good when breakthrough time > 20 min - · Fair when breakthrough time < 20 min - · Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. ## **Body protection** Hands/feet protection ## See Other protection below - Overalls. - PVC Apron. - ▶ PVC protective suit may be required if exposure severe. # Other protection Ensure there is ready access to a safety shower. Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator - Some plastic personal protective equipment (PPE) (e.g. gloves, aprons, overshoes) are not recommended as they may produce static electricity. - ▶ For large scale or continuous use wear tight-weave non-static clothing (no metallic fasteners, cuffs or pockets). - Non sparking safety or conductive footwear should be considered. Conductive footwear describes a boot or shoe with a sole made from a conductive compound chemically bound to the bottom components, for permanent control to electrically ground the foot an shall dissipate static electricity from the body to reduce the possibility of ignition of volatile compounds. Electrical resistance must range between 0 to 500,000 ohms. Conductive shoes should be stored in lockers close to the room in which they are worn. Personnel who have been issued conductive footwear should not wear them from their place of work to their homes and return. #### Respiratory protection Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face<br>Respirator | Full-Face<br>Respirator | |------------------------------------|--------------------------------------------------------------------|-------------------------|-------------------------| | up to 10 | 1000 | A-AUS / Class1 P2 | - | | up to 50 | 1000 | - | A-AUS / Class 1 P2 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | A-2 P2 | | up to 100 | 10000 | - | A-3 P2 | | 100+ | | | Airline** | \* - Continuous Flow \*\* - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Latridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used # 8.2.3. Environmental exposure controls See section 12 # **SECTION 9 Physical and chemical properties** # 9.1. Information on basic physical and chemical properties An essential oil is a concentrated hydrophobic liquid containing volatile aroma compounds from plants. Essential oils are also known as volatile oils, ethereal oils, aetherolea, or simply as the oil of the plant from which they were extracted. An oil is "essential" in the sense that it contains the "essence of" the plant's fragrance - the characteristic fragrance of the plant from which it is derived. #### NOTE: Because essential oils can be extracted from different parts of a particular plant, (with each varying in composition) a particular CAS Number, assigned to one composition, is often used, wrongly, to describe another composition. To further complicate the picture, the lack of rules for uniform classification of essential oils has, in the past, lead to several CAS Numbers being assigned to the same material. #### Appearance In general, botanically-derived substances are complex natural substances obtained by processing a plant or its parts by a treatment such as extraction, distillation, pressing, fractionation, purification, concentration or fermentation. The composition of these substances varies depending on the genus, species, growing conditions and harvest period of the source, and the process techniques applied. Essential oils could be defined by their main constituents as it is practice for multi-constituent substances. However, essential oils can consist of up to several hundred constituents, which can vary considerably depending on many factors (e.g. genus, species, growing conditions, harvest period, processes used). Therefore, a description of the main constituents is often not sufficient to describe these substances. The essential oils should be described by the plant source and the treatment process. This is often not the case. | Physical state | Liquid | Relative density (Water = 1) | Not Available | |----------------|---------------|-----------------------------------------|---------------| | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | #### Pressed to Fresh Pet Odour Elminator | | 1 | | 1 | |----------------------------------------------|-----------------|--------------------------------------|---------------| | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature (°C) | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Available | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm<br>or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Partly miscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | | Nanoform Solubility | Not Available | Nanoform Particle<br>Characteristics | Not Available | | Particle Size | Not Available | | | #### 9.2. Other information Not Available # **SECTION 10 Stability and reactivity** | 10.1.Reactivity | See section 7.2 | |------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 10.2. Chemical stability | <ul> <li>Unstable in the presence of incompatible materials.</li> <li>Product is considered stable.</li> <li>Hazardous polymerisation will not occur.</li> </ul> | | 10.3. Possibility of hazardous reactions | See section 7.2 | | 10.4. Conditions to avoid | See section 7.2 | | 10.5. Incompatible materials | See section 7.2 | | 10.6. Hazardous decomposition products | See section 5.3 | # **SECTION 11 Toxicological information** # 11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008 Information on toxicological effects Inhaled Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. Inhalation of essential oil volatiles may produce dizziness, rapid, shallow breathing, tachycardia, bronchial irritation and unconsciousness or convulsions. Complications include anuria, pulmonary oedema and bronchial pneumonia. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination Part Number: X001413AE5 Page 13 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator Accidental ingestion of the material may be damaging to the health of the individual. Taken internally the essential oils exert a mild irritant effect on the mucous membranes of the mouth and digestive tract which induces a feeling of warmth and increases salivation. Taken by mouth, many essential oils can be dangerous in high concentrations. Typical effects begin with a burning feeling, followed by salivation. In the stomach, the effect is carminative (relieve flatulence), relaxing the gastric sphincter and encouraging eructation (belching). Further down the gut, the effect typically is antispasmodic, Excessive oral doses irritate the gastro-intestinal tract and may cause nausea, vomiting and diarrhoea. Occasional irritation of the urinary tract and aggravation of pre-existing inflammatory conditions have been reported. Other effects include dysuria, haematuria, unconsciousness and shallow respiration. Complications arising from ingestion of volatile oils include anuria, pulmonary oedema, and bronchial pneumonia. #### Ingestion Central nervous system depression may lead to stupor and possible respiratory failure whilst central system stimulation may lead to excitement and convulsions. Pathologic findings include renal degeneration and intense congestion and oedema in the lungs, brain and gastric mucosa. Excretion takes place through the lungs, skin and kidneys. Most essential oils are reported to be ecbolic (inducing contractions of the uterus leading to expulsion of a fetus). but abortions cannot be induced at safe doses. Central nervous system (CNS) depression may include nonspecific discomfort, symptoms of giddiness, headache, dizziness, nausea, anaesthetic effects, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Five healthy male volunteers receiving a single oral dose of 20 grams d-limonene all developed transient proteinuria, a non-bloody diarrhoea and tenesmus. The results of other functional tests of the liver, kidney and pancreas were normal [Igimi, et al, 1976]. d-Limonene causes abnormal bone formation following oral administration in animals. A human fatality has been reported following ingestion of a dose estimated to be 35 to 350 gm/kg d-limonene. # Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Many essential oils affect the skin and mucous membranes in ways that are valuable or harmful. When applied to intact skin essential oils have an irritant and rubefacient action (i.e cause redness of the skin by causing dilation of the capillaries and an increase in blood circulation), causing first a sensation of warmth and smarting followed by mild local anesthesia. They have been used as counter-irritants and cutaneous stimulants in the treatment of chronic inflammatory conditions and to relieve neuralgia and rheumatic pain. Care should be taken to avoid blistering. These oils may also produce sensitisation. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. Application of d-limonene produced moderate irritation to both intact and abraded skin. High purity d-limonene does not cause significant allergic reaction in guinea pigs; d-limonene, exposed to air for 2-months, sensitised the animals and it is surmised that allergenic compounds are formed after prolonged air contact. In human patch testing, weak or moderate reactions (erythema, swelling) have been observed. Positive eczematous responses to purified limonene were observed in 5 of 16 previously sensitised to oil of turpentine. In one study, a 39-year old male immersed one hand in a jar of solvent, ensuring that inhalation exposure was minimal. After only few minutes of exposure, the subject experienced painful itching and burning. Itching decreased after the exposure but burning continued for 10 minutes. Swelling disappeared after 100 minutes. Six hours post-exposure, a purpuric eruption was observed; this persisted for several weeks. Blood concentrations during skin exposure were low compared to those during inhalation exposure. Skin Contact Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a hyper-responsive and it is impossible to identify in advance who are likely to become hyper-responsive. #### Chronic substantial number of individuals, and/or of producing a positive response in experimental animals. Substances that can cause occupational asthma (also known as asthmagens and respiratory sensitisers) can induce a state of specific airway hyper-responsiveness via an immunological, irritant or other mechanism. Once the airways have become hyperresponsive, further exposure to the substance, sometimes even to tiny quantities, may cause respiratory symptoms. These symptoms can range in severity from a runny nose to asthma. Not all workers who are exposed to a sensitiser will become Substances than can cuase occupational asthma should be distinguished from substances which may trigger the symptoms of asthma in people with pre-existing air-way hyper-responsiveness. The latter substances are not classified as asthmagens or Eye Part Number: X001413AE5 Page 14 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator respiratory sensitisers Wherever it is reasonably practicable, exposure to substances that can cuase occupational asthma should be prevented. Where this is not possible the primary aim is to apply adequate standards of control to prevent workers from becoming hyperresponsive. Activities giving rise to short-term peak concentrations should receive particular attention when risk management is being considered. Health surveillance is appropriate for all employees exposed or liable to be exposed to a substance which may cause occupational asthma and there should be appropriate consultation with an occupational health professional over the degree of risk and level of surveillance. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. In one study with citrus oils, the authors concluded that a common component was capable of promoting skin tumour development in previously initiated mice. Roe F.J.C. & Pierce W.E.I.; Jnl Nat Cancer Inst. 24, 1389-1403, 1960 Citrus spp. oils and other furocoumarins containing essential oils must be used so that the total level of bergapten (5-MOP) will not exceed: (a) 15 ppm in the finished cosmetic products, intended for application on skin areas likely to be exposed to sunshine, excluding rinse-off products. (b) 1 ppm in sun protection and in bronzing products. In the presence of other phototoxic ingredients, the sum of their concentrations (expressed as % of the of the respective maximum levels) shall not The Scientific Committee on Cosmetic Products and Non-food Products intended for Consumers (SCCNFP): Section II: Perfume and Aromatic Raw Materials October 2000 A number of common flavor and fragrance chemicals can form peroxides surprisingly fast in air. Antioxidants can in most cases minimize the oxidation. Fragrance terpenes are easily oxidized in air. Non-oxidised forms are very weak sensitizers; however, after oxidation, the hyproperoxides are strong sensitisers which may cause allergic reactions. Autooxidation of fragrance terpenes contributes greatly to fragrance allergy. There is the need to test for compounds the patients are actually exposed to, not only the ingredients originally applied in commercial formulations. Some oxidised terpenoids as well as some aged essential oils have revealed skin-sensitising capacities, leading to a hypersensitivity reaction synonymous to allergic contact dermatitis. The allergenic potency in some flavouring could be mainly attributed to terpenoid hydroperoxides intermediately built-up upon autoxidation, while their non-oxidised counterparts as well as most degradation products were proven to be not or only barely irritating Hydroperoxides of d-limonene are potent contact allergens when studied in guinea pigs. They may result when d-limonene is unstabilised against oxidation, or upon prolonged standing at room temperature and/ or upon exposure to light, or when stabiliser levels diminish. The two major hydroperoxides in auto-oxidised d-limonene, are cis- and trans- limonene-2-hydroperoxide (2-hydroperoxy-p-mentha-6,8-diene). In photo-oxidised d-limonene, they represent a minor fraction. Hydroperoxides may bind to proteins of the skin to make antigens either via a radical mechanism or after reactions to give epoxides. The cross-reactivity between the epoxide limonene-1,2-oxide, a potent contact allergen, and the hydroperoxides is NOT significant, indicating different mechanisms of sensitisation. d-Limonene was considered to be weakly carcinogenic for the mouse fore-stomach epithelium, but not tumour producing. In 13-week and 2-year gavage-studies, male rats showed a range of compound-related kidney lesions including exacerbation of age-related nephropathy, mineralisation in the renal medulla, hyperplasia of the transitional epithelium overlying the renal papilla and proliferation of the renal tubular epithelium. Neoplasms were believed to be caused by progression to tubular cell hyperplasia to tubular cell adenomas and, with increasing size, to adenocarcinomas or carcinomas. The similarity of the nephrotoxicity caused by trichloroethylene and N-(4'-fluoro-4-biphenyl)acetamide, tris(2,3-dibromopropyl)phosphate in rats and the species specific nature of the response suggests that degeneration and necrosis of convoluted tubules may be associated with the accumulation of alpha-2u-globin (a2u-G). Since a2u-G is a species and gender-specific protein that is causal for both the cytotoxic and carcinogenic response in male rats, extrapolation of d-limonene carcinogenicity data from rat studies to other species (including humans) is probably not warranted. Humans do not synthesise a2u-G; they do however produce other related low molecular weight proteins capable of binding chemicals that cause a2u-G nephropathy in rats but this does not necessarily connote human risk. The Risk Assessment Forum of the USA EPA concluded; - Male renal rat tumours arising as a result of a process involving a2u-G accumulation do not contribute to the qualitative weight-of-evidence that the chemical poses a human carcinogenic hazard. Such tumours are included in dose-response extrapolations for the estimation of human carcinogenic risk. - If the chemical induces a2u-G accumulation in male rats, the associated nephropathy is not to be used as an end-point for determining non-carcinogenic hazard. Linalool (a terpinoid) is an unsaturated tertiary alcohol. It is a naturally occurring component together with linalyl esters in a variety of fruits, fruit peels, fruit juices, vegetables and spices as for example laurel, coriander seeds and clary sage. The annual worldwide use of linalool and linalyl acetate in fragrances exceeds 1000 metric tons. For consideration of potential sensitization the exposure is calculated as a percent concentration used on the skin. Exposure to linalool used in fine fragrance products is reported as 4.3% based on the use of 20% of the fragrance mixture in the fine fragrance consumer product. Experimental studies in laboratory animals combined with advanced chemical analyses have shown that linalool is easily oxidized, and that the content of linalool decreased to about 80% after oxidation for 10 weeks at standardized conditions. One of the major oxidation products was identified as 7-hydroperoxy-3,7-dimethyl-octal-1,5-diene-3-ol. In guinea pig sensitisation studies a sample of oxidized linalool was a significant allergen sensitizing 8 of 15 test animals, whereas controls were negative. Linalyl hydroperoxide is a very strong sensitiser at the 1% level. Further studies have documented the sensitising capacity of linalool and derivatives found commercially available grade of linalool (97% purity) to be a weak sensitiser. When impurities were identified and removed the sensitising capacity was reduced but not eliminated. During storage, linalool undergoes autoxidation, Part Number: X001413AE5 Page 15 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator building up products including hydroperoxides such as 7-hydroperoxy-3,7-dimethyl-octal-1,5-diene-3-ol , which has been identified as the apparent cause allergic reactions on exposed skin. Animal testing data found that with guinea pigs, ten week old samples of linalool sensitized the animals skin, but highly purified linalool produces no reaction. Auto-oxidation was therefore identified by the authors as necessary for the sensitising process. Peroxidisable terpenes and terpenoids should only be used when the level of peroxides is kept to the lowest practicable level, for instance by adding antioxidants at the time of production. Such products should have a peroxide value of less than 10 millimoles peroxide per liter. This requirement is based on the published literature mentioning sensitising properties when containing peroxides. | Pressed to Fresh Pet | TOXICITY | IRRITATION | | |-------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|--| | Odour Elminator | Not Available | Not Available | | | | тохісіту | IRRITATION | | | orange, sweet, Valencia | Dermal (rabbit) LD50: >5000 mg/kg <sup>[2]</sup> | Eye: no adverse effect observed (not irritating) <sup>[1]</sup> | | | extract | Oral (Rabbit) LD50; >5000 mg/kg <sup>[2]</sup> | Skin: no adverse effect observed (not irritating) <sup>[1]</sup> | | | | TOXICITY | IRRITATION | | | sorbitan monooleate, | Oral (Mouse) LD50; 25000 mg/kg <sup>[2]</sup> | Eye (rabbit): 150 mg - mild | | | ethoxylated | | Skin (rabbit): - slight | | | Legend: | Value obtained from Furone FCHA Registered Sub- | stances - Acute toxicity 2. Value obtained from manufacturer's SDS. | | | oga | Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | | Epoxidation of double bonds is a common bioactivation pathway for alkenes. The allylic epoxides, so formed, were found to possess sensitising capacity in vivo and in vitro and to chemically reactive towards a common hexapeptide containing the most common nucleophilic amino acids. Further-more, a SAR study of potentially prohaptenic alkenes demonstrated that conjugated dions in an in conjugation with a city membered time are prohaptens, whereas related alkenes containing instanted double bonds. dienes in or in conjunction with a six-membered ring are prohaptens, whereas related alkenes containing isolated double bonds or an acyclic conjugated diene were weak or nonsensitizing compounds. This difference in sensitizing capacity of conjugated dienes as compared to alkenes with isolated double bonds was found to be due to the high reactivity and sensitizing capacity of the allylic epoxides metabolically formed from conjugated dienes. Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers. Ann-Therese Karlberg et al: Chem. Res. Toxicol. 2008, 21, pp 53-69 http://ftp.cdc.gov/pub/Documents/OEL/06.%20Dotson/References/Karlberg\_2008.pdf Fragrance allergens act as haptens, i.e. low molecular weight chemicals that are immunogenic only when attached to a carrier protein. However, not all sensitising fragrance chemicals are directly reactive, but require previous activation. A prehapten is a chemical that itself is non- or low-sensitising, but that is transformed into a hapten outside the skin by simple chemical transformation (air oxidation, photoactivation) and without the requirement of specific enzymatic systems. A prohapten is a chemical that itself is non- or low-sensitising but that is transformed into a hapten in the skin (bioactivation) usually via enzyme catalysis. It is not always possible to know whether a particular allergen that is not directly reactive acts as a prehapten or as a prohapten, or both, because air oxidation and bioactivation can often give the same product (geraniol is an example). Some chemicals might act by all three pathways. #### **Prohaptens** Compounds that are bioactivated in the skin and thereby form haptens are referred to as prohaptens. In the case of prohaptens, the possibility to become activated is inherent to the molecule and activation cannot be avoided by extrinsic measures. Activation processes increase the risk for cross-reactivity between fragrance substances. Crossreactivity has been shown for certain alcohols and their corresponding aldehydes, i.e. between geraniol and geranial (citral) and between cinnamyl alcohol and cinnamal. The human skin expresses enzyme systems that are able to metabolise xenobiotics, modifying their chemical structure to increase hydrophilicity and allow elimination from the body. Xenobiotic metabolism can be divided into two phases: phase I and phase II. Phase I transformations are known as activation or functionalisation reactions, which normally introduce or unmask hydrophilic functional groups. If the metabolites are sufficiently polar at this point they will be eliminated. However, many phase I products have to undergo subsequent phase II transformations, i.e. conjugation to make them sufficiently water soluble to be eliminated. Although the purpose of xenobiotic metabolism is detoxification, it can also convert relatively harmless compounds into reactive species. Cutaneous enzymes that catalyse phase I transformations include the cytochrome P450 mixed-function oxidase system, alcohol and aldehyde dehydrogenases, monoamine oxidases, flavin-containing monooxygenases and hydrolytic enzymes. Acyltransferases, glutathione S-transferases, UDP-glucuronosyltransferases and sulfotransferases are examples of phase II enzymes that have been shown to be present in human skin . These enzymes are known to catalyse both activating and deactivating biotransformations, but the influence of the reactions on the allergenic activity of skin sensitisers has not been studied in detail. Skin sensitising prohaptens can be recognised and grouped into chemical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or in vivo and in vitro studies of sensitisation potential and chemical reactivity. QSAR prediction: The relationships between molecular structure and reactivity that form the basis for structural alerts are based on well established principles of mechanistic organic chemistry. Examples of structural alerts are aliphatic aldehydes (alerting to the possibility of sensitisation via a Schiff base reaction with protein amino groups), and alpha,beta-unsaturated carbonyl groups, C=C-CO- (alerting to the possibility of sensitisation via Michael addition of protein thiol groups). Prediction of the sensitisation potential of compounds that can act via abiotic or metabolic activation (pre- or prohaptens) is more complex compared to that of compounds that act as direct haptens without any activation. The autoxidation patterns can differ due to differences in the #### Pressed to Fresh Pet Odour Elminator Part Number: X001413AE5 Page 16 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator stability of the intermediates formed, e.g. it has been shown that autoxidation of the structural isomers linalool and geraniol results in different major haptens/allergens. Moreover, the complexity of the prediction increases further for those compounds that can act both as pre- and prohaptens. In such cases, the impact on the sensitisation potency depends on the degree of abiotic activation (e.g. autoxidation) in relation to the metabolic activation Fragrance allergens act as haptens, i.e. low molecular weight chemicals that are immunogenic only when attached to a carrier protein. However, not all sensitising fragrance chemicals are directly reactive, but require previous activation. A **prehapten** is a chemical that itself is non- or low-sensitising, but that is transformed into a hapten outside the skin by simple chemical transformation (air oxidation, photoactivation) and without the requirement of specific enzymatic systems. In the case of prehaptens, it is possible to prevent activation outside the body to a certain extent by different measures, e.g. prevention of air exposure during handling and storage of the ingredients and the final product, and by the addition of suitable antioxidants. When antioxidants are used, care should be taken that they will not be activated themselves and thereby form new sensitisers #### **Prehaptens** Most terpenes with oxidisable allylic positions can be expected to autoxidise on air exposure due to their inherent properties. Depending on the stability of the oxidation products that are formed, a difference in the sensitisation potency of the oxidised terpenes can be seen Autoxidation is a free radical chain reaction in which hydrogen atom abstraction in combination with addition of oxygen forms peroxyl radicals. The reaction shows selectivity for positions where stable radicals can be formed. So far, all fragrance substances that have been investigated with regard to the influence of autoxidation on the allergenic potential, including identification of formed oxidation products, have oxidisable allylic positions that are able to form hydroperoxides and/or hydrogen peroxide as primary oxidation products upon air exposure. Once the hydroperoxides have been formed outside the skin they form specific antigens and act as skin sensitisers. Secondary oxidation products such as aldehydes and epoxides can also be allergenic, thus further increasing the sensitisation potency of the autoxidation mixture. The process of photoactivation may also play a role, but further research is required to establish whether this activation route is currently underestimated in importance due to insufficient knowledge of the true haptens in this context. It should be noted that activation of substances via air oxidation results in various haptens that might be the same or cross-reacting with other haptens (allergens). The main allergens after air oxidation of linalcol and linally acetate are the hydroperoxides. If linally acetate is chemically hydrolysed outside the skin it can thereafter be oxidised to the same haptens as seen for linalcol. A corresponding example is citronellol and citronellyl acetate. In clincal studies, concomitant reactions to oxidised linalcol and oxidised linallyl acetate have been observed. Whether these reactions depend on cross-reactivity or are due to exposure to both fragrance substances cannot be elucidated as both have an allergenic effect themselves. Linalcol and linallyl acetate are the main components of lavender oil. They autoxidise on air exposure also when present in the essential oil, and form the same oxidation products found in previous studies of the pure synthetic terpenes. Experimental sensitisation studies showed that air exposure of lavender oil increased the sensitisation potency. Patch test results in dermatitis patients showed a connection between positive reactions to oxidised linalcol, linallyl acetate and lavender oil. # ORANGE, SWEET, VALENCIA EXTRACT #### **Prohaptens** $Compounds \ that \ are \ bioactivated \ in \ the \ skin \ and \ thereby \ form \ haptens \ are \ referred \ to \ as \ prohaptens.$ In the case of prohaptens, the possibility to become activated is inherent to the molecule and activation cannot be avoided by extrinsic measures. Activation processes increase the risk for cross-reactivity between fragrance substances. Crossreactivity has been shown for certain alcohols and their corresponding aldehydes, i.e. between geraniol and geranial (citral) and between cinnamyl alcohol and cinnamal. The human skin expresses enzyme systems that are able to metabolise xenobiotics, modifying their chemical structure to increase hydrophilicity and allow elimination from the body. Xenobiotic metabolism can be divided into two phases: phase I and phase II. Phase I transformations are known as activation or functionalisation reactions, which normally introduce or unmask hydrophilic functional groups. If the metabolites are sufficiently polar at this point they will be eliminated. However, many phase I products have to undergo subsequent phase II transformations, i.e. conjugation to make them sufficiently water soluble to be eliminated. Although the purpose of xenobiotic metabolism is detoxification, it can also convert relatively harmless compounds into reactive species. Cutaneous enzymes that catalyse phase I transformations include the cytochrome P450 mixed-function oxidase system, alcohol and aldehyde dehydrogenases, monoamine oxidases, flavin-containing monooxygenases and hydrolytic enzymes. Acyltransferases, glutathione S-transferases, UDP-glucuronosyltransferases and sulfotransferases are examples of phase II enzymes that have been shown to be present in human skin. These enzymes are known to catalyse both activating and deactivating biotransformations, but the influence of the reactions on the allergenic activity of skin sensitisers has not been studied in detail. Skin sensitising prohaptens can be recognised and grouped into chemical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or in vivo and in vitro studies of sensitisation potential and chemical reactivity. QSAR prediction: The relationships between molecular structure and reactivity that form the basis for structural alerts are based on well established principles of mechanistic organic chemistry. Examples of structural alerts are aliphatic aldehydes (alerting to the possibility of sensitisation via a Schiff base reaction with protein amino groups), and alpha,beta-unsaturated carbonyl groups, C=C-CO- (alerting to the possibility of sensitisation via Michael addition of protein thiol groups). Prediction of the sensitisation potential of compounds that can act via abiotic or metabolic activation (pre- or prohaptens) is more complex compared to that of compounds that act as direct haptens without any activation. The autoxidation patterns can differ due to differences in the stability of the intermediates formed, e.g. it has been shown that autoxidation of the structural isomers linalool and geraniol results in different major haptens/allergens. Moreover, the complexity of the prediction increases further for those compounds that can act both as pre- and prohaptens. In such cases, the impact on the sensitisation potency depends on the degree of abiotic activation (e.g. autoxidation) in relation to the metabolic activation. #### SORBITAN MONOOLEATE, ETHOXYLATED Polyoxyethylene sorbitan monooleate (TW80) is widely used as an emulsifier or solubilizer in a variety of foods, cosmetics and other commercial Products. In addition, TW80 in water has been used as a vehicle for the delivery of other chemical agents to pregnant laboratory animals by the oral route of administration (eg. by gavage or in the drinking water). Based upon the large population of pregnant women potentially exposed to TW80, and because of its use as a vehicle in laboratory animal studies, TW80 was evaluated for potential developmental toxicity. Timed-mated Sprague-Dawley-derived (CD®) rats (25 per group) were exposed to 0, 500 or 5000 mg/kg/day of TW80. Aqueous solutions were delivered by gavage in a volume of 5 ml/kg of body weight on gestational days (od) 6 through 15. At termination (od 20), the uterus was removed and examined to determine Part Number: X001413AE5 Page 17 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator pregnancy status, and to evaluate the number of resorptions, and dead or live foetuses. Dead or live foetuses were weighed, and live foetuses were examined for external, visceral and skeletal defects. All treated females survived to scheduled necropsy and 19-23 pregnancies per group were confirmed. No dose-related signs of toxicity were observed for individual animals during the in-life phase of the study or at scheduled necropsy. Average maternal body weight (gd 0, 3, 6, 9, 12, 15, 18, or 20) did not differ among treatment groups, nor was there a treatment related change in maternal weight gain during treatment or gestation (absolute or corrected). There were no treatment-related effects upon the following maternal organ weights: gravid weight (absolute), kidney weight (absolute or relative), and heart weight (absolute or relative). Relative maternal liver weight (% body weight on gd 20 or % corrected body weight) was elevated in both TW80 groups and absolute liver weight was elevated at 500 mg/kg/day. Maternal food intake was comparable across groups during the pre- and post-treatment periods, but was decreased by 14% during the first 3 days of treatment at 5000 mg/kg/day relative to the vehicle control group. Maternal relative water intake was comparable among treatment groups throughout gestation. No differences among groups were noted for the number of corpora lutea per dam, the number of implantation sites per dam or the percent preimplantation loss per litter. No adverse effects were noted on the growth, viability or morphological development of the conceptuses. In conclusion, the maternal LOAEL was 500 mg/kg/day (based upon an increase in maternal relative liver weight). No definitive adverse effects of TW80 upon prenatal development were noted in this study. Thus, the developmental NOAEL was greater than 5000 mg/kg/day. Exposure to the material may result in a possible risk of irreversible effects. The material may produce mutagenic effects in man. This concern is raised, generally, on the basis of appropriate studies using mammalian somatic cells in vivo. Such findings are often supported by positive results from in vitro mutagenicity studies. The Cosmetic Ingredient Review (CIR) Expert Panel concluded that listed polysorbates are safe in cosmetics when formulated to be non-irritating. This conclusion supersedes the conclusion reached in the 1984, 2000, and 2001 CIR safety assessments. This safety assessment combines polysorbates reviewed in 3 previous safety assessments with other polysorbates that have not been reviewed by the CIR Panel into a group of 80 polyethoxylated sorbitan or sorbitol esters of fatty acid. Following oral administration of polysorbate 20 to rats, ester bonds of polysorbates are hydrolyzed within the digestive tract by pancreatic lipase.24 Free fatty acids were absorbed from the digestive tract and oxidized and excreted, mainly as carbon dioxide in exhaled breath. No migration of the polyoxyethylene sorbitan into the thymus lymph nodes has been demonstrated. No sex difference has been detected in the disposition of polysorbates in rats. Following oral ingestion of polysorbate 20 in humans, 90% or more of the administered substance was excreted in the feces as metabolites, with the polyoxyethylene sorbitan structure maintained, and 2%-3% of these metabolites were excreted in the urine The Panel considered the data available to characterize the potential for polysorbates to cause systemic toxicity. irritation, sensitization, reproductive and developmental toxicity, and genotoxicity. They noted the lack of systemic toxicity at low and moderate doses in several acute and repeated-dose oral exposure studies, and low toxicity at high doses; little or no irritation or sensitization in multiple tests of dermal and ocular exposure; the absence of genotoxicity in multiple Ames tests and chromosome aberration tests, and minimal irritation and lack of sensitization in tests of dermal exposure at concentration of use. The Panel recognizes that there are data gaps regarding use and concentration of these ingredients. However, the overall information available on the types of products in which these ingredients are used, concentrations of use and the similar pattern of use raise no safety concerns. The Panel note that polysorbate 20, polysorbate 65, and polysorbate 80 were shown to enhance dermal drug absorption. The Panel cautions that care should be taken in formulating cosmetic products that may contain these ingredients in combination with any ingredients whose safety was based on their lack of dermal absorption, or when dermal absorption was a concern. Especially, care should be taken when creating formulations intended for use on infants. To address the possible presence of 1,4-dioxane and ethylene oxide impurities in these ingredients, the Panel stressed that the cosmetics industry should continue to use the necessary procedures to limit these impurities from the PEG ingredients before blending them into cosmetic formulations. The Panel expressed concern about pesticide residues and heavy metals that may be present in botanical (ie, coconut-derived) ingredients. They stressed that the cosmetics industry should continue to use current good manufacturing practices (cGMPs) to limit impurities. Data from the 1984 safety assessment suggested that polysorbates caused a slight enhancement of tumor development caused by 7,12-dimethyl-benz[a]anthracene (DMBA) and N-methyl-N -nitro-N-nitrosoguanidine (MNNG); however, the data were not consistent. For other compounds, the tumorigenic properties of 3-methyl-cholanthrene (MCA) and 3,4-benz[a]pyrene (BP) were not enhanced by polysorbates. Since the tumor enhancement effects were inconsistent and depended on the simultaneous exposure to strong chemical carcinogens, which are not present in cosmetics, the Panel felt that the weak tumor enhancement effects were not relevant to cosmetic formulations. Because some studies showed minimal irritation at concentrations that are used in cosmetics, the Panel cautioned that products containing these ingredients should be formulated to be non-irritating. It was noted that at the time of the 2001 safety assessment on sorbeth beeswaxes, the Panel had recommended that cosmetic formulations containing PEGs not be used on damaged skin because of the possibility of renal toxicity when PEGs were applied to severely damaged skin, such as in burn patients. Since then, PEGs have been re-reviewed and the additional data demonstrated minimal dermal penetration of low-molecular weight PEGs. The amount of PEGs that would penetrate the stratum corneum barrier, even if damaged, from the use of cosmetics was well below the level of renal toxicity. Therefore, the Panel has removed the caveat that PEGs should not be used on damaged skin. The Panel strongly asserted that it is inappropriate to apply cosmetic products containing high concentrations of PEGs to individuals exhibiting barrier skin disruption through both the stratum corneum and the epidermis. The Panel discussed the issue of incidental inhalation exposure from spray products, including aerosol and pump hair sprays, spray deodorants, spray body and hand products, and spray moisturizing products. The limited acute exposure data available from 1 new inhalation study and 1 historical tracheal study suggest little potential for respiratory effects at relevant doses. These ingredients are reportedly used at concentrations up to 4% in cosmetic products that may be aerosolized. The Panel noted that 95%-99% of droplets/particles would not be respirable to any appreciable amount. Coupled with the small actual exposure in the breathing zone and the concentrations at which the ingredients are used, the available information indicates that incidental inhalation would not be a significant route of exposure that might lead to local respiratory or systemic effects. Safety Assessment of Polysorbates as Used in CosmeticJuly 2015 http://www.cir-safety.org/sites/default/files/PSorba\_062015\_FR\_0.pdf For sorbitan esters, ethoxylated (syn: polyoxyethylene sorbitan esters): Part Number: X001413AE5 Page 18 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator Some of the early short-term studies with these polyoxyethylene sorbitan esters in rats and hamsters showed deleterious effects. Subsequent work suggests that these were largely due to diarrhoea resulting from a large amount of unabsorbed polyglycol, possibly aggravated in some experiments by the use of an unsuitable basal diet. Since that time there has been considerable improvement in testing procedures, and more extensive long-term studies have been carried out. It seems reasonable therefore to base the evaluation of these substances on the levels causing no adverse effects indicated by the results of the more recent investigations. The significance of the local tumours which were produced by injection has been discussed at the meeting of the Scientific Group (1966). No increase in tumour incidence has followed the oral intake of polyoxyethylene sorbitan esters. Furthermore, large doses of the oleate and stearate have been well tolerated by human subjects. Polyoxyethylene (20) sorbitan monoester of lauric, oleic, palmitic and stearic acid and triester of stearic acid Seventeenth Report of the Joint FAO/WHO Expert Committee on Food Additives, Wld Hlth Org. Techn. Rep. Ser., 1974, No. 539; FAO Nutrition Meetings Report Series, 1974, No. 53. Polyethers, for example, ethoxylated surfactants and polyethylene glycols, are highly susceptible towards air oxidation as the ether oxygens will stabilize intermediary radicals involved. Investigations of a chemically well-defined alcohol (pentaethylene glycol mono-n-dodecyl ether) ethoxylate, showed that polyethers form complex mixtures of oxidation products when exposed to air. Sensitization studies in guinea pigs revealed that the pure nonoxidized surfactant itself is nonsensitizing but that many of the investigated oxidation products are sensitizers. Two hydroperoxides were identified in the oxidation mixture, but only one (16-hydroperoxy-3,6,9,12,15-pentaoxaheptacosan-1-ol) was stable enough to be isolated. It was found to be a strong sensitizer in LLNA (local lymph node assay for detection of sensitization capacity). The formation of other hydroperoxides was indicated by the detection of their corresponding aldehydes in the oxidation mixture. On the basis of the lower irritancy, nonionic surfactants are often preferred to ionic surfactants in topical products. However, their susceptibility towards autoxidation also increases the irritation. Because of their irritating effect, it is difficult to diagnose ACD to these compounds by patch testing. Allergic Contact Dermatitis—Formation, Structural Requirements, and Reactivity of Skin Sensitizers. Ann-Therese Karlberg et al; Chem. Res. Toxicol.2008,21,53-69 Polyethylene glycols (PEGs) have a wide variety of PEG-derived mixtures due to their readily linkable terminal primary hydroxyl groups in combination with many possible compounds and complexes such as ethers, fatty acids, castor oils, amines, propylene glycols, among other derivatives. PEGs and their derivatives are broadly utilized in cosmetic products as surfactants, emulsifiers, cleansing agents, humectants, and skin conditioners. PEGs and PEG derivatives were generally regulated as safe for use in cosmetics, with the conditions that impurities and by-products, such as ethylene oxides and 1,4-dioxane, which are known carcinogenic materials, should be removed before they are mixed in cosmetic formulations. Most PEGs are commonly available commercially as mixtures of different oligomer sizes in broadly- or narrowly-defined molecular weight (MW) ranges. For instance, PEG-10,000 typically designates a mixture of PEG molecules (n = 195 to 265) having an average MW of 10,000. PEG is also known as polyethylene oxide (PEO) or polyoxyethylene (POE), with the three names being chemical synonyms. However, PEGs mainly refer to oligomers and polymers with molecular masses below 20,000 g/mol, while PEOs are polymers with molecular masses above 20,000 g/mol, and POEs are polymers of any molecular mass. Relatively small molecular weight PEGs are produced by the chemical reaction between ethylene oxide and water or ethylene glycol (or other ethylene glycol oligomers), as catalyzed by acidic or basic catalysts. To produce PEO or high-molecular weight PEGs, synthesis is performed by suspension polymerization. It is necessary to hold the growing polymer chain in solution during the course of the poly-condensation process. The reaction is catalyzed by magnesium-, aluminum-, or calcium-organoelement compounds. To prevent coagulation of polymer chains in the solution, chelating additives such as dimethylglyoxime are used Safety Evaluation of Polyethyene Glycol (PEG) Compounds for Cosmetic Use: Toxicol Res 2015; 31:105-136 The Korean Society of Toxicology http://doi.org/10.5487/TR.2015.31.2.105 For Group D aliphatic esters:(sorbitan fatty esters) Sorbitan fatty acid esters are mono-, di-, and triesters of fatty acids and sorbitol-derived hexitol anhydrides. Sorbitan fatty acid esters were relatively nontoxic via ingestion in acute and long-term studies. They were generally minimal to mild skin irritants in animal studies, except that sorbitan isostearate applied to the skin was a moderate irritant in one rabbit study and when injected intradermally caused mild to severe irritation in guinea pigs. Sorbitan fatty acid esters did not sensitise guinea pigs. The fatty acid component, tested alone, typically caused only slight irritation and sensitisation, and was not photosensitising. Sorbitan fatty acid esters were not ocular irritants. Fatty acids are normal components of diet for which no data were available concerning reproductive or developmental toxicity, but Sorbitol had no adverse effects on the reproduction of CD rats during a multigeneration feeding study and was not a reproductive toxin at doses of 3000 to 7000 mg/kg/day for 2 years. Overall these esters and their corresponding fatty acids were not mutagenic, but sorbitan oleate was reported to reduce DNA repair following ultraviolet radiation exposure in human lymphocytes in culture. Sorbitan laurate and sorbitan trioleate were cocarcinogens in one mouse study, but sorbitan trioleate and sorbitan oleate were not tumour promoters in another study. In clinical tests. Sorbitan fatty acid esters were generally minimal to mild skin irritants and were nonsensitizing, but sorbitan sesquioleate did produce an allergic reaction in fewer than 1% of patients with suspected contact dermatitis and addition of sorbitan sesquioleate to the components of a fragrance mix used in patch testing increased both irritant and allergic reactions to the fragrance mix. Careful consideration was made of the data on the cocarcinogenesis of sorbitan laurate and sorbitan trioleate. but the high exposure levels, high frequency of exposure, and absence of a dose-response led to the conclusion that there was not a cocarcinogenesis risk with the use of these ingredients in cosmetic formulations. Accordingly, these ingredients were considered safe for use in cosmetic formulations under the present practices of use. Final report on the safety assessment of sorbitan caprylate, sorbitan cocoate, sorbitan disostearate, sorbitan dioleate, sorbitan distearate, sorbitan isostearate, sorbitan olivate, sorbitan sesquiisostearate, sorbitan sesquiisostearate, and sorbitan triisostearate Lanigan et al Int J. Toxicol 2002, pp 93-112 According to a classification scheme described by the American Chemistry Council' Aliphatic Esters Panel, Group D substances are esters of monoacids, mainly common fatty acids, and sorbitan (which is derived from sorbitol - a natural carbohydrate sweetener). The fatty acids include lauric, stearic, oleic acids and coca fatty acids (mainly lauric and myristic acids). The hydroxy group in the sorbitan represents the alcohol portion of the ester linkage. The Group D esters are carbohydrate-derived esters Part Number: X001413AE5 Page 19 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator since the ester linkage is connected to the hydroxy group(s) of sorbitan. They may have single ester linkages (i.e., sorbitan monoester) or may have multiple ester linkages, as in the case of sorbitan sesquioleate and sorbitan trioleate. Multiple ester linkages with long-chain fatty acids increase lipophilicity and also tend to diminish water solubility. The sorbitan esters are non-ionic surfactant-active agents that typically find use as emulsifiers, stabilizers, and thickeners in foods, cosmetics and medical products. Acute toxicity: Sorbitan esters do not represent a toxicological concern since they are derived from naturally occurring materials and the parent esters are ultimately metabolised back to these same natural constituents: namely, sorbitan and common fatty acids, both of which have low orders of toxicity. The oral LD50 in rats ranged from >2.9 g/kg to > 39.8 g/kg. Numerous sorbitan esters have been studied by acute oral and dermal administration. Results from these studies support the general conclusion that sorbitan fatty acid esters have low orders of acute toxicity. Repeated Dose Toxicity. A large number of subchronic oral and dermal studies and chronic oral feeding studies have been carried out for sorbitan monolaurate, sorbitan monostearate and sorbitan monooleate, For sorbitan monostearate, no adverse effects were reported in rats fed 5% concentrations of the test substance in the diet for 6 weeks. The NOAEL was estimated to be 5% or approximately 2500 mg/kg/day. In 2-year feeding studies at 5, 10 and 20% in the diet rats tolerated sorbitan monostearate with no adverse effects. However, at 20%, there was a small but significant decrease on growth rate in male rates. Hence, the NOAEL was 10% in the diet or approximately 5000 mg/kg/day in rats, based on these findings. In a 80-week dietary study in mice, no adverse effects were observed for sorbitan monostearate at 2% concentration in the diet and the NOAEL was 2% or approximately 2600 mg/kg/day. Subchronic studies have also been carried out with sorbitan, fatty acids C6-10, tetraester (CAS 228573-47-5).. Oral gavage studies for 28 days at dose levels up to 1000 mg/kg/day resulted in no systemic toxicity. Therefore, the NOAEL was 1000 mg/kg/day for this tetraester. Since the sesquioleate and trioleate of sorbitan are merely multiple ester homologs of sorbitan monooleate, they would be expected to show similar effects, given their structural similarities and potential to be metabolised to the monooleate. Sensitisation: Sorbitan fatty acid esters were generally minimal to mild skin irritants and were nonsensitising, but sorbitan sesquioleate did produce an allergic reaction in fewer than 1% of patients with suspected contact dermatitis and addition of sorbitan sesquioleate to the components of a fragrance mix used in patch testing increased both irritant and allergic reactions to the fragrance mix. Reproductive and developmental toxicity: Limited reproductive toxicity data have been reported for the sorbitan esters. In a 2-year feeding studies in rats with sorbitan monostearate, there were no effects on gestation and fertility at any dose level (0, 5, 10 and 20% in the diet) but survival of the newborn animals and maternal lactation were slightly diminished at the 20% level. Sorbitol was also studied indirectly as part of a mixture of hydrogenated starch hydrolysates (HSH) which contained about 7% sorbitol as part of the polyhydric alcohol mixture. The HSH mixture was investigated as part of a two-year ingestion study, a multigeneration reproduction study and a teratology study. At concentrations of 18% in drinking water (3000-7000 mg/kg/day), HSH did not produce reproductive or developmental effects. These results indicate that sorbitol does not cause reproductive/developmental toxicity in animals. Given these findings and the low order of toxicity of natural fatty acids, it seems unlikely that sorbitan esters would present reproductive and developmental toxicity concerns. Genotoxicity: Sorbitan monostearate (CAS 1338-41-6) was found to be negative in the Ames assay. In addition, the non-HPV substance, sorbitan fatty acid C6-10 tetraester (CAS 228573-47-5), did not cause any mutagenic effects in the Salmonella in vitro test. These substances bridge the low and high carbon range of most of the sorbitan esters and the chemistry of the sorbitan esters (i.e., sorbitan/ sorbitol, natural fatty acids) does not suggest the likelihood that the sorbitan esters are electrophilic or reactive in nature. Thus, it is not likely that the substances in Group D cause mutagenic effects. Sorbitan monostearate did not transform primary Syrian golden hamster embryo cells. As discussed above for point mutation, the chemistry of the sorbitan esters does not suggest the likelihood that these substances, or their constituent substructures (i.e., sorbitol, fatty acids) are reactive or electrophilic in nature. Carcinogenicity: Overall these esters and their corresponding fatty acids were not mutagenic, but sorbitan oleate was reported to reduce DNA repair following ultraviolet radiation exposure in human lymphocytes in culture. sorbitan laurate and sorbitan trioleate were cocarcinogens in one mouse study, but sorbitan trioleate and sorbitan oleate were not tumour promoters in another study. WARNING: This substance has been classified by the IARC as Group 1: CARCINOGENIC TO HUMANS. The material may be irritating to the eye, with prolonged contact causing inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis. The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. Pressed to Fresh Pet Odour Elminator & ORANGE, SWEET, VALENCIA EXTRACT & SORBITAN MONOOLEATE, ETHOXYLATED Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production. Pressed to Fresh Pet Odour Elminator & ORANGE, SWEET, VALENCIA EXTRACT The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested. Adverse reactions to fragrances in perfumes and in fragranced cosmetic products include allergic contact dermatitis, irritant Part Number: X001413AE5 Page 20 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator contact dermatitis, photosensitivity, immediate contact reactions (contact urticaria), and pigmented contact dermatitis. Airborne and connubial contact dermatitis occur. Intolerance to perfumes, by inhalation, may occur if the perfume contains a sensitising principal. Symptoms may vary from general illness, coughing, phlegm, wheezing, chest-tightness, headache, exertional dyspnoea, acute respiratory illness, hayfever, and other respiratory diseases (including asthma). Perfumes can induce hyper-reactivity of the respiratory tract without producing an IgE-mediated allergy or demonstrable respiratory obstruction. This was shown by placebo-controlled challenges of nine patients to "perfume mix". The same patients were also subject to perfume provocation, with or without a carbon filter mask, to ascertain whether breathing through a filter with active carbon would prevent symptoms. The patients breathed through the mouth, during the provocations, as a nose clamp was used to prevent nasal inhalation. The patient's earlier symptoms were verified; breathing through the carbon filter had no protective effect. The symptoms were not transmitted via the olfactory nerve but they may have been induced by trigeminal reflex via the respiratory tract or by the eyes. Cases of occupational asthma induced by perfume substances such as isoamyl acetate, limonene, cinnamaldehyde and benzaldehyde, tend to give persistent symptoms even though the exposure is below occupational exposure limits. Inhalation intolerance has also been produced in animals. The emissions of five fragrance products, for one hour, produced various combinations of sensory irritation, pulmonary irritation, decreases in expiratory airflow velocity as well as alterations of the functional observational battery indicative of neurotoxicity in mice. Neurotoxicity was found to be more severe after mice were repeatedly exposed to the fragrance products, being four brands of cologne and one brand of toilet water. Contact allergy to fragrances is relatively common, affecting 1 to 3% of the general population, based on limited testing with eight common fragrance allergens and about 16 % of patients patch tested for suspected allergic contact dermatitis. Contact allergy to fragrance ingredients occurs when an individual has been exposed, on the skin, to a suffcient degree of fragrance contact allergens. Contact allergy is a life-long, specifically altered reactivity in the immune system. This means that once contact allergy is developed, cells in the immune system will be present which can recognise and react towards the allergen. As a consequence, symptoms, i.e. allergic contact dermatitis, may occur upon re-exposure to the fragrance allergen(s) in question. Allergic contact dermatitis is an inflammatory skin disease characterised by erythema, swelling and vesicles in the acute phase. If exposure continues it may develop into a chronic condition with scaling and painful fissures of the skin. Allergic contact dermatitis to fragrance ingredients is most often caused by cosmetic products and usually involves the face and/or hands. It may affect fitness for work and the quality of life of the individual. Fragrance contact allergy has long been recognised as a frequent and potentially disabling problem. Prevention is possible as it is an environmental disease and if the environment is modified (e.g. by reduced use concentrations of allergens), the disease frequency and severity will decrease Fragrance contact allergy is mostly non-occupational and related to the personal use of cosmetic products. Allergic contact dermatitis can be severe and widespread, with a significant impairment of quality of life and potential consequences for fitness for work. Thus, prevention of contact sensitisation to fragrances, both in terms of primary prevention (avoiding sensitisation) and secondary prevention (avoiding relapses of allergic contact dermatitis in those already sensitised), is an important objective of public health risk management measure. Hands: Contact sensitisation may be the primary cause of hand eczema, or may be a complication of irritant or atopic hand eczema. The number of positive patch tests has been reported to correlate with the duration of hand eczema, indicating that long-standing hand eczema may often be complicated by sensitisation. Fragrance allergy may be a relevant problem in patients with hand eczema; perfumes are present in consumer products to which their hands are exposed. A significant relationship between hand eczema and fragrance contact allergy has been found in some studies based on patients investigated for contact allergy. However, hand eczema is a multi-factorial disease and the clinical significance of fragrance contact allergy in (severe) chronic hand eczema may not be clear. **Axillae Bilateral axillary** (underarm) dermatitis may be caused by perfume in deodorants and, if the reaction is severe, it may spread down the arms and to other areas of the body. In individuals who consulted a dermatologist, a history of such first-time symptoms was significantly related to the later diagnosis of perfume allergy. Face Facial eczema is an important manifestation of fragrance allergy from the use of cosmetic products (16). In men, after-shave products can cause an eczematous eruption of the beard area and the adjacent part of the neck and men using wet shaving as opposed to dry have been shown to have an increased risk of of being fragrance allergic. Irritant reactions (including contact urticaria): Irritant effects of some individual fragrance ingredients, e.g. citral are known. Irritant contact dermatitis from perfumes is believed to be common, but there are no existing investigations to substantiate this, Many more people complain about intolerance or rashes to perfumes/perfumed products than are shown to be allergic by testing. This may be due to irritant effects or inadequate diagnostic procedures. Fragrances may cause a dose-related contact urticaria of the non-immunological type (irritant contact urticaria). Cinnamal, cinnamic alcohol, and Myroxylon pereirae are well recognised causes of contact urticaria, but others, including menthol, vanillin and benzaldehyde have also been reported. The reactions to Myroxylon pereirae may be due to cinnamates. A relationship to delayed contact hypersensitivity was suggested, but no significant difference was found between a fragrance-allergic group and a control group in the frequency of immediate reactions to fragrance ingredients in keeping with a nonimmunological basis for the reactions seen. Pigmentary anomalies: The term "pigmented cosmetic dermatitis" was introduced in 1973 for what had previously been known as melanosis faciei feminae when the mechanism (type IV allergy) and causative allergens were clarified.. It refers to increased pigmentation, usually on the face/neck, often following sub-clinical contact dermatitis. Many cosmetic ingredients were patch tested at non-irritant concentrations and statistical evaluation showed that a number of fragrance ingredients were associated: jasmine absolute, ylang-ylang oil, cananga oil, benzyl salicylate, hydroxycitronellal, sandalwood oil, geraniol, geranium oil. Photo-reactions Musk ambrette produced a considerable number of allergic photocontact reactions (in which UV-light is required) in the 1970s and was later banned from use in the EU. Nowadays, photoallergic contact dermatitis is uncommon. Furocoumarins (psoralens) in some plant-derived fragrance ingredients caused phototoxic reactions with erythema followed by hyperpigmentation resulting in Berloque dermatitis. There are now limits for the amount of furocoumarins in fragrance products. Phototoxic reactions still occur but are rare. **General/respiratory:** Fragrances are volatile and therefore, in addition to skin exposure, a perfume also exposes the eyes and naso-respiratory tract. It is estimated that 2-4% of the adult population is affected by respiratory or eye symptoms by such an exposure. It is known that exposure to fragrances may exacerbate pre-existing asthma. Asthma-like symptoms can be provoked by sensory mechanisms. In an epidemiological investigation, a significant association was found between respiratory complaints related to fragrances and contact allergy to fragrance ingredients, in addition to hand eczema, which were independent risk factors in a multivariate analysis. Part Number: X001413AE5 Page 21 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator The essential oils, oleoresins (solvent-free), and natural extractives (including distillates) derived from citrus fruits are generally recognized as safe (GRAS) for their intended use in foods for human consumption. Botanicals such as citrus are comprised of hundreds of constituents, some of which have the potential to cause toxic effects; for example, bergapten (aka 5-methoxysporalen or 5-MOP) is a naturally occurring furanocoumarin (psoralen) in bergamot oil that causes phototoxicity. Under the rules governing cosmetic products in the European Union, citrus-derived ingredients must have furocoumarin content below 1 mg/kg in sun-protection and bronzing products. Acute toxicity The dermal LD50 of undiluted either bitter orange or citrus reticulata (tangerine) leaf oil (described as "petitgrain bigarade oil") was reported as greater than 2000 mg/kg in rabbits. The dermal LD50 of undiluted mandarin peel oil (Citrus reticulata) was greater than 5000 mg/kg in rabbits Dermal irritation: Varying degrees of irritation were observed in animals treated with undiluted citrus aurantium amara (bitter orange) flower wax, unreported concentrations of either bitter orange or citrus reticulata (tangerine) leaf oil (described as "petitgrain bigarade oil"), or unreported concentrations of mandarin peel oil. In human subjects, no irritation was observed after topical exposure to citrus aurantium dulcis (orange) peel wax (100%), bergamot oil (up to 15%), either bitter orange or citrus reticulata (tangerine) leaf oil (described as "petitgrain bigarade oil"; up to 8%), lemon oil (up to 20%), or mandarin peel oil (8%). Ocular irritation The eye tolerance of citrus aurantium amara (bitter orange) flower wax (> 50%) was tested in vitro using the SIRC cell strain. Tolerance was evaluated by measuring cytotoxicity. Negative controls solutions were physiological serum or sample diluent and the positive control solutions were 0.01% to 0.2% SDS. Negligible cytotoxicity was observed. Sensitisation: Bitter orange or citrus reticulata (tangerine) leaf oil (described as "petitgrain bigarade oil") and mandarin peel oil were not sensitising in human maximization tests. In studies of 250 dermatitic patients, less than 2.5% had positive reactions to bergamot oil, bitter orange oil, lemon oil, or sweet orange oil tested at 2% in paraffin. In a retrospective study (2001-2010) of professional food handlers in Denmark, 8.5% (16/188) of the patients had positive reactions to orange peel and 7.9% (15/191) of the patients had positive reactions to lemon peel Phototoxicity and Photosensitisation: Citrus aurantium dulcis (orange) peel wax (100%) was not photosensitising in a human study. Mixed results were observed in non-human and human phototoxicity and photosensitisation studies of diluted and undiluted bergamot oil, either bitter orange or citrus reticulata (tangerine) leaf oil (described as "petitgrain bigarade oil"), lime oil, lemon oil, lemon fruit and peel juice, grapefruit oil, mandarin oil, tangerine oil, bitter orange oil, bitter orange peel oil, orange peel, orange mesocarp, and orange fruit. Many of the citrus-derived ingredients contain constituents that are photoactive agents, although those noted to be furocoumarin free tended not to induce photosensitisation. Phototoxicity and photosensitisation were noted in several patients exposed to bergamot oil or limes/lime juice Carcinogenicity: Tumour-promoting activity was observed in mouse skin exposed to essential oils of orange (sweet), lemon, grapefruit, or lime. Groups of mice received weekly applications of 0.25 ml of the test substances 3 weeks after the application of 9,10-dimethyl-1,2-benzanthracene (DMBA) a tumour initiator. By the fifth week, papillomas were observed in mice exposed to lemon oil, grapefruit oil, and lime oil. Papillomas were observed in the orange oil group by the 12 th week. After 33 weeks, 10/20 mice in the lemon oil and lime oil treatment groups and 13/20 mice in the grapefruit oil and orange oil groups had papillomas. No malignant skin tumours were observed in the orange oil group: treatment was stopped after 42 weeks. Squamous cell carcinomas of the skin were observed in the orange on group. Treatment was stopped and 42 weeks. Squamous cell carcinomas of the skin were observed in 2 mice from the lemon oil group and 2 mice of the grapefruit oil group between weeks 36 and 55. Non-dermal tumors during the treatment period were observed in 1 mouse of the orange oil group (a haemangioma of the subcutaneous tissue starting at week 7) and in 1 mouse of the grapefruit oil group (a spindle cell sarcoma of the subcutaneous tissues). No tumours of the internal organs were observed. The survival of all the mice in this experiment was poor due to a very high incidence of renal disease. For linalool Linalool gradually breaks down when in contact with oxygen, forming an oxidized by-product that may cause allergic reactions such as eczema in susceptible individuals. Between 5 and 7% of patients undergoing patch testing in Sweden were found to be allergic to the oxidized form of linalool.[ Linalool has an acute oral mammalian LD50 close to 3,000 mg/kg bw; the acute dermal toxicity is ~ 2,000 mg/kg bw. After inhalation exposure of mice and man, slight sedative effects were observed; however a dose response characteristic could not be determined. Linalool is irritating to the skin, based on animal studies, and is a mild irritant from human experience. It may be moderately irritant to the eyes at the same concentration where it produces nasal pungency. Linalool is considered not to be a sensitiser. The incidence of dermal reaction to inalool is below 1% in naïve probands (not knowingly pre-sensitised) while in subjects pre-sensitised to fragrances it is up to 10%. In a 28-day oral rat study (72.9% linalool) findings were increased liver and kidney weight, thickened liver lobes and pale areas on the kidneys and in females only hepatocellular cytoplasmic vacuolisation. Other findings were related to local irritation of the gastro-intestinal tract. Based on the effects on liver and kidney a NOAEL of 160 mg/kg bw/d (equivalent to 117 mg/kg bw/d linalool) was derived. In this study no effects on male and female gonads were found. Linalool was not mutagenic in seven out of eight bacterial tests nor in two (one *in vitro* and one *in vivo*) mammalian tests; the one positive bacterial result is estimated to be a chance event. Linalool (72.9%) was tested in a reproduction screening test (non-OECD). The NOAEL for maternal toxicity based on clinical signs and effects on body weight and food consumption was 500 mg/kg bw/d (equivalent to 365 mg/kg bw/d linalool). The NOAEL on reproduction toxicity and developmental toxicity is 500 mg/kg bw/d (equivalent to 365 mg/kg bw linalool), based on the decreased litter size at birth and pup morbidity/mortality thereafter. Linalool seems not to be an immunotoxicant according to one animal study. For terpenoid tertiary alcohols and their related esters: Substances assigned to this category, as part of the HPV Challenge Program, possess close structural relationships, similar physicochemical properties and participate in the same pathways of metabolic detoxification and have similar toxicologic potential. Part Number: X001413AE5 Page 22 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator **Acute Toxicity:** Oral and dermal LD50 values for members of this chemical category indicate a low order of both oral and dermal toxicity. All rabbit dermal, and mouse and rat oral LD50 values exceed 2000 mg/kg with the majority of values greater than 5000 mg/kg Repeat dose toxicity: In a safety evaluation study, a 50/50 mixture of linalool and citronellol was fed to male and female rats (number and strain not specified) in the diet. The daily intake was calculated to be 50 mg/kg bw of each. Measurements of haematology, clinical chemistry, and urinalysis at weeks 6 and 12 showed no statistically significant differences between test and control groups. Histopathology revealed no dose-related lesions. A slight retardation of growth was observed in males only, but was concluded by the authors to be biologically insignificant Reproductive toxicity: Four groups of 10 virgin Crl CD rats were administered 0,250,500, or 1000 mg/kg bw of an essential oil (coriander oil) known to contain 73% linalool by mass. The test material was given by gavage once daily, 7 days prior to cohabitation, through cohabitation (maximum of 7 days), gestation, delivery, and a 4-day post-parturition period. The duration of the study was 39 days. Maternal effects reported included increased body weight and increased food consumption at 250 mg/kg/d, a non-statistically significant decrease in body weight and food consumption and decreased gestation index and decreased length of gestation at 500 mg/kg/d, and a statistically significant decrease in body weight and food consumption, statistically significant decrease in gestation index, length of gestation, and litter size at 1000 mg/kg/d. The only effect on pups was a decrease in viability of pups at the highest dose level. The authors concluded that there were no effects observed in the dams at the low dose of 250 mg/kg bw/d or in the offspring at the 250 and 500 mg/kg bw/d levels. The authors concluded that the maternal NOAEL was 250 mg/kg/d and the developmental NOAEL was 500 mg/kg/d. Four groups of 10 virgin Crl CD rats were administered 0,375,750, or 1500 mg/kg bw of an essential oil (cardamom oil) known to contain greater than 65 % tertiary terpenoid alcohols with 5 1% alpha-terpineol acetate by mass. Maternal observations included a non-statistically significant decrease in body weight gain and food consumption at 375 mg/kg/d. Mortality, clinical signs, a statistically significant decrease in body weight gain and food consumption, and gross lesions at necropsy were seen at 750 and 1500 mg/kg/d. The only effects on pups were a reduced body weight gain in pups at 750 and 1500 mg/kg/d and increased mortality at 1500 mg/kg/d. The authors concluded that there were no significant adverse effects in the dams or offspring at the 375 mg/kg/d dose. A maternal NOEL was reported to be less than 375 mg/kg/d based on reduced body weight gain and food consumption at 375 mg/kg/d and a developmental NOAEL was reported to be 375 mg/kg/d Developmental toxicity: A range finding study and follow-up teratology study was performed with pine oil. Pregnant Crl:CD(SD) BR rats were given 0, 50, 100, 500,750,or 1000 mg/kg/d by gavage in corn oil on days 6 to 20 of gestation. Laparotomies were performed, corpora lutea were counted, and the uterus of each rat was removed, weighed and then examined for number, placement and viability of implantations. Live foetuses were weighed, sexed and gross external alternations were identified. There were no deaths or abortions during the course of this study. Necropsy revealed no gross lesions. Maternal effects included local alopecia, decreased body weight gain and food consumption for the 3 highest dose levels. At 750 and 1000 mg/kg, average gravid uterine weight was reduced. In foetuses, decreased body weight was observed at dose levels of 100 mg/kg and above, and at dose levels of 500 and above there was a slight increase in average number of resorptions/litter. In the follow-up teratology study, pregnant CrI:CD(SD) BR rats were given 0, 50, 600, or 1200 mg/kg/d by gavage in corn oil on days 6 to 20 of gestation. Six of the 25 rats in 1200 mg/kg dose group died and necropsies revealed that adrenal weights were significantly increased in these rats. At 1200 mg/kg/d, foetuses exhibited increased incidences of delayed ossification, delayed brain development, decreased weights, increased embryo -foetal mortality, and sunken eye bulge with associated soft and hard tissue findings, a dose that also resulted in maternal death and a low incidence of embryo-foetal death (resorption). The maternal and developmental NOEL for pine oil was greater than 50 mg/kg/d but less than 600 mg/kg/d Genotoxicity: Mutagenicity/genotoxicity testing has been performed on six members of this chemical category, including a complete battery of in vitro genotoxicity tests using linalool. In nineteen separate in vitro tests on the mutagenicity and genotoxicity of terpenoid tertiary alcohols and related esters, all but two were negative. One of the positive results for linalool was observed in a rec assay using differences in growth rates in two strains of Bacillus subtilis as a measure of DNA changes In contrast, no evidence of mutagenicity was observed in the same test at a higher concentrations nor was DNA damage observed in a rat hepatocyte UDS assay. The authors of the mouse lymphoma assay which gave a weak positive result for linalool, emphasized that positive results in this assay are commonly observed for polar substances in the absence of S-9 and may be associated with changes in physiologic culture conditions (pH and osmolality). Based on a weight of evidence evaluation of the available in vitro and in vivo mutagenicity and genotoxicity assays on terpenoid tertiary alcohols and related esters, this group of flavouring substances would not be expected to exhibit a low genotoxic potential in vivo Metabolic fate: Based on the results of hydrolysis, the reactivity of linalool in aqueous media, and data on metabolism it is concluded that members of this chemical category exhibit similar chemical and biochemical fate. The esters are readily hydrolyzed to the corresponding alcohols, linalool and alpha-terpineol. Linalool is then partial converted to alpha-terpineol mainly under acidic1conditions. Alicyclic and aliphatic tertiary alcohols are efficiently detoxicated by two principal pathways: conjugation primarily with glucuronic acid and excretion primarily in urine, and omega-oxidation to eventually yield diacids and their reduced or hydrated analogs. These polar metabolites will be efficiently excreted primarily in the urine either unchanged or as the glucuronic acid conjugates. The physiochemical and toxicological properties of these substances are consistent with their known reactivity and common metabolic fate. Esters belonging to this category can be hydrolysed to their corresponding terpenoid alcohol and organic acid. Hydrolysis can also be catalysed by a class of esters known as carboxylesterases or B-type esterases that predominated in hepatocytes. Esters of tertiary terpenoid alcohols are readily hydrolyzed in animals, including fish. Once hydrolysed, the resulting alcohols undergo excretion unchanged or as the glucuronic acid conjugate. To a minor extent, CYP-450 mediated oxidation at the omega or omega-1 position yields polar oxidized metabolites capable of excretion primarily in the urine Terpenoid alcohols formed in the gastrointestinal tract are readily absorbed. During hydrolysis under acidic condition cyclisation may occur. In humans and animals, terpenoid tertiary alcohols primarily conjugate with glucuronic acid and are excreted in the urine and feces. Terpenoid alcohols with unsaturation may also undergo allylic oxidation to form polar diol metabolites that may be excreted either free or conjugated. If the diol contains a primary alcohol function, it may undergo further oxidation to the corresponding carboxylic acid. In a minor pathway, the endocyclic alkene of alpha-terpineol is epoxidised and then hydrolyzed to yield a triol metabolite 1,2,8-trihydroxy--p-menthane which also has been reported in humans following inadvertent oral ingestion of a pine oil disinfectant containing alpha-terpineol. Bicyclic tertiary alcohols are conjugated with glucuronic acid and excreted primarily in the urine. In rabbits the structurally related Part Number: X001413AE5 Page 23 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator bicyclic tertiary alcohols thujyl alcohol (4-methyl-1-(I-methylethyl)bicyclo[3.1.0]-hexan-3-ol) and beta-santenol (2,3,7-trimethylbicyclo[2.2.1]-heptan-2-ol) are conjugated with glucuronic acid. In a metabolism study using the terpenoid tertiary alcohol trans-sobrerol, in humans, dogs, and rats, ten metabolites were isolated in urine, eight of which were characterised in humans. Two principle modes of metabolism were observed, allylic oxidation of the ring positions and alkyl substituents, and conjugation of the tertiary alcohol fractions with glucuronic acid. These metabolic patterns are common modes of converting tertiary and secondary terpenoid alcohols to polar metabolites, which are easily excreted in the urine and faeces. Menthol forms similar conjugation products in rats d-Limonene is readily absorbed by inhalation and ingestion. Dermal absorption is reported to be lower than by the inhalation route. d-Limonene is rapidly distributed to different tissues in the body, readily metabolised and eliminated primarily through the Limonene exhibits low acute toxicity by all three routes in animals. Limonene is a skin irritant in both experimental animals and humans. Limited data are available on the potential to cause eye and respiratory irritation. Autooxidised products of d-limonene have the potential to be skin sensitisers. Limited data are available in humans on the potential to cause respiratory sensitisation. Autooxidation of limonene occurs readily in the presence of light and air forming a variety of oxygenated monocyclic terpenes. Risk of skin sensitisation is high in situations where contact with oxidation products of limonene occurs. Renal tumours induced by limonene in male rats is though to be sex and species specific and are not considered relevant to humans. Repeated exposure affects the amount and activity of liver enzymes, liver weight, blood cholesterol levels and bile flow in animals. Increase in liver weight is considered a physiological adaption as no toxic effects on the liver have been reported. From available data it is not possible to identify an NOAEL for these effects. Limonene is neither genotoxic or teratogenic nor toxic to the reproductive system. #### ORANGE, SWEET, VALENCIA EXTRACT & SORBITAN MONOOLEATE, ETHOXYLATED No significant acute toxicological data identified in literature search. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | <b>~</b> | Reproductivity | × | | Serious Eye<br>Damage/Irritation | • | STOT - Single Exposure | • | | Respiratory or Skin sensitisation | • | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | **Legend:** X − Data either not available or does not fill the criteria for classification – Data available to make classification #### 11.2 Information on other hazards #### 11.2.1. Endocrine disrupting properties No evidence of endocrine disrupting properties were found in the current literature. #### 11.2.2. Other information See Section 11.1 # **SECTION 12 Ecological information** # 12.1. Toxicity | December 1 - French Det | Endpoint | Test Duration (hr) | Species | Value | Source | |-----------------------------------------|------------------|--------------------|-------------------------------|------------------|------------------| | Pressed to Fresh Pet<br>Odour Elminator | Not<br>Available | Not Available | Not Available | Not<br>Available | Not<br>Available | | | Endpoint | Test Duration (hr) | Species | Value | Source | | | EC50 | 48h | Crustacea | 0.45mg/l | 2 | | orange, sweet, Valencia<br>extract | EC50 | 72h | Algae or other aquatic plants | 0.36mg/l | 2 | | extract | EC50(ECx) | 72h | Algae or other aquatic plants | 0.36mg/l | 2 | | | LC50 | 96h | Fish | 0.32mg/l | 2 | | and the manager | Endpoint | Test Duration (hr) | Species | Value | Source | | sorbitan monooleate,<br>ethoxylated | LC50 | 96h | Fish | 471mg/l | Not<br>Availabl | Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Part Number: X001413AE5 Page 24 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters. Wastes resulting from use of the product must be disposed of on site or at approved waste sites. for tertiary terpenoid alcohols and the esters: All the substances in this chemical category are liquids at ambient temperature. Members of this chemical category are branched-chain acyclic or alicyclic tertiary alcohols and related esters. The molecular weights of the alcohols are within a narrow range (154 to 158 daltons). Therefore, it is not unexpected that their experimentally determined boiling points are also within a narrow range (196-230 deg. C). The alicyclic alcohols (e.g., alpha-terpineol) show slightly higher boiling points than their acyclic counterparts (e.g., myrcenol and linalool). The calculated vapour pressure for all alcohols and esters in this group at 20 deg C are in the range from 0.02 to 0.12 mm Hg No vapour pressure is reported for the site-restricted peroxide pinane hydroperoxide that is maintained in sealed containers at temperatures below 35 deg C. Measured log Kow values are available for four substances in this chemical category. Three alcohols, linalool, alpha-terpineol, and plinol exhibit log Kow values of 2.9, 2.98 respectively. Higher log Kow values of 4.3 and 4.09 were reported for the more non-polar acetate esters, alpha-terpineol acetate and the related plinyl While the reported water solubilities were not obtained according to OECD guidelines, the solubility values increase with increased temperature and follow the same trend as measured partition coefficients. The values reported for linalool and alpha-terpineol at 4-8 deg. C. (560 and 341 mg/l respectively) and at 22-25 deg. C (867 and 716 mg/l respectively) show an expected increase in solubility. The decreased solubility expected for esters in this category is realised with a solubility of 60.5 mg/L for plinyl acetate obtained and 140 mg/L at 20 deg C for linalyl acetate. #### **Environmental fate:** Photodegradation: The calculated photodegradation half-lives for the ternary terpenoid alcohols and esters in this chemical category, are in the range from 1.07 to 9.08 hours [AOPWIN]. Half-lives for alcohols (i.e., linalool and myrcenol) that contain a more reactive allyl alcohol moiety group are shorter than their saturated counterparts (i.e., tetrahydrolinalool and dimyrcenol). Generally, more stable ternary alcohols in this category have longer half-lives than those for more reactive primary terpenoid alcohols (i.e., citronellol, geraniol and nerol half-lives, 19 minutes to 1.3 hours). Calculated half-lives for linalool and alpha-terpineol (1.07 and 1.24 hours, respectively) are in the same range as their corresponding esters (1.10 and 1.35 hours, respectively). The decreased chemical reactivity of these tertiary alcohols, as compared to that of primary terpenoid alcohols, supports slightly longer photodegradation half-lives as predicted by the model. Hydrolysis: Although hydrolysis is not possible for the tertiary alcohols in this category, it is possible for linalool to undergo acid-catalysed ring closure to yield mainly alpha-terpineol and minor amounts of the primary terpenoid alcohols, geraniol and nerol. The esters are able to undergo hydrolysis (to their corresponding alcohol) and exhibit pH-dependent half-lifes which increase at higher pH (pH 8 and above). - these typically are in the range of months or years. At very low pHs hydrolysis may occur in minutes Biodegradation: Linalool show this substance is readily biodegradable (i.e., 97.1% biodegradation by OECD 301B and greater than 80% by modified MITI test at 28 days). Tetrahydrolinalool and dihydromyrcenol were 103% and 72%, degraded, respectively, within 28 days in an OECD 301B assay. Myrcenol was 66% degraded in a 20-day closed bottle assay. Two tertiary terpenoid esters have also been shown to be readily biodegradable. Linally acetate underwent 75% biodegradation after 28 days in an OECD modified MITI test and alpha-terpineol acetate exhibited 87.3% and 63% biodegradation in an OECD 301B test and an OECD 301F test. The site-restricted chemical intermediate 2-pinanol hydroperoxide will decompose to 2-pinanol in the environment and thus should be considered to be readily biodegradable. Plinyl acetate was only 6% degraded in a 28-day OECD 301F test. This result is inconsistent with the biodegradability results for linally acetate and alpha-terpineol acetate in which ultimate biodegradability was observed. In an activated sludge respiration inhibition test the no effect concentration (NOEC) for plinyl acetate was determined to be 100 mg/L. In an older biodegradability study reporting limited data, pine oil underwent appreciably biodegradation as measured by a 5-day BOD (0.8 mg/ml) 50% of the measured COD (1.6 mg/ml). Fugacity: Transport and distribution in the environment were modeled using Level 1 Fugacity-based Environmental Equilibrium Partitioning Model Version 2.11. The significance of these calculations must be evaluated in the context that the substances in this chemical category are products of plant biosynthesis and are, therefore, ubiquitous in the environment. Most have been shown to be readily and/or ultimately biodegradable, and the remainder would be expected to behave similarly in the environment. The model does not account for the influence of biogenic production on partitioning in the environment nor does it take into account biodegradation. Therefore, the relevance of fugacity calculations for these substances is highly questionable. Fish LC50 (96 h): bluegill 53 mg/l, rainbow trout 18 mg/l (flow through system using pine-oil); rainbow trout 11 mg/l (for plinyl acetate; fathead minnow 3.7 mg/l (myrcenol); Coho salmon 6.8 mg/l, rainbow trout 6.7 mg/l (static system using alpha-terpineol) Daphnia magna LC50 (48 h) 36 mg/l (myrcenol); EC50 (48 h): 7 mg/l (plinyl acetate); 24 mg/l (pine oil) Given the available data for members of this chemical category, the approximate range of acute toxicity to aquatic invertebrates, particularly D. magna, is expected to be in the range of 10-50 mg/L. Aguatic plants; Both linalool and alpha-terpineol were subjected to a plate inhibition assay with Chlorella pyrenoidosa using test concentrations of 100, 1000 and 10,000 mg/l alpha-Terpineol showed no inhibition at any concentration, while linalool showed only mild reduction in colony density as reflected in lawn color at the highest concentration. In a test following OECD 201 Guideline, the reported algal 72 hr EC50 value was greater than 15 mg/L for Plinyl acetate in Scenedesmus subspicatus. A 96 hr NOEC of 3.3 mg/L was reported for isolinalool in Selenastrum capricornutum. The current database indicates that the EC50 values for members of this chemical category would be in the range of greater than lo-20 mg/L. For Terpenes such as Limonene and Isoprene: Atmospheric Fate: Contribute to aerosol and photochemical smog formation. When terpenes are introduced to the atmosphere, may either decrease ozone concentrations when oxides of nitrogen are low or, if emissions take place in polluted air (i.e. containing high concentrations of nitrogen oxides), leads to an increase in ozone concentrations. Lower terpenoids can react with unstable reactive gases and may act as precursors of photochemical smog therefore indirectly influencing community and ecosystem properties. The reactions of ozone with larger unsaturated compounds, such as the terpenes can give rise to oxygenated species with low vapour pressures that subsequently condense to form secondary organic aerosol. Aquatic Fate: Complex chlorinated terpenes such as toxaphene (a persistent, mobile and toxic insecticide) and its degradation products were produced by photoinitiated reactions in an aqueous system, initially containing limonene and other monoterpenes, simulating pulp bleach conditions. Substances containing unsaturated carbons are ubiquitous in indoor environments. They result from many sources (see below). Most are reactive with environmental ozone and many produce stable products which are thought to adversely affect human health. The potential for surfaces in an enclosed space to facilitate reactions should be considered. Source of unsaturated Unsaturated substances (Reactive Emissions) substances > Isoprene, nitric oxide, squalene, unsaturated sterols, oleic acid and other unsaturated fatty acids, unsaturated oxidation products Major Stable Products produced following reaction with ozone. Methacrolein, methyl vinyl ketone, nitrogen dioxide, acetone, 6MHQ, geranyl acetone, 4OPA, formaldehyde, nonanol, decanal, 9-oxo-nonanoic acid, azelaic acid. nonanoic acid. Occupants (exhaled breath, ski oils, personal care products) Part Number: X001413AE5 Page 25 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator Soft woods, wood flooring, Isoprene, limonene, alpha-pinene, other terpenes Formaldehyde, 4-AMC, pinoaldehyde, pinic acid, pinonic acid, formic acid, including cypress, cedar and and sesquiterpenes methacrolein, methyl vinyl ketone, SOAs including ultrafine particles silver fir boards, houseplants 4-Phenylcyclohexene, 4-vinylcyclohexene, Carpets and carpet backing styrene, 2-ethylhexyl acrylate, unsaturated fatty Formaldehyde, acetaldehyde, benzaldehyde, hexanal, nonanal, 2-nonenal acids and esters Linoleum and paints/polishes Propanal, hexanal, nonanal, 2-heptenal, 2-nonenal, 2-decenal, 1-pentene-Linoleic acid, linolenic acid containing linseed oil 3-one, propionic acid, n-butyric acid Latex paint Residual monomers Formaldehyde Formaldehyde, acetaldehyde, glycoaldehyde, formic acid, acetic acid, Limonene, alpha-pinene, terpinolene, alpha-Certain cleaning products, hydrogen and organic peroxides, acetone, benzaldehyde, 4-hydroxy-4-methylterpineol, linalool, linalyl acetate and other polishes, waxes, air fresheners 5-hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H)-furanone, 4-AMC, SOAs terpenoids, longifolene and other sesquiterpenes including ultrafine particles Natural rubber adhesive Isoprene, terpenes Formaldehyde, methacrolein, methyl vinyl ketone Photocopier toner, printed paper, Styrene Formaldehyde, benzaldehyde styrene polymers Formaldehyde, benzaldehyde, hexanal, glyoxal, N-methylformamide, Environmental tobacco smoke Styrene, acrolein, nicotine nicotinaldehyde, cotinine Squalene, unsaturated sterols, oleic acid and other Acetone, geranyl acetone, 6MHO, 40PA, formaldehyde, nonanal, decanal, Soiled clothing, fabrics, bedding saturated fatty acids 9-oxo-nonanoic acid, azelaic acid, nonanoic acid Unsaturated fatty acids from plant waxes, leaf Formaldehyde, nonanal, and other aldehydes; azelaic acid; nonanoic acid; Soiled particle filters litter, and other vegetative debris; soot; diesel 9-oxo-nonanoic acid and other oxo-acids; compounds with mixed functional groups (=O, -OH, and -COOH) Unsaturated fatty acids and esters, unsaturated Ventilation ducts and duct liners C5 to C10 aldehydes oils, neoprene "Urban grime! Polycyclic aromatic hydrocarbons Oxidized polycyclic aromatic hydrocarbons Perfumes, colognes, essential Limonene, alpha-pinene, linalool, linalyl acetate, Formaldehyde, 4-AMC, acetone, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyloils (e.g. lavender, eucalyptus, terpinene-4-ol, gamma-terpinene dihydro-5-methyl-2(3H) furanone, SOAs including ultrafine particles tea tree) Formaldehyde, 4-AMC, pinonaldehyde, acetone, pinic acid, pinonic acid, Overall home emissions Limonene, alpha-pinene, styrene formic acid, benzaldehyde, SOAs including ultrafine particles Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene; 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentanal, SOA, Secondary Organic Aerosols Reference: Charles J Weschler; Environmental Helath Perspectives, Vol 114, October 2006 For Limonenes: Atmospheric Fate: Due to the high volatility of limonene, the atmosphere is expected to be the major environmental sink for this chemical. The oxidation of limonene may contribute to aerosol and photochemical smog formation. The daytime atmospheric lifetime of d-limonene is estimated to range from 12 to 48 minutes depending upon local hydroxyl rate and ozone concentrations. Ozonolysis of limonene may also lead to the formation of hydrogen peroxide and organic peroxides, which have various toxic effects on plant cells and may damage forests. Reactions with nitrogen oxides produce aerosol formation as well as lower molecular weight products such as formaldehyde, acetaldehyde, formic acid, acetone and peroxyacetyl nitrate. Terrestrial fate: When released to the ground, limonene is expected to have low to very low mobility in soil based on its physicochemical properties. It is expected that limonene will rapidly volatilize from both dry and moist soil, however; its absorption to soil may slow the process. Aquatic fate: In the aquatic environment, limonene is expected to evaporate to a significant extent owing to its high volatility. The estimated half-life for volatilisation of limonene from a model river 1 m deep is 3.4 h. Some limonene is expected to absorb to sediment and suspended organic matter. Hydrolysis of limonene is not expected in terrestrial or in aquatic environments. The hydrolytic half-life of d-limonene is estimated to be >1000 days. Ecotoxicity: Biotic degradation of limonene has been shown with some species of microorganisms such as Penicillium digitatum, Corynespora cassiicola, Diplodia gossyppina and a soil strain of Pseudomonans sp (SL strain). Limonene is readily biodegradable under aerobic conditions. Biodegradation has been assessed under anaerobic conditions; there was no indication of any metabolisms, possibly because of the toxicity to micro-organisms. Limonene may bioaccumulate in fish and other aquatic species. Technical limonene is practically nontoxic to birds and is slightly toxic to freshwater fish and invertebrates on an acute basis. Limonene has low subacute toxicity to bobwhite quail. For linalool: # **Environmental fate:** Linalool is a liquid with a vapour pressure of approx. 0.2 hPa (at 23.5 degree C), a water solubility of 1589 mg/l (at 25 degree C) and a Log Kow of 2.97 (at 23.5 degree C). Most linalool, both natural and synthetic, is released to the atmosphere, where it is rapidly degraded abiotically with a typical half-life below 30 minutes. In the aquatic compartment, linalool is readily biodegraded under both aerobic and anaerobic conditions, the same is predicted for soil and sediment. Linalool does not bioaccumulate to a major extent. #### **Ecotoxicity:** In acute aquatic ecotoxicity tests linalool had a 96 hours LC50 value of 28 mg/l in fish, an 48 hours EC50 for daphnia of 20 mg/l and for algae an 96 hours EC50 of 88 mg/l. It had low toxicity to micro-organisms, from activated sludge to various species of bacteria and fungi, with most reported NOECs .. 100 mg/l. Based on the lowest acute EC50 for daphnia, an aquatic freshwater a PNEC of 200 ug/l is derived. The NOEL of linalool on the germination and initial growth of terrestrial plants was 100 mg/l. A host of data show both contact and fumigant toxicity against insects; as an acetylcholinesterase inhibitor, it paralyses and ultimately kills insects at high concentrations. These effects are not easily quantifiable **DO NOT** discharge into sewer or waterways. #### 12.2. Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |---------------------------------|-------------------------|------------------| | orange, sweet, Valencia extract | HIGH | HIGH | ## 12.3. Bioaccumulative potential Part Number: **X001413AE5** Page **26** of **31** Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator | Ingredient | Bioaccumulation | | |---------------------------------|------------------------|--| | orange, sweet, Valencia extract | HIGH (LogKOW = 5.6842) | | #### 12.4. Mobility in soil | Ingredient | Mobility | |---------------------------------|----------------------| | orange, sweet, Valencia extract | LOW (Log KOC = 2899) | #### 12.5. Results of PBT and vPvB assessment | | Р | В | T | | |-------------------------|---------------|---------------|--------|---------| | Relevant available data | Not Available | Not Available | Not Av | ailable | | PBT | × | × | × | | | vPvB | × | × | × | | | PBT Criteria fulfilled? | | | | No | | vPvB | | | | No | #### 12.6. Endocrine disrupting properties No evidence of endocrine disrupting properties were found in the current literature. #### 12.7. Other adverse effects One or more ingredients within this SDS has the potential of causing ozone depletion and/or photochemical ozone creation. # **SECTION 13 Disposal considerations** #### 13.1. Waste treatment methods - ▶ Containers may still present a chemical hazard/ danger when empty. - Return to supplier for reuse/ recycling if possible. #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - ▶ Reduction - ▶ Reuse - Recycling - Disposal (if all else fails) # Product / Packaging disposal This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - Recycle wherever possible. - Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified. - Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or Incineration in a licensed apparatus (after admixture with suitable combustible material). - ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed. Waste treatment options Not Available Sewage disposal options Not Available #### **SECTION 14 Transport information** Version No: 1.4 # Page 27 of 31 Pressed to Fresh Pet Odour Elminator HAZCHEM 3Y # Land transport (ADR-RID) | 14.1. UN number or ID number | 1197 | | |-------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 14.2. UN proper shipping name | at 50 °C not more than 11 | lavour or aroma (having a flash-point below 23 °C and viscous according to 2.2.3.1.4) (vapour press b kPa); EXTRACTS, LIQUID, for flavour or aroma (having a flash-point below 23 °C and viscous pour pressure at 50 °C more than 110 kPa); EXTRACTS, LIQUID, for flavour or aroma | | 14.3. Transport hazard | Class | | | class(es) | Subsidiary Hazard | ot Applicable | | 14.4. Packing group | III | | | 14.5. Environmental hazard | Environmentally hazardou | 5 | | | Hazard identification (K | mler) 30 | | | Classification code | F1 | | 14.6. Special precautions | Hazard Label | 3 | | for user | Special provisions | 601 | | | Limited quantity | 5 L | | | Tunnel Restriction Code | D/E E | # Air transport (ICAO-IATA / DGR) | 14.1. UN number | 1197 | | | |------------------------------------|-----------------------------------------------------------|----------------|-------| | 14.2. UN proper shipping name | Extracts, liquid for flavour; Extracts, liquid for aroma | | | | | ICAO/IATA Class | 3 | | | 14.3. Transport hazard class(es) | ICAO / IATA Subsidiary Hazard | Not Applicable | | | Class(es) | ERG Code | 3L | | | 14.4. Packing group | | | | | 14.5. Environmental hazard | Environmentally hazardous | | | | | Special provisions | | A3 | | | Cargo Only Packing Instructions | | 366 | | | Cargo Only Maximum Qty / Pack | | 220 L | | 14.6. Special precautions for user | Passenger and Cargo Packing Instructions | | 355 | | 101 4001 | Passenger and Cargo Maximum | Qty / Pack | 60 L | | | Passenger and Cargo Limited Quantity Packing Instructions | | Y344 | | | Passenger and Cargo Limited Maximum Qty / Pack | | 10 L | # Sea transport (IMDG-Code / GGVSee) | 14.1. UN number | 1197 | |-------------------------------|----------------------------------------| | 14.2. UN proper shipping name | EXTRACTS, LIQUID, for flavour or aroma | Part Number: X001413AE5 Page 28 of 31 Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator | 14.3. Transport hazard class(es) | IMDG Class IMDG Subsidiary Haz | zard Not Applicable | |------------------------------------|--------------------------------|----------------------| | 14.4. Packing group | Ш | | | 14.5 Environmental hazard | Marine Pollutant | | | 14.6. Special precautions for user | EMS Number Special provisions | F-E , S-D<br>223 955 | | ioi usei | Limited Quantities | 5 L | # Inland waterways transport (ADN) | 14.1. UN number | 1197 | | |------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------| | 14.2. UN proper shipping name | EXTRACTS, LIQUID, for flavour or aroma; EXTRACTS, LIQUID, for flavour or aroma (having a flashpoint below 23 °C and viscous according to 2.2.3.1.4) (vapour pressure at 50 °C more than 110 kPa); EXTRACTS, LIQUID, for flavour or aroma (having a flashpoint below 23 °C and viscous according to 2.2.3.1.4) (vapour pressure at 50 °C not more than 110 kPa) | | | 14.3. Transport hazard class(es) | 3 Not Applicable | | | 14.4. Packing group | III | | | 14.5. Environmental hazard | Environmentally hazardo | ous | | 14.6. Special precautions for user | Classification code | F1 | | | Special provisions | 601 | | | Limited quantity | 5 L | | | Equipment required | PP, EX, A | | | Fire cones number | 0 | # 14.7. Maritime transport in bulk according to IMO instruments # 14.7.1. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable # 14.7.2. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |-------------------------------------|---------------| | orange, sweet, Valencia extract | Not Available | | sorbitan monooleate,<br>ethoxylated | Not Available | # 14.7.3. Transport in bulk in accordance with the IGC Code | Product name | Ship Type | |----------------------------------|---------------| | orange, sweet, Valencia extract | Not Available | | sorbitan monooleate, ethoxylated | Not Available | #### **SECTION 15 Regulatory information** # 15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture orange, sweet, Valencia extract is found on the following regulatory lists Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS) sorbitan monooleate, ethoxylated is found on the following regulatory lists Europe EC Inventory Version No: 1.4 #### Pressed to Fresh Pet Odour Elminator # **Additional Regulatory Information** Not Applicable This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs. # Information according to 2012/18/EU (Seveso III): | Seveso Category | P5a P5b P5c F1 | |-----------------|----------------------| | oeveso calegory | 1 Ja, 1 Jb, 1 Jb, L1 | #### 15.2. Chemical safety assessment No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier. #### **National Inventory Status** | National Inventory | Status | |----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Australia - AIIC / Australia<br>Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | No (orange, sweet, Valencia extract; sorbitan monooleate, ethoxylated) | | China - IECSC | Yes | | Europe - EINEC / ELINCS /<br>NLP | Yes | | Japan - ENCS | No (orange, sweet, Valencia extract) | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | No (orange, sweet, Valencia extract) | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration. | # **SECTION 16 Other information** | Revision Date | 02/12/2023 | |---------------|------------| | Initial Date | 02/12/2023 | # Full text Risk and Hazard codes | H302 | Harmful if swallowed. | | |------|---------------------------------------|--| | H341 | Suspected of causing genetic defects. | | | H351 | Suspected of causing cancer. | | # Other information # Ingredients with multiple cas numbers | Name | CAS No | |-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | orange, sweet, Valencia extract | 97766-30-8, 8028-48-6 | | sorbitan monooleate,<br>ethoxylated | 9005-65-6, 1340-85-8, 141927-23-3, 178631-96-4, 209796-63-4, 253447-34-6, 361534-35-2, 37199-23-8, 37280-84-5, 51377-27-6, 541509-66-4, 61723-75-9, 8050-83-7, 9015-07-0, 9050-49-1, 9050-57-1, 1286269-72-4, 2137448-98-5, 900143-89-7 | Classification of the preparation and its individual components has drawn on official and authoritative sources using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. #### Pressed to Fresh Pet Odour Elminator For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards: EN 166 Personal eye-protection EN 340 Protective clothing EN 374 Protective gloves against chemicals and micro-organisms EN 13832 Footwear protecting against chemicals EN 133 Respiratory protective devices #### **Definitions and abbreviations** - ▶ PC—TWA: Permissible Concentration-Time Weighted Average PC— - STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer - ACGIH: American Conference of Governmental Industrial Hygienists - STEL: Short Term Exposure Limit - TEEL: Temporary Emergency Exposure Limit $_{\!\scriptscriptstyle o}$ - IDLH: Immediately Dangerous to Life or Health Concentrations - ES: Exposure Standard - OSF: Odour Safety Factor - NOAEL: No Observed Adverse Effect Level - ▶ LOAEL: Lowest Observed Adverse Effect Level - ▶ TLV: Threshold Limit Value - LOD: Limit Of Detection - ▶ OTV: Odour Threshold Value - ▶ BCF: BioConcentration Factors - ▶ BEI: Biological Exposure Index - DNEL: Derived No-Effect Level - PNEC: Predicted no-effect concentration - AIIC: Australian Inventory of Industrial Chemicals - ▶ DSL: Domestic Substances List - ▶ NDSL: Non-Domestic Substances List - ▶ IECSC: Inventory of Existing Chemical Substance in China - ▶ EINECS: European INventory of Existing Commercial chemical Substances - ▶ ELINCS: European List of Notified Chemical Substances - ▶ NLP: No-Longer Polymers - ▶ ENCS: Existing and New Chemical Substances Inventory - ▶ KECI: Korea Existing Chemicals Inventory - ▶ NZIoC: New Zealand Inventory of Chemicals - ▶ PICCS: Philippine Inventory of Chemicals and Chemical Substances - TSCA: Toxic Substances Control Act - ▶ TCSI: Taiwan Chemical Substance Inventory - INSQ: Inventario Nacional de Sustancias Químicas - NCI: National Chemical Inventory - ▶ FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances # Classification and procedure used to derive the classification for mixtures according to Regulation (EC) 1272/2008 [CLP] | Classification according to regulation (EC) No 1272/2008 [CLP] and amendments | Classification Procedure | |------------------------------------------------------------------------------------------------------------|--------------------------| | Flammable Liquids Category 3, H226 | On basis of test data | | Skin Corrosion/Irritation<br>Category 2, H315 | Calculation method | | Sensitisation (Skin) Category 1, H317 | Calculation method | | Serious Eye Damage/Eye<br>Irritation Category 2, H319 | Calculation method | | Specific Target Organ<br>Toxicity - Single Exposure<br>(Respiratory Tract Irritation)<br>Category 3 , H335 | Calculation method | | Specific Target Organ<br>Toxicity - Single Exposure<br>(Narcotic Effects) Category<br>3, H336 | Calculation method | Part Number: X001413AE5 Page 31 of 31 Version No: **1.4** # Pressed to Fresh Pet Odour Elminator | Classification according to<br>regulation (EC) No<br>1272/2008 [CLP] and<br>amendments | Classification Procedure | |----------------------------------------------------------------------------------------|--------------------------| | Hazardous to the Aquatic<br>Environment Long-Term<br>Hazard Category 1, H410 | Calculation method | | , EUH019 | Calculation method |