

Kalahari Resort and Conference Center
Sandusky, Ohio

Fiscally Responsible and
Better-than-Expected
Stormwater Infrastructure
using Sensor Systems

May 12, 2022

Joseph Diekfuss, PhD, PE Todd Weik, PLA, CPESC Matthew Kamenick, PE

P4 Infrastructure

CBC Engineers & Associates

StormTrap

P4 Infrastructure

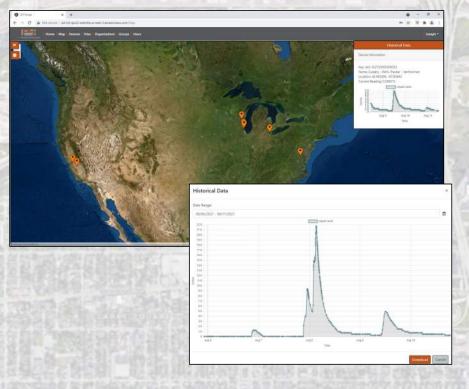
www.p4i.io

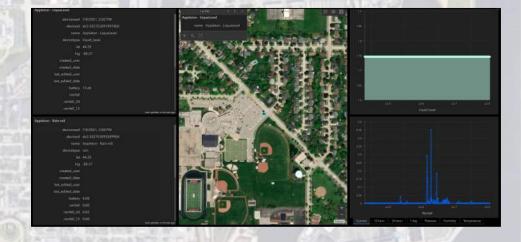
414-877-0620

Technology for Increasing BMP Efficiency and Monitoring

- Theory based approaches Hydrology, Hydraulic and Water Quality
- Decisions are made that affect Ordinances, Design Standards, Utility Rates and Credits, Municipal Budgets, Maintenance and Permit Compliance
- Unknown functionality of facilities has economic implications
- Volumetric monitoring will provide the real time data needed to make informed decisions that will save money and provide an informed path to regulatory pollutant removal compliance

P4 DEVICES





P4 Dashboard

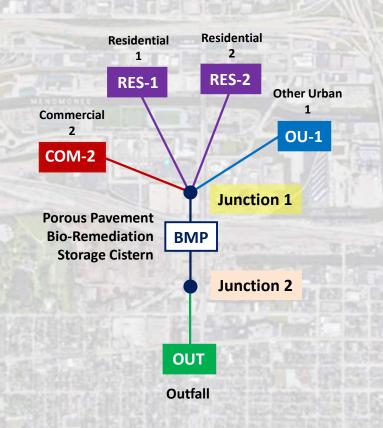
Basic viewing and downloading of data is available as soon as device is turned on.

ESRI-Based Dashboard
Available thru Separate Subscription

REDUCED INFRASTRUCTURE SPENDING: CUDAHY CASE STUDY



Flow-RTC


Source Load and Management Model Residential Residential **Land Use** 1 Pollutant Source RES-2 RES-1 Other Urban Pollutant Load (lbs/cf) Commercial 2 **Stormwater and Pollutant Quantity** OU-1 COM-2 Rainfall Volume **Runoff Coefficient** Baseline **Junction 1 Stormwater Runoff Volume (cf) Pollutant** Pollutant Load (lbs) Concentration (lbs/cf) OUT Outfall

Source Load and Management Model

Land Use

- Pollutant Source
- Pollutant Load (lbs/cf)

Stormwater and Pollutant Quantity

- Rainfall Volume
- Runoff Coefficient
- Stormwater Runoff Volume (cf)
- Pollutant Load (lbs)

Pollutant Treatment

- Gallery Media
- Underdrain
- Infiltration (cf)
- Stormwater Pass-Through Volume (cf)
- Pollutant Load (lbs) at Outfall

Baseline
Pollutant
Concentration
(lbs/cf)

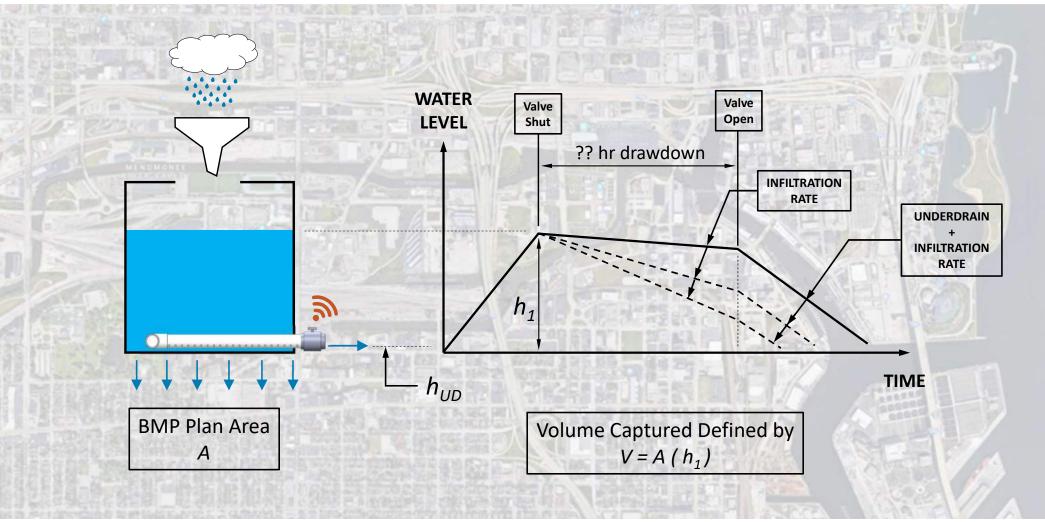
Source Load and Management Model

Residential Residential 1 RES-2 RES-1 **Other Urban** Commercial 2 **OU-1** COM-2 **Junction 1 Porous Pavement Bio-Remediation BMP Storage Cistern** Junction 2 OUT Outfall

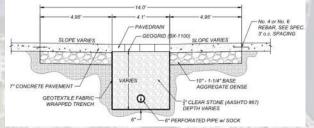
Permeable Pavement | UD@Bottom | Subgrade Seepage = 0.04 in/hr

WinSLAMM Output Summary		Runoff Volume (cu ft)	Percent P Runoff Volume Reduction	Solids Conc. (mg/L)	Particulate Solids Yield (lbs)	Percent Particulate Solids Reduction		
Total of all Land Uses wit	hout Controls:	113630	(-	106.4	754.8	-		
Outfall Total with Controls:		107304	5.57%	31.44	210.6	72.10%		
Annualized Total After Out	fall Controls:	110952			217.8			
Pollutant	Concentration - No Controls	Concentration With Controls	100110000	7/1/17	lutant Yield	Pollutant Yield With Controls	Pol. Y Units	eld Percent Reduction
Particulate Solids	106.4	31.44	mg/L	754.8		210.6	1bs	72.10 %
Filterable Solids	64.24	64.24	mg/L	455.7		430.3	1bs	5.57 %
Total Solids	170.6	95.68	mg/L	1210		640.9	lbs	47.05 %
Particulate Phosphorus	0.3019	0.09285	mg/L			0.6220	1bs	70.95 %
Filterable Phosphorus	0.1219	0.1219	mg/L	0.865	0	0.8163	1bs	5.63 %
Total Phosphorus	0.4238	0.2147	mg/L	3.006		1.438	1bs	52.16 %

Permeable Pavement | UD@Bottom | Subgrade Seepage = 1.34 in/hr


WinSLAMM Outpo	ut Summary	Volume (cu ft)	Runoff Volume Reduction	Solids Conc. (mg/L)		Particulate Solids Reduction		
Total of all Land Uses wit	hout Controls:	113630		106.4	754.8			
Outfall Total with Control	5:	27878	75.47%	32.26	56.14	92.56%		
Annualized Total After Out	fall Controls:	28825			58.05			
Pollutant	Concentration -	Concentratio	on - Conc.	Pollu	tant Yield	Pollutant Yield	Pol.	Yield Percent
	No Controls	With Control	ls Units	No Co	ntrols	With Controls	Unit	Reduction
Particulate Solids	106.4	32.26	mg/L	754.8		56.14	lbs	92.56 %
Filterable Solids	64.24	65.07	mg/L	455.7		113.3	lbs	75.15 %
Total Solids	170.6	97.33	mg/L	1210		169.4	1bs	86.01 %
Particulate Phosphorus	0.3019	0.09589	mg/L	2.141		0.1669	lbs	92.21 %
Filterable Phosphorus	0.1219	0.1256	mg/L	0.8650		0.2185	1bs	74.74 %
Total Phosphorus	0.4238	0.2214	mg/L	3.006		0.3854	lbs	87.18 %

Percent Particulate Particulate



Van Norman Alley Cudahy, Wisconsin

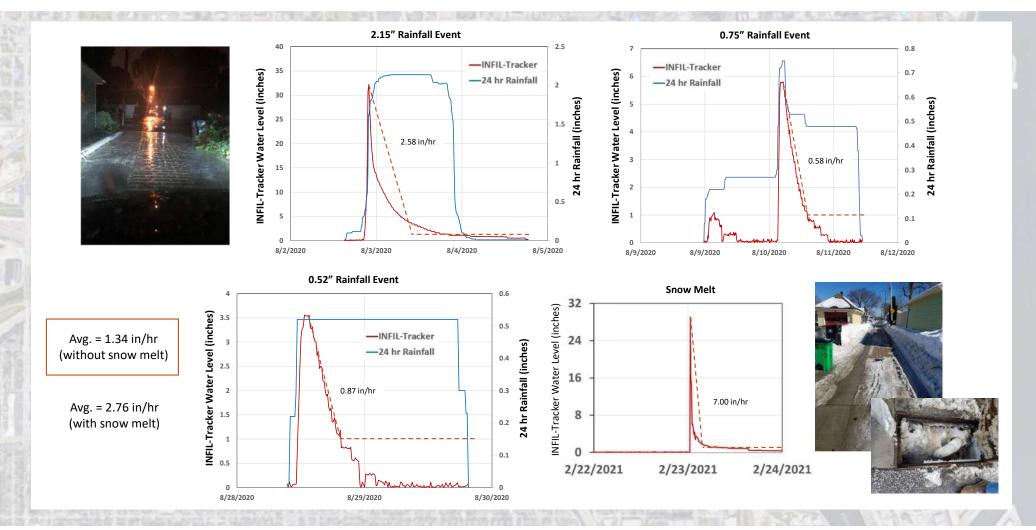
Garbage Truck Traffic – Permeable Strip (ACB)

Alley receives topographic runoff.

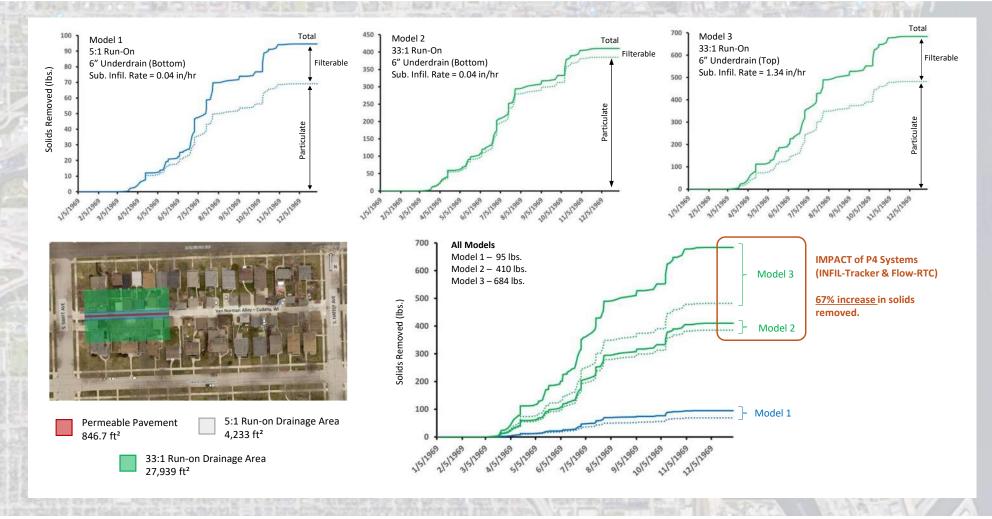
The alley turned out to be an **INCREDIBLY VALUABLE** experiment.

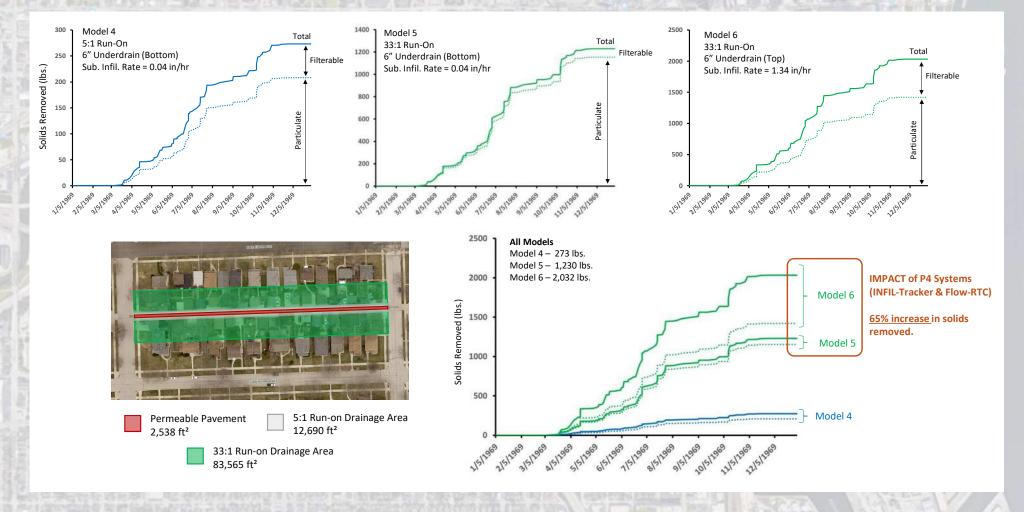
Hydrology *driven by* Topography Storm Sewer Design *driven by* Hydrology

Permeable Pavement 846.7 ft²

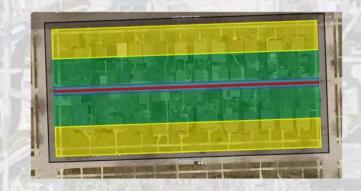

5:1 Run-on Drainage Area 4,233 ft² 33:1 Run-on Drainage Area 27,939 ft²

Permeable Surface Design analogous with Storm Sewer Design





Van Norman CapEx: \$420,000


20-year service life: n = 20 Interest Rate: i = 3%

<u>Annualized Expense</u>

\$ 28,230/year

20-Year Service Life (and Simulation)

		All Mar Inc.	STATE OF THE PARTY OF THE			
	TSS			TP		
20-Year Simulation	Amount		Amount			
Baseline Load	116,177 lbs.		507.5 lbs.			
TMDL Reduction Goal (75% TSS, 54% TP)	87,132 lbs.		274 lbs.			
Annualized Reduction Goal	4,357 lbs/yr		13.7 lbs/yr			
Pollutant Removals	Annual Amount	Cost	Annual Amount	Cost		
5:1 Run-On No Monitoring	282 lbs/yr	\$100/lb	1.2 lbs/yr	\$23,525/lb		
33:1 Run-On Monitored by P4	2,047 lbs/yr \$14/lb		8.9 lbs/yr	\$3,172/lb		
Annual Pollutant Removal Gaps				-		
5:1 Run-On No Monitoring	4,075 lbs/yr		12.5 lbs/yr			
33:1 Run-On Monitored by P4	2,310 lbs/yr		4.8 lbs/yr			
Cost to Close Gap						
5:1 Run-On No Monitoring	\$407,500 /	/r	\$294,063 /yr			
33:1 Run-On Monitored by P4	\$32,340 /y	r	\$15,226 /yr			
STEEDING OF STREET, TO "TAKE JOST OF THESE POSSES.	THE RESERVE AND LABOR.	J 5 6 30 (0.1)	G. VERVISO MARKET			

TRANSPARENCY and EDUCATION

Green Tech Station Milwaukee, WI

INFILTRATION and AQUIFER RECHARGE

University of California - Merced Stormwater Retention Basins

Rain-mX

LIQUA-Level

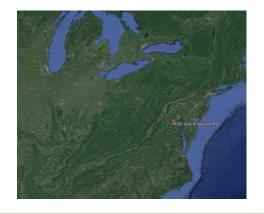
INFILTRATION and AQUIFER RECHARGE



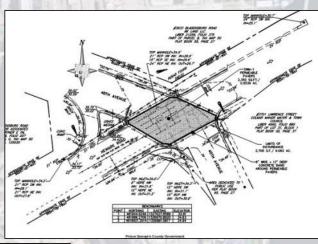
Amazon Distribution Facility Stockton, CA

Rain-mX + PRESS

INFILTRATION

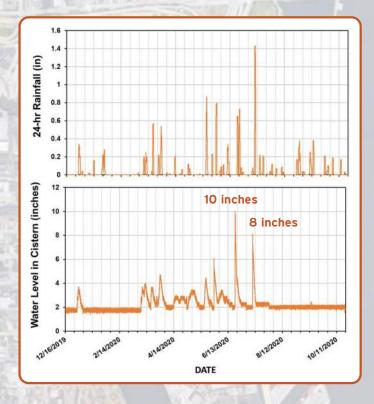

ERNEST MAIER Inc.

PaveDrain Permeable Pavement Bladensburg, MD


Rain-mX +

INFIL-Tracker

MONITORING and MODELING



Rain-mX + LIQUA-Level

Thank You

622 N. Water Street
Suite 406
Milwaukee, WI 53202
www.p4i.io
info@p4i.io
jd@p4i.io
414-940-6944

125 West Park Road Centerville, Ohio 45459 https://kbjwgroup.com Toddweik@cbceng.com 262-219-2938

Matt Kamenick, P.E. (WI)
Territory Manager
MN, IA, WI
310-210-0029
mkamenick@stormtrap.com
Valerie Forsyth
Territory Manager
IN, MI, OH, KY
513-315-4414
vforsyth@stormtrap.com