

Next Generation, Reduced Maintenance Permeable Pavement

Dr. Aaron Fisher PhD, PaveDrain Dr. Joe Diekfuss PhD, PE P4 Infrastructure Matthew Gillespie PE, Kimley-Horn

#CWPConference22

Dr. Aaron Fisher PhD
VP of Business Development PAVEDRAIN/ERNEST MAIER
afisher@emcoblock.com (202) 510-5545

Dr. Joe Diekfuss, PE	· · · · .
/P Engineered Systems P4 INFRASTRUCTURE	
d@p4i.jo (414) 877-0623	

Matthew C	Gillespie, PE	
Associate KIMLEY-HORN		
matthew.gille	espie@kimley-horn.com	(407) 898-1511

Kimley »Horn

Expect More. Experience Better.

Primer on	P-ACB S	ystems

Monitori	ng and Compliance with Real Time
Sensor	rs

Case Stu	dies from Orlando, FL
	n an the second seco The second se The second se

Kimley »Horn

Expect More. Experience Better.

Total Costs @ 10 Years

Pervious Option << >> Impervious Options

PRIMER ON PERMEABLE ARTICULATING CONCRETE BLOCK (P-ACB) SYSTEMS

What is a Permeable Articulating Concrete Block?

- Matrix of interconnected concrete block units
- Interlocking Mechanism
 - Geometry
 - Cables
 - Geofabrics
- Form a Hard, yet Pervious Surface via Open Joints

P-ACB and Pavers

similar, but not the same

P-ACB & Pavers: Similarities

- Made from concrete
 - Concrete unit is impervious
 - Can be basically any color, just like concrete
- Form hard, yet permeable surfaces to prevent erosion
- Design and installation of the base is critical to performance of the pavement surface
 - Compaction
 - Geofabrics
- Stone base can be used to handle stormwater (including run-on) via soil infiltration

P-ACB and Pavers: Differences

	P-ACB	Pavers
Governing ASTM Standard	D6684	C936
Joints	Open	Filled
Interlocked	Yes	Sometimes
Bedding	57 Stone	89 Stone

Impact of Differences

- Strength
- Cost
- Performance
- Maintenance
- Use

Permeable Roadway Options with P-ACBs

INSTALLATION OF P-ACB

Ideal Installation Sequence

- 1. Plan out the system
- 2. Place and compact the base (including geofabrics)
- 3. Place the blocks
 - Blocks can be cut to fit curves
 - Use half blocks to create the edge of a form (recommended)
- 4. Place and pave asphalt/concrete
 - No need for ribbon curbs

The P-ACB System: Machine Lay Installation

The P-ACB System: Installation Benefits

Green Infrastructure was \$105,000 LESS than traditional infrastructure

Traditional Infrastructure

- NO inlets
- NO Ribbon Curb
- Sanitary Pipe Only
- Easily Repaired
- Asphalt lasting longer...?

- 20 Inlets \$3500 Ea. 🗙
- Storm PIPE 🗙
- Detention POND(s)
- Faster Asphalt Deterioration
- More Maintenance?!?!

PERFORMANCE AND MAINTENANCE OF P-ACB

Usually the bane of stormwater BMPs

P-ACB System: Infiltration Demonstration

The P-ACB System: Infiltration Demonstration

Permeable Surface Infiltration Rate Comparison

1,640 in/hr

Open Joints = High Infiltration Rates

able 1. Summary of minication rates rested of various surface	Table 1:	Summary	of Infiltration	Rates Tested	of Various	Surface
---	----------	---------	-----------------	---------------------	------------	---------

Surface Material	Infiltration rate	Mass of infiltrated	Diameter of	Time (sec)
	(in/hr)	water (lb)	infiltration ring (in)	22) 10
P-ACB	1,640	40.0	12.187	19.53/18.42/24.53
Porous pavers	3.2	2.54	12.187	683
Porous concrete	2.4	3.80	12.187	1,380
Porous asphalt	3.1	5.58	12.187	1,515

ASTM C1701/C1781: Standard Test Methods Infiltration Rates of In-Place Pervious Concrete

Abuse Test at Univ. of Central FL

Thank You

Dr. Aaron Fisher PhD

VP of Business Development PAVE DRAIN

afisher@emcoblock.com (202) 510-5545 pavedrain.com

P4 INFRASTRUCTURE

Permeable Pavement Systems Clean Water Faster and for Less Money

April 27, 2022

Joseph Diekfuss, PhD, PE VP - Engineered Systems

414-877-0620

P4 Infrastructure

www.p4i.io

P4 Dashboard Basic viewing and downloading of data is available as soon as device is turned on. **ESRI-Based Dashboard** Available thru Separate Subscription Historical Data

Source Load and Management Model

Source Load and Management Model

Land Use

- **Pollutant Source**
- Pollutant Load (lbs/cf)

Stormwater and Pollutant Quantity

- **Rainfall Volume**
- **Runoff Coefficient**
- Stormwater Runoff Volume (cf)
- Pollutant Load (lbs)

Baseline Pollutant Concentration (lbs/cf)

Pollutant Treatment

- **Gallery Media**
- Underdrain
- Infiltration (cf)
- Stormwater Pass-Through Volume (cf)
- Pollutant Load (lbs) at Outfall

Source Load and Management Model

		Runoff	Percent Part	iculate Part	iculate	Percent		
WinSLAMM Outn	ut Summary	Volume	Runoff	Solids	Solids P	articulate		
WillsEAmin Outp	at Sammary	(cu ft)	Volume	Conc.	Yield	Solids		
			Reduction	(mg/L)	(lbs)	Reduction		
Total of all Land Uses wit	thout Controls:	113630	-	106.4	754.8	-		
Outfall Total with Control	ls:	107304	5.57%	31.44	210.6	72.10%		
Annualized Total After Out	tfall Controls:	110952			217.8			
Pollutant	Concentration -	Concentration	- Conc.	Polluta	ant Yield	Pollutant Yield	Pol. Y	eld Percent
	No Controls	With Controls	Units	No Cont	rols	With Controls	Units	Reduction
Particulate Solids	106.4	31.44	mg/L	754.8		210.6	lbs	72.10 %
Filterable Solids	64.24	64.24	mg/L	455.7		430.3	lbs	5.57 %
Total Solids	170.6	95.68	mg/L	1210		640.9	lbs	47.05 %
Particulate Phosphorus	0.3019	0.09285	mg/L	2.141		0.6220	lbs	70.95 %
Filterable Phosphorus	0.1219	0.1219	mg/L	0.8650		0.8163	lbs	5.63 %
			22362	1 2 1 2 1		A A TO LA	U.S.	
	-12	-5			<u>.</u>		LIS.	
Permeable P	avement	UD@Bo	ttom	Subg	rade	Seepage =	1.34	in/hr
Permeable P	avement	UD@Bo	ttom	Subg	rade	Seepage =	1.34	in/hr
Permeable P	avement	UD@Bo	ttom	Subg	rade	Seepage =	1.34	in/hr
Permeable Pa	avement	UD@Bo Runoff Volume (cu ft)	Percent Par Runoff Volume	Subg	rticulate Solids Yield	Seepage =	1.34	in/hr
Permeable Pa	avement	UD@Bo Runoff Volume (cu ft)	ttom Percent Par Runoff Volume Reduction	Subg sticulate Par Solids Conc. (mg/L)	rticulate Solids Yield (lbs)	Seepage = Percent Particulate Solids Reduction	1.34	in/hr
Permeable Pa	avement	UD@Bo Runoff Volume (cu ft)	Percent Par Runoff Volume Reduction	Subg Solids Conc. (mg/L)	rticulate Solids Yield (lbs)	Seepage = Percent Particulate Solids Reduction	1.34	in/hr
Permeable Pa WinSLAMM Outp	avement out Summary	UD@Bo Runoff Volume (cu ft) 113630	ttom Percent Par Runoff Volume Reduction	Solids Conc. (mg/L) 106.4	rticulate Solids Yield (lbs) 754.8	Seepage = Percent Particulate Solids Reduction	1.34	in/hr
Permeable Pa WinSLAMM Outp Total of all Land Uses wi Outfall Total with Contro	avement out Summary	UD@Bo Runoff Volume (cu ft) 113630 27878	Percent Par Runoff Volume Reduction	Subg solids Conc. (mg/L) 106.4 32.26	rticulate Solids Yield (lbs) 754.8 56.14	Percent Particulate Solids Reduction 92.56%	1.34	in/hr
Permeable Pa WinSLAMM Outp Total of all Land Uses wi Outfall Total with Contro Annualized Total After Ou	avement out Summary	UD@Bo Runoff Volume (cu ft) 113630 27878 28825	Percent Par Runoff Volume Reduction 75.47%	Subg solids Conc. (mg/L) 106.4 32.26	rticulate Solids Yield (lbs) 754.8 56.14 58.05	Seepage = Percent Particulate Solids Reduction 92.56%	1.34	in/hr
Permeable Pa WinSLAMM Outp Total of all Land Uses wi Outfall Total with Contro Annualized Total After Ou Pollutant	avement out Summary thout Controls: ls: utfall Controls: Concentration -	UD@Bo Runoff Volume (cu ft) 113630 27878 28825 Concentratio	ttom Percent Par Runoff Volume Reduction 75.47%	Subg solids Conc. (mg/L) 106.4 32.26	rticulate Solids Yield (lbs) 754.8 56.14 58.05 tant Yield	Seepage = Percent Particulate Solids Reduction 92.56% Pollutant Yield	1.34	in/hr
Permeable Pa WinSLAMM Outp Total of all Land Uses wi Outfall Total with Contro Annualized Total After Ou Pollutant	avement out Summary thout Controls: ls: tfall Controls: Concentration - No Controls	UD@Bo Runoff Volume (cu ft) 113630 27878 28825 Concentratio With Control	Percent Par Runoff Volume Reduction 75.47%	Subg solids Conc. (mg/L) 106.4 32.26 Pollur No Co	rticulate Solids Yield (1b5) 754.8 56.14 58.05 tant Yield ntrols	Seepage = Percent Particulate Solids Reduction 92.56% Pollutant Yield With Controls	1.34	in/hr
Permeable Pa WinSLAMM Outp Total of all Land Uses wi Outfall Total with Contro Annualized Total After Ou Pollutant Particulate Solids	avement out Summary thout Controls: ls: tfall Controls: Concentration - No Controls 106.4	UD@Bo Runoff Volume (cu ft) 113630 27878 28825 Concentratio With Control 32.26	ttom Percent Par Runoff Volume Reduction 75.47% n - Conc. s Units mg/L	Subg Solids Conc. (mg/L) 106.4 32.26 Pollur No Con 754.8	rticulate Solids Yield (lbs) 754.8 56.14 58.05 tant Yield ntrols	Seepage = Percent Particulate Solids Reduction 92.56% Pollutant Yield With Controls 56.14	Pol. Unit Ibs	in/hr
Permeable Pa WinSLAMM Outp Total of all Land Uses wi Outfall Total with Contro Annualized Total After Ou Pollutant Particulate Solids Filterable Solids	avement out Summary thout Controls: ls: tfall Controls: Concentration - No Controls 106.4 64.24	UD@Bo Runoff Volume (cu ft) 113630 27878 28825 Concentration With Control 32.26 65.07	ttom Percent Par Runoff Volume Reduction 75.47% n - Conc. s Units mg/L	Subg solids Conc. (mg/L) 106.4 32.26 Pollur No Cor 754.8 455.7	rticulate Solids Yield (lbs) 754.8 56.14 58.05 tant Yield ntrols	Seepage = Percent Particulate Solids Reduction 92.56% Pollutant Yield With Controls 56.14 113.3	Pol. Unit lbs lbs	Yield Percent Reducti 92.56 %
Permeable Pa WinSLAMM Outp Total of all Land Uses wi Outfall Total with Contro Annualized Total After Ou Pollutant Particulate Solids Filterable Solids Fotal Solids	avement out Summary thout Controls: ls: ttfall Controls: Concentration - No Controls 106.4 64.24 170.6	UD@Bo Runoff Volume (cu ft) 113630 27878 28825 Concentration With Control 32.26 65.07 97.33	rttom (Percent Par Runoff Volume Reduction 75.47% n - Conc. s Units mg/L mg/L mg/L	Subg solids Conc. (mg/L) 106.4 32.26 Pollur No Con 754.8 455.7 1210	rticulate Solids Yield (lbs) 754.8 56.14 58.05 tant Yield ntrols	Seepage = Percent Particulate Solids Reduction 92.56% Pollutant Yield With Controls 56.14 113.3 169.4	Pol. Unit Ibs Ibs	in/hr Yield Percent Reducti 92.56 % 75.15 % 86.01 %
Permeable Particulate Posshorus	avement out Summary thout Controls: ls: tfall Controls: Concentration - No Controls 106.4 64.24 170.6 0.3019	UD@Bo Runoff Volume (cu ft) 113630 27878 28825 Concentratio With Control 32.26 65.07 97.33 0.09589	Percent Par Runoff Volume Reduction 75.47% n - Conc. s Units mg/L mg/L mg/L	Subg ticulate Par Solids Conc. (mg/L) 106.4 32.26 Pollur No Con 754.8 455.7 1210 2.141	rticulate Solids Yield (lbs) 754.8 56.14 58.05 tant Yield ntrols	Seepage = Percent Particulate Solids Reduction 92.56% Pollutant Yield With Controls 56.14 113.3 169.4 0.1669	Pol. Unit Ibs Ibs Ibs Ibs	in/hr Yield Percent Reducti. 92.56 % 75.15 % 86.01 % 92.21 %
Permeable Pa WinSLAMM Outp Total of all Land Uses wi Outfall Total with Contro Annualized Total After Ou Pollutant Particulate Solids Filterable Solids Total Solids Particulate Phosphorus	avement out Summary thout Controls: Is: tfall Controls: Concentration - No Controls 106.4 64.24 170.6 0.3019 0.1219	UD@Bo Runoff Volume (cu ft) 113630 27878 28825 Concentratio With Control: 32.26 65.07 97.33 0.09589 0.1256	ttom Percent Par Runoff Volume Reduction 75.47% n - Conc. s Units mg/L mg/L mg/L mg/L	Subg solids Conc. (mg/L) 106.4 32.26 Pollur No Coo 754.8 455.7 1210 2.141 0.8650	rticulate Solids Yield (lbs) 754.8 56.14 58.05 tant Yield ntrols	Seepage = Percent Particulate Solids Reduction 92.56% Pollutant Yield With Controls 56.14 113.3 169.4 0.1669 0.2185	Pol. Unit Ibs Ibs Ibs Ibs Ibs	Yield Percent Reduction 92.56 % 75.15 % 86.01 % 92.21 % 74.74 %

REGULATORY BODY APPROVAL

State of Wisconsin DEPARTMENT OF NATURAL RESOURCES Waukesha Service Center 141 NW Barstow St., Room 180 Waukesha, WI 53188

September 9, 2020

Josepha A. Diekfuss, PhD, PE Vice President, Engineered Systems P4 Infrastructure 622 N. Water Street, Suite 406 Milwaukee, WI 53202

Dear Mr. Diekfuss,

The Department supports the use of site-specific monitoring data and real time control technology to enhance pollutant reductions. The Department appreciates that the use of monitoring technology, such as the P4 INFIL. Tracker system, will assist in improved management of MS4 systems and optimization of pollutant removal. This is especially important in highly developed urban areas with large pollutant reduction goals where availability of land to add additional rundif controls is limited.

The Department does not approve specific proprietary products or devices that are used to address runoff water quality. The exception is water quality treatment additive products, which are given a water quality use restriction to protect against aquatic toxicity. As a result, upon review of the information you provided related to the P4 INFLT-Tracker System, the Department does not consider this system as an additive product, and therefore, does not require formal review prior to use. As with other products, the Department does not limit its use in appropriate settings as long as it is done in accordance with applicable rules, regulations, and technical standards.

The white paper provided by P4 on July 24, 2020 outlined methodology for calculating additional pollutant removal from BMP devices after data is collected using the INFIL-Tracker System. In general, the Department will allow real time control BMPs to improve treatment and infiltration under the following design conditions:

- BMPs are designed, installed, and maintained in accordance with applicable technical standards.
 Each BMP is evaluated individually using site-specific data collection from said BMP.
- Monitoring will occur over the life of the BMP device.
 For infiltration devices, the 24 hour (surface) and 72 (subsurface) drawn down times from the end of a
- rainfall event shall be maintained.

Please let me know if you have any other questions.

Sincerely, Ka Jacob Zimmerman, PE

dnr.wi.gov wisconsin.gov

Stormwater Engineer

CC: Christopher Foley, PhD, PE, FASCE – P4 Infrastructure Todd Weik, PLA, CPESC – CDC Engineering and Associates, L1d Registrini Remainghoff – WI DNR Eric Rortvedt, PE – WI DNR

Naturally WISCONSIN

()

State of Wisconsin **Department of Natural Resources**

P4 systems approved for pollutant removal collection and documentation

0000

© P4 Infrastructure, Inc. 4/24/2023

36

The alley turned out to be an **INCREDIBLY VALUABLE** experiment.

© P4 Infrastructure, Inc. 4/24/2023

40

© P4 Infrastructure, Inc. 4/24/2023

41

Van Norman CapEx: \$420,000 20-year service life: n = 20 **Interest Rate:** i = 3%

Annualized Expense \$ 28,230/year

	TSS		ТР	
20-Year Simulation	Amount		Amount	
Baseline Load	116,177 lbs.		507.5 lbs.	
TMDL Reduction Goal (75% TSS, 54% TP)	87,132 lbs.		274 lbs.	
Annualized Reduction Goal	4,357 lbs/yr		13.7 lbs/yr	
Pollutant Removals	Annual Amount	Cost	Annual Amount	Cost
5:1 Run-On No Monitoring	282 lbs/yr	\$100/lb	1.2 lbs/yr	\$23,525/lb
33:1 Run-On Monitored by P4	2,047 lbs/yr	\$14/lb	8.9 lbs/yr	\$3,172/lb
Annual Pollutant Removal Gaps				
5:1 Run-On No Monitoring	4,075 lbs/yr		12.5 lbs/yr	
33:1 Run-On Monitored by P4	2,310 lbs/yr		4.8 lbs/yr	
Cost to Close Gap				
5:1 Run-On No Monitoring	\$407,500 /yr		\$294,063 /yr	
33:1 Run-On Monitored by P4	\$32,340 /yr \$15,226 /yr		yr	
	and the side of the last	11434 0 1		

P4 INFRASTRUCTURE

622 N. Water Street Suite 406 Milwaukee, WI 53202 <u>www.p4i.io</u> <u>info@p4i.io</u> <u>jd@p4i.io</u> 414-940-6944

Thank You

Kimley»Horn

Expect More. Experience Better.

Presented by

Matthew Gillespie, P.E.

- Fashion Square Shoppes Redevelopment Orlando, FL
- Thousand Trails RV Resort, Clermont, FL
- Tropical Palms RV Resort, Kissimmee, FL

Fashion Square Shoppes

Project Challenges

- Redevelop the old Sears area into a new shopping center
- Bring site up to current parking code and drainage standards
- SJRWMD/City of Orlando/FDOT Jurisdictions
- High water table
- Limited Construction Extents
- Match Existing Surrounding Grades
- Match Existing Storm Sewer Pipe Outfall
- Existing Flooding Problems along Colonial Drive

Typical Underground Detention Options Explored First

- Explored perforated pipes and StormTech Chambers to compare costs/options
- High water table resulted in minimal storm pipe storage above water table and large flooding on parking areas
- 0.90 Ac-Ft of Treatment Volume Needed
- Site would have to be raised to a minimum elevation of 105.50 with the FFE of adjacent buildings at 106.0 leaving no room for flooding during larger events
- System failed to meet SJRWMD recovery criteria for treatment volume
- Needed to elevate the storage volume higher above the water table and reduce the costs of the storm sewer detention system

Solution: PaveDrain

- PaveDrain 5.6" Block
- Geogrid
- 6" #57 Stone
- 18" #2 Stone
- Filter Fabric
- Existing Ground

MATCH LINE SEE SHEET C4.2

MATCH LINE SEE SHEET C5.0

Benefits of PaveDrain

- All PaveDrain areas have been assigned a CN of 47 per the study published in the June 2010 ASCE Journal of Hydrologic Engineering. This is lower runoff as compared to the traditional CN of 98 for paved surfaces.
- Works well in areas of high water tables
- Provides Water Quality Treatment
- H-20 Load rated
- Gap distance in blocks meets ADA standards
- Reduces Pavement Costs
- Geogrid prevents single block settling/pot holing
- KH's view is not exceed a 2:1 ratio of drainage basin area to PaveDrain Area

Thousand Trails RV Resort

Project Challenges

- No room for a stormwater pond
- No storm sewer pipe outfall
- SJRWMD/Lake County Jurisdictions
- Heavy RV Traffic
- Large Queue Lines full of heavy RV's
- Pre vs. Post Runoff Had to be met
- Water Quality had to be provided

Solution: PaveDrain

- PaveDrain 5.6" Block
 - Geogrid
 - 12" #57 Stone
 - Filter Fabric
 - Existing Ground

Tropical Palms RV Resort

Project Challenges

- Existing Stromwater Pond was maxed out
- Client wanted additional parking for staff
- SJRWMD/Osceola County Jurisdictions
- Small Area of Pavement to mobilize a paving crew
- No storm sewer piping in the immediate area
- Pre vs. Post Runoff Had to be met
- Water Quality had to be provided

Solution: PaveDrain

• PaveDrain 5.6" Block

- Geogrid
- 6" #57 Stone
- Filter Fabric
- Existing Ground

Kimley»Horn

Expect More. Experience Better.

QUESTIONS:

Presented by Matthew Gillespie, P.E. (407) 409-7007 Matthew.gillespie@kimley-horn.com

Total Costs @ 10 Years

Pervious Option << >> Impervious Options

Infiltration Calculator

PaveDrain Performance

Model Your Scenario

- Rainfall via Location
 - 10-year event
 - 100-year event
 - 1,000-year event
 - Choose your own
- Area of permeable cover
- Area of impermeable cover (run-on)
- Soil
- Depth of Base

www.pavedrain.com/infiltrationcalculator

Modeled Scenario			
Location		Total Rainfall (in)	2
Sott	Clay	Total Volume Handled (gal)	6,233
Total Project Area (sq ft)	5,000	PaveDrain Footprint (sq	5,000

Dr. Aaron Fisher PhD

VP of Business Development

afisher@emcoblock.com

5545

Dr. Joe Diekfuss PhD

VP Engineered Systems

<u>jd@p4i.io</u> 877-0623

(202) 510-

Matthew Gillespie, PE

Associate

Kimley »Horn

<u>matthew.gillespie@kimley-horn.com</u> (407) 898-1511

END

ADA Compliance

• Guidelines specify openings <1/2"

Rest of presentation will focus only on Permeable-ACB (P-ACB) systems used as permeable pavement systems

/////

All corners are rounded so that no "edge" is created to catch on a snowplow.

Steel Snowplow Blade Freshwater Way Milwaukee

Decentralized Stormwater Management

Other P-ACB Benefits

- Never have to replace joint filler (sand/stone dust)
- High void space avoids freeze-thaw and frost heaving challenges
- Able to function in high water levels (e.g., sunny day flooding)
- Long lifetime of concrete (40 years)
- Single person can replace an ACB unit with a block extractor
- Increases resiliency of traditional paving surfaces
Typical P-ACB Cross- Section(s)

Geotextiles

Туре	Water Permeable	High Strength	Common Use
Non-Woven	Yes	No	Landscape fabric
Woven: Slit Tapes	No	Yes	Erosion control
Woven: Mono/Multi- Filaments	Yes	Yes	Erosion control
Knitted	Yes	Yes	Soil stabilization

Recommended speaking with the relevant manufacturer to identify the right geotextile for your application

The P-ACB System: Multiple Installation Methods

Hand Placed Installation

Machine Lay

Sequencing P-ACB Installation: City Streets

The P-ACB System: Multiple Installation Methods

The P-ACB System: Multiple Installation Methods

Potential LEED Credits v4.1

Sustainable Sites	 Rainwater Management Reduce runoff volume and improve water 	up to 3 Points quality
	 Heat ISIANG REDUCTION, NON ROOT Paving material with high initial solar reflectance 	up to 2 Points
	 Protect or Restore Habitat Managing stormwater within existing pavement 	up to 2 Points t footprint
Water Efficiency	 Outdoor Water Use Reduction Reduced outdoor water consumption 	up to 2 points
Materials &	 Speak with manufacturer about EP 	PD's and materials sourcing

Resources

P-ACB Maintenance: Elgin Whirlwind VACUUM Truck

PRIOR TO CLEANING

