Management of Stress Fractures in the Active Woman

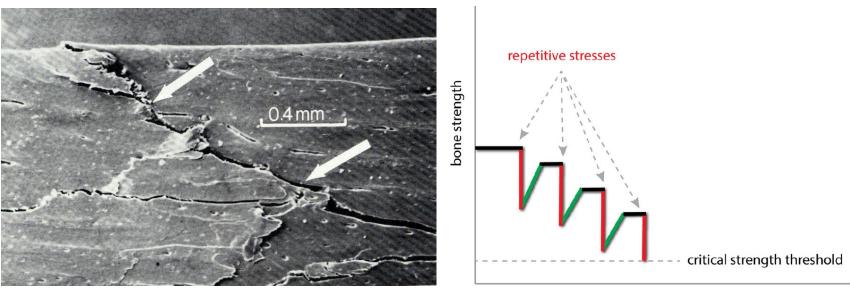
Kathryn E. Ackerman, MD, MPH, FACSM

Medical Director- Female Athlete Program, Boston Children's Hospital Associate Director- Sports Endo Research Lab, Massachusetts General Hospital Associate Professor of Medicine- Harvard Medical School

Boston Children's Hospital Until every child is well⁻

Disclosures

- Paid speaker and consultant:
 - Gatorade Sports Science Institute
 - Hologic
 - US Olympic and Paralympic Committee



Stress Fractures/Bone Stress Injuries

- Microfractures in cortical bone as a result of abnormal bone remodeling in the setting of repetitive stress impact
- Bone stress injuries account for up to 20% of injuries seen in sports medicine clinics

time

Fredericson M, et al. Top Mag Reson Imag, 2007. Mandell JC, et al. Skeletal Radiol, 2017.

Boston Children's Hospital Sports Medicine

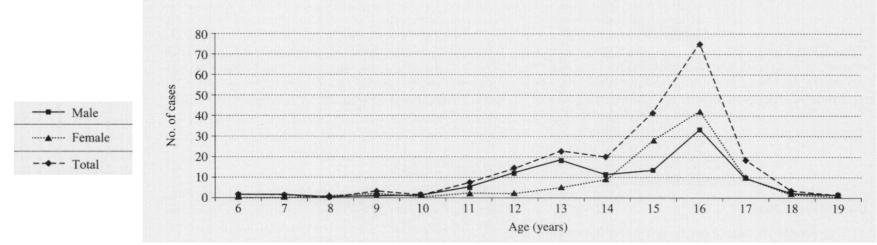
The Female Athlete Program

Semantics

- Stress fractures are sometimes divided into fatigue fractures and insufficiency fractures
 - A fatigue fracture occurs from repeated stress on a "normal bone"
 - An *insufficiency fracture* occurs with relatively normal activity on a "weakened bone"
- Stress Fracture/Fatigue Fracture/Bone Stress Injury

Continuum of Bone Stress Injuries

Boston Children's Hospital Sports Medicine



The Female Athlete Program

Stress Fractures/Bone Stress Injuries

- Runners who average >25 miles per week are at increased risk for stress fractures
- More common in women than men
- The tibia, fibula, and metatarsal bones are the most frequently affected sites
- In children there are peak times of susceptibility

Moreira CA and Bilezikian JP. J Clin Endocrinol Metab, 2017. Ohta-Fukushima M, et al. J Sports Med Phys Fitness, 2002.

Boston Children's Hospital Sports Medicine

The Female Athlete Program

Stress fracture location	Differential diagnosis	History and physical evaluation
Tibia – medial	 Medial tibial stress syndrome Meniscal pathology (medial tibial condyle) Ligamentous injury (medial malleoli, tibial condyle) Malignant tumor (medial tibial condyle) 	 Focal pain during weight-bearing/or activity along tibial shaft Pain with percussion
Tibia – anterior	 Compartment syndrome Tendinopathy 	 Focal pain during weight-bearing/or activity along tibial shaft Pain with percussion
Fibula	 Meniscal injuries Lateral ligament sprains 	 Focal pain and tender Referred knee pain
		Compartment syndrome (B) Fibular stress fracture (C) Tibial stress fracture (C)

Kahanov L, et al. Open Access J Sports Med, 2015.

Boston Children's Hospital Sports Medicine

The Female Athlete Program

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Anterior leg

Stress fracture location	Differential diagnosis
Great toe	 Sesamoiditis
sesamoid	Avascular necrosis
	 Synchondrosis
	• Partite sesamoid
	 Osteomyelitis
	Bursitis
Metatarsals	Strain
	 Plantar fasciitis
	 Morton's neuroma
	 Metatarsalgia

History and physical evaluation

- Focal point tenderness and swelling
- Pain on dorsiflexion
- · Pain during weight bearing and push off
- Increasing pain with activity
- Pain during weight bearing
- Focal swelling
- Focal tenderness

Kahanov L, et al. Open Access J Sports Med, 2015.

Boston Children's Hospital Sports Medicine

The Female Athlete Program

	Stress fracture location	Differential diagnosis	History and physical evaluation
	Femur/femoral	Rectus femoris strain	 Dependent on location of injury
A PART AND AND	shaft	Adductor strain	0 Groin
			0 Anterior thigh
			o Gluteal
			o Knee
A AND AND MALL			 Activity related pain
			 Hip pain at end ranges of motion
1.1.51			 Pain with one leg hop
A PARTY OF Y			No pain on palpation
			 Night pain may be present
	Femoral neck	 Trochanteric bursitis 	Anterior groin pain
		Strain in hip musculature	 Increasing pain with activity
			 Pain with straight leg raise
			 Pain with log roll
1 An			 Pain with one leg hop
		Compression	Tension
Kahanov L, et al. Open Ad	ccess J Sports Mec	l, 2015.	
Boston Children Sports Medicine	n's Hospital	The Female Athlete Program	HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Stress fracture location	Differential diagnosis	History and physical evaluation
Pelvis	Strain of adductors	 Groin, buttock, or thigh pain
(pubic rami)	• Bursitis	Focal tenderness
		 Pain with single leg stance on affected side
		Positive hop test
		• Point tender (may be extreme) on pubic rami
Sacrum	• Sciatica	 SI and/or buttock pain during palpation and
	Disk pathology Public ramus fracture	load bearing activity
	 Sacroiliac joint pathology 	Low back pain
	 Strain of gluteus maximus 	Radiculopathy
	 Strain deep external rotators or piriformis 	 Additional physical examinations are
	Strain hamstring	typically unremarkable

Kahanov L, et al. Open Access J Sports Med, 2015.

Low-risk and High-Risk

High Risk	Low Risk
Region of Maximal Tensile Load	Compression Load
Poor natural history: progression to complete fracture	Good natural history
Zone of diminished blood flow	Good blood flow
Chronic Pain	Chronic Pain
Delayed Union / Non Union	Good healing
Predilection for protracted recovery	Good recovery
Complete Fracture needs surgery	Symptomatic: activity modification
Incomplete fracture needs Strict NWB or Surgery	Asymptomatic: need no x-ray follow up

Kaeding CC, et al. Clin J Sports Med 2005; Diehl JJ, et al. Clin J Sports 2006; McInnis KC & Ramey LC, PM R, 2016. Courtesy of Dr. Juan Manuel Alonso

Boston Children's Hospital Sports Medicine

The Female Athlete Program

Low-risk and High-Risk

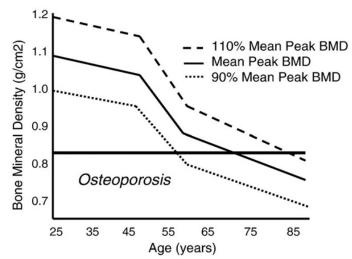
Low Risk	High Risk	
Iliac Crest	Sacrum	
Pubic Ramii	Femoral Neck	
Femoral Shaft	Patella	
Fibula	Anterior cortex of tibia	
Posteromedial Tibia	Medial Malleolus	
Lateral Malleolus	Talus (lateral process)	
Calcaneus	Tarsal Navicular	
Cuboid	Proximal Diaphysis of MT5	
Cuneiforms	Base of MT2-MT4	
Diaphysis of MT1-MT4	Great-toe sesamoids	

Kaeding CC, et al. Clin J Sports Med 2005; Brukner & Khan's Clinical Sports Medicine, 2017. Courtesy of Dr. Juan Manuel Alonso

Boston Children's Hospital Sports Medicine

Common MRI Grading (Fredericson with Kijowski modification)

Grade 0: Normal MRGrade 3: Moderate bone marrow edema seen on both T2- weighted images and T1- weighted images return to sport in mean 39-44 daysGrade 4: Cortical signal abnormality, not linear in morphologyGrade 4: Cortical signal abnormality, not linear cortical signal abnormalityGrade 4: Cortical signal abnormalityGra	Grade	Illustration	Grade	Illustration
Periosteal edema only Periosteal signal abnormality, not linear in morphology Periosteal edema only Periosteal			Moderate bone marrow edema seen on both T2- weighted images and T1- weighted images	
Mild bone marrow edema seen on T2-weighted images only	Periosteal edema only		Cortical signal abnormality, not linear in morphology	
turn to sport in mean 39-44 days	1ild bone marrow edema een on T2-weighted images		Linear cortical signal abnormality	


Program

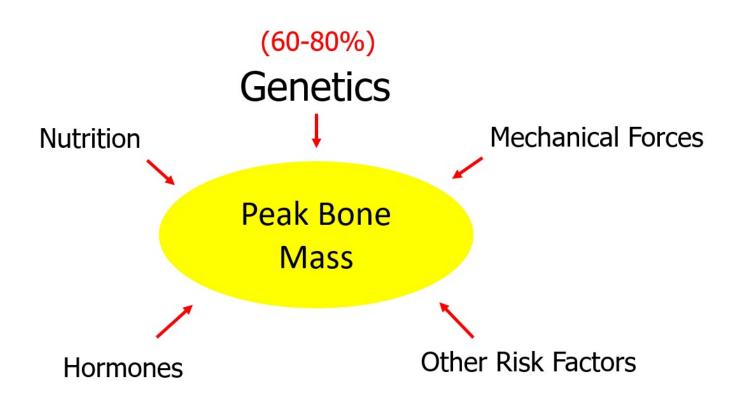
Sports Medicine

TEACHING HOSPITAL

Peak Bone Mass

- Peak Bone Mass attained during childhood and adolescence is a major determinant of bone mass and fracture risk later in life
 - We build 90% of our peak bone mass by age 18
 - If a young adult's BMD is just 10% higher than the mean, it may decrease stress fracture and fracture risk and delay the age of crossing the osteoporosis threshold by 13 years!

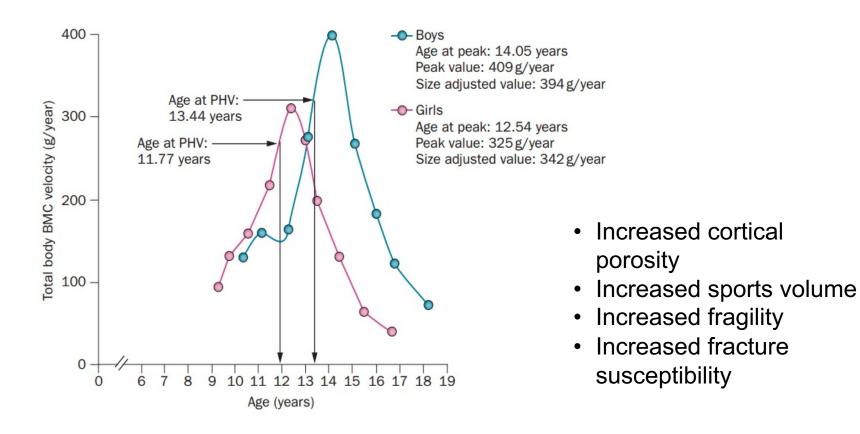
Rizzoli R, et al. Bone, 2010. Hernandez CJ, et al. Osteoporos Int, 2003.


Boston Children's Hospital Sports Medicine

The Female Athlete Program

Determinants of Peak Bone Mass (and Risk of BSI)

Rizzoli R, et al. Bone, 2010.


Boston Children's Hospital Sports Medicine

The Female Athlete Program

Bone Accrual and Growth

Bailey DA, et al. J Bone Miner Res, 1999. Farr JM and Khosla S. Nat. Rev. Endocrinol, 2015.

Boston Children's Hospital Sports Medicine

The Female Athlete Program

Primary Conditions associated with Bone Fragility

- Impaired collagen gene expression/modification/ cross-link formation
 - Osteogenesis Imperfecta, Bruck syndrome
- Connective tissue defects
 - Ehlers-Danlos syndrome, Marfan syndrome, Homocystinuria

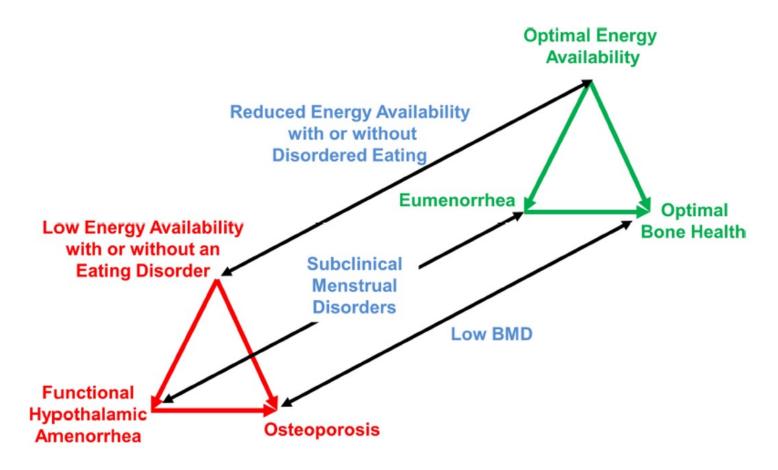
- Defective bone mineralization from low alk phos activity
 - Hypophosphatasia
- Impaired cell signaling and osteoblast function
 - Osteoporosis pseudoglioma syndrome
- Idiopathic Juvenile Osteoporosis

Boston Children's Hospital Sports Medicine

Secondary Conditions associated with Bone Fragility

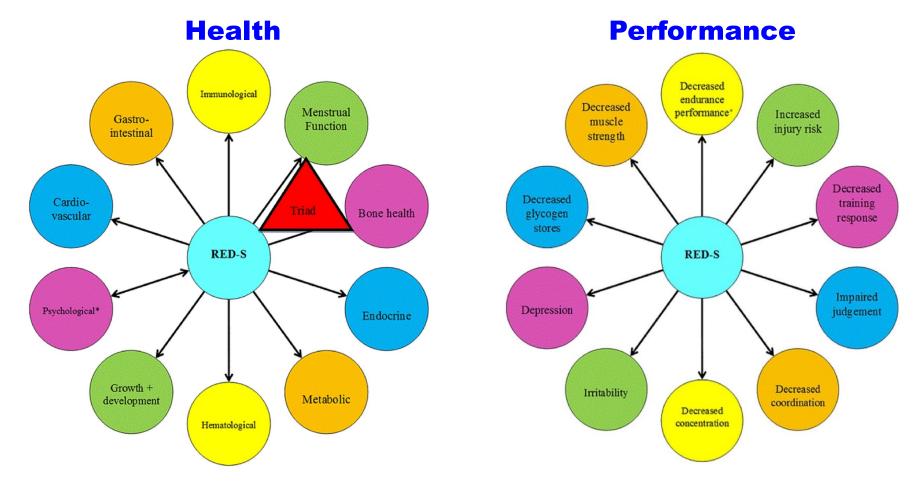
- Medication induced
 - Glucocorticoids, Antiepileptic meds, Anticoags, Depo-medroxyprogesterone
- Decreased weight-bearing or muscle bulk
 - Duchenne muscular dystrophy, Cerebral palsy
- Infiltrative conditions
 - Leukemia, Thalassemia
- Chronic inflam. conditions
 - Juvenile idiopathic arthritis, Inflam. bowel disease

- Endocrine abnormalities
 - Hypogonadism, GH deficiency, Hyperpara, Hyperthyroidism, Hypercortisolism
 - Vitamin and nutritional deficiencies
 - Vit D deficiency, Celiac disease, Eating disorder, Cystic fibrosis
- Renal disease
 - Renal failure w/ 2° hyperpara, Idiopathic hypercalciuria


Harrington J and Sochett E. Pediatr Clin North Am, 2015.

Female Athlete Triad

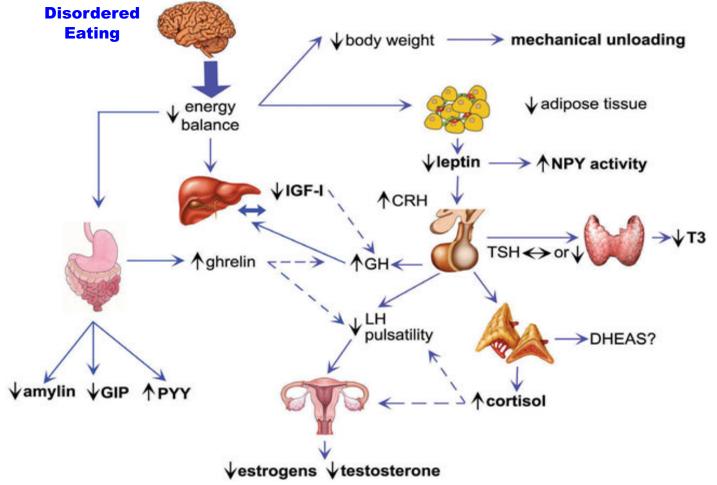
Nattiv A, et al. Med Sci Sports Exerc, 2007. De Souza MJ, et al. Br J Sports Med, 2014.


Boston Children's Hospital Sports Medicine

The Female Athlete Program

Relative Energy Deficiency in Sport (RED-S)

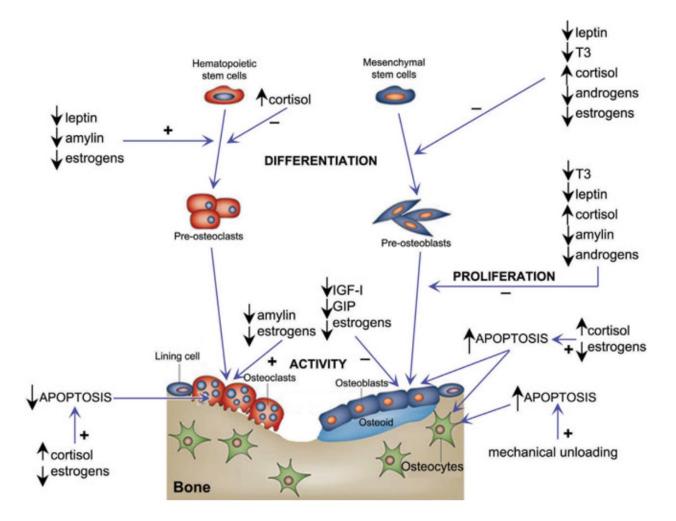
Mountjoy M, et al. Br J Sports Med, 2014, 2018.


Boston Children's Hospital Sports Medicine

The Female Athlete Program

Mechanisms of adaptive alterations similar to Anorexia Nervosa

Dede AD, et al. Hormones, 2014.


Boston Children's Hospital Sports Medicine

The Female Athlete Program

Hormonal Effects on Bone

Dede AD, et al. Hormones, 2014.

Boston Children's Hospital Sports Medicine

The Female Athlete Program

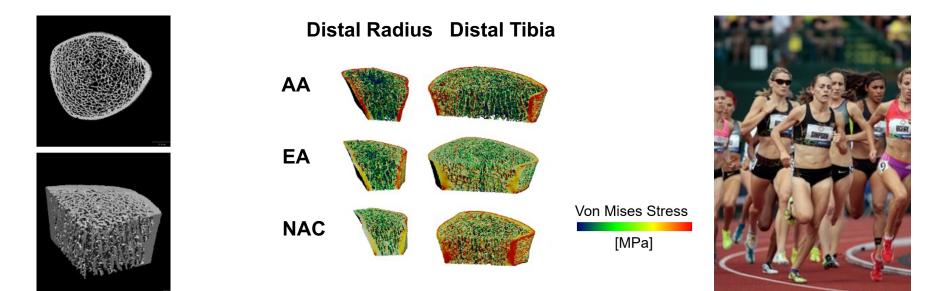
Endocrine Changes with Low EA

	Females	Males			
Hypothalamic-Pituitary-Gonadal Axis					
LH	\leftrightarrow , \downarrow	\uparrow , \leftrightarrow , \downarrow			
FSH	\leftrightarrow	\downarrow			
Estradiol	\checkmark	\checkmark			
Testosterone	$\uparrow, \leftrightarrow, \downarrow$	\leftrightarrow , \downarrow			
Progesterone	\checkmark				
Energy Ho	Energy Homeostasis, Appetite				
Resting metabolic rate	\checkmark	\downarrow			
Leptin	\downarrow	\downarrow			
Adiponectin	\uparrow , \leftrightarrow				
Ghrelin	\uparrow	\leftrightarrow			
Peptide YY	\uparrow	\uparrow			
Oxytocin	\checkmark	\checkmark			
Insulin	\checkmark	\checkmark			
Amylin	\downarrow				

	Females	Males		
Hypothalamic-Pituitary-Adrenal Axis				
Cortisol	\uparrow , \leftrightarrow	\leftrightarrow		
Hypothalami	ic-Pituitary-Thyr	oid Axis		
TSH	\leftrightarrow	\leftrightarrow		
Т3	\checkmark	\checkmark		
Free T3	\checkmark	\checkmark		
Τ4	\uparrow , \leftrightarrow , \downarrow	\checkmark		
Free T4	\leftrightarrow , \downarrow	\checkmark		
Growth Hormone and IGF-1 Axis				
GH	\uparrow	\uparrow		
IGF-1	\leftrightarrow , \downarrow	↑,↓		
IGF binding protein-1	\uparrow	\uparrow		

Elliott-Sale Elliott-Sale KJ, Tenforde AS, Parziale AL, Holtzman B, Ackerman KE. Int J Sport Nutr Exerc Metab,

Boston Children's Hospital Sports Medicine


The Female Athlete Program

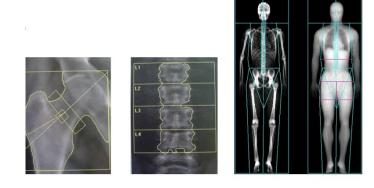
Bone Density and Structure in Adolescent and Young Adult Female Athletes

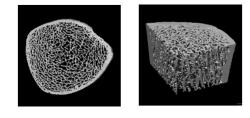
- Athletic activity → ↑ cross-sectional bone area at tibia
- Amenorrhea in athletes \rightarrow

 \downarrow trabecular # & \downarrow cortical thickness $\rightarrow \downarrow$ trabecular & total BMD \rightarrow decreased stiffness and failure load (i.e., weaker bones!)

Ackerman KE, et al. J Clin Endocrinol Metab, 2011; Ackerman KE, et al. Bone, 2012.

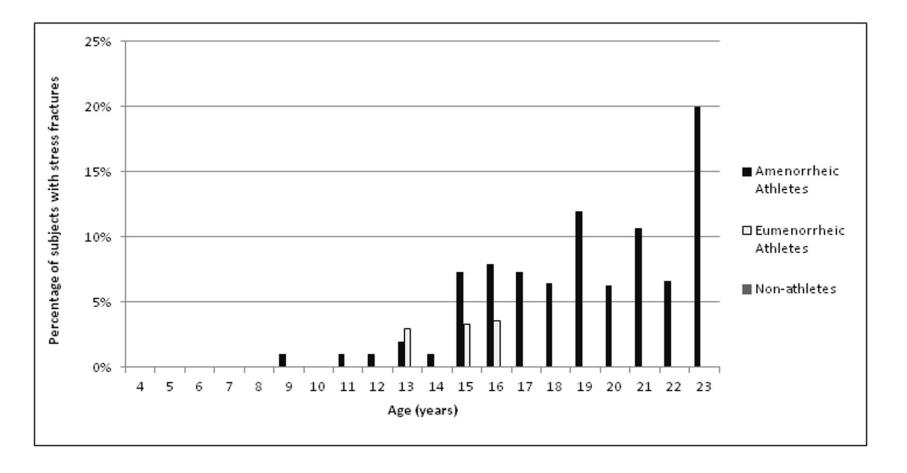
Boston Children's Hospital Sports Medicine




The Female Athlete Program

Fractures in Relation to Menstrual Status and Bone Parameters in Young Athletes

- 175 females 14-25 year olds were studied
 - 100 oligo-amenorrheic athletes (AA)
 - 35 eumenorrheic athletes (EA)
 - 40 non-athlete controls (NA)
- Lifetime fracture history was obtained through participant interviews
- Areal BMD was assessed by DXA at the spine, hip and whole body
- Bone structure was assessed by <u>HRpQCT</u> at the radius and tibia, and strength by finite element analysis


Ackerman KE, et al. Med Sci Sports Exerc, 2015.

Proportion of Subjects with Stress Fracture each Year

Ackerman KE, et al. Med Sci Sports Exerc, 2015.

Boston Children's Hospital Sports Medicine

The Female Athlete Program

DXA and HRpQCT Data in AA according to Stress Fracture History

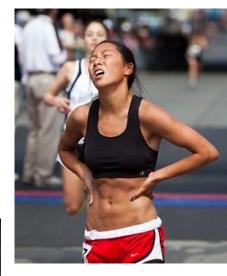
	< 2 Stress Fx	≥2 Stress Fx	Р
DXA (BMD Z-scores)	n=84	n=16	
Lumbar Spine	-0.61±1.20	-1.58±0.87	0.003
Whole Body	-0.55±1.02	-1.09±0.94	0.05
HRpQCT Radius	n=71	n=13	
Total area (mm²)	267.9±45.8	240.7±32.9	0.045
Ct. porosity (%)	1.2±0.9	0.8±0.5	0.07
Tb. thickness (mm)	0.071±0.011	0.067±0.009	0.25
Tb. vBMD (mg HA/cm³)	168.5±32.2	148.1±21.2	0.03
Outer Tb. vBMD (mg HA/cm³)	226.8±31.1	204.5±21.0	0.02
Inner Tb. vBMD (mg HA/cm³)	128.3±33.8	109.0±21.9	0.05
Stiffness (kN/m)	74.3±13.7	63.0±12.1	0.007
Failure load (kN)	3.78±0.68	3.18±0.60	0.004
HRpQCT Tibia	n=73	n=14	
Stiffness (kN/m)	230.7±30.3	213.8±28.0	0.05
Failure load (kN)	11.5±1.5	10.7±1.4	0.048

Ackerman KE, et al. Med Sci Sports Exerc, 2015.

Boston Children's Hospital Sports Medicine

What questions to ask

- ROS
- Medical hx
 - fracture hx (location, when, etc.)
 - growth hx
- Medications
- Pubertal/menstrual hx
- Pregnancy/lactation hx?
- Sexual function?
- Training hx
- Dietary hx
- Fam hx



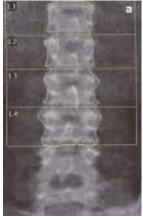
Boston Children's Hospital Sports Medicine

The Female Athlete Program

What to look for on Physical Exam

- Height & weight (BMI)
- BP and pulse (orthostatics prn)
- HEENT: blue sclera, proptosis, gross visual fields, dentition, thyromegaly, LA
- CV
- Lungs
- Abdomen

- Maturation
- Bone pain/deformities
- Reflexes
- Flexibility/laxity
- Skin color
- Tremor?



Imaging to Consider- DXA

• DXA (with bone age in kids/adolescents)

• Z-score < -1.0 in a weight-bearing athlete

Investigate further

Boston Children's Hospital Sports Medicine

The Female Athlete Program

Labs to Consider

- BASIC:
 - Complete Metabolic Panel
 - Phos
 - Mg
 - PTH
 - 25(OH) Vitamin D
 - CBC

- Urine Calcium/Creatinine
- TSH
- Iron studies
- Celiac screen (Total IgA and TTG IgA)
- ESR, CRP

- PRN:
 - Other endocrine labs (prolactin, FSH, estradiol, etc.); Further GI work-up; Myeloma screen; Genetic testing (COL1A1, COL1A2, karyotype, etc.)

At a minimum- What everyone should know about optimizing bone health

- Weight-bearing activity with adequate recovery and caloric intake is important
- General Calcium and Vit D Recommendations

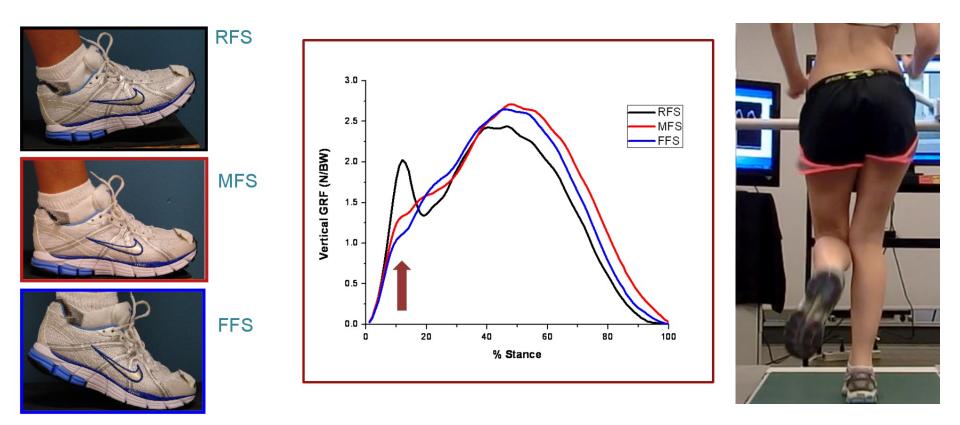
AGE	CALCIUM RDA	VITAMIN D RDA	VITAMIN D LEVEL
4-9	1000 mg in divided doses	600 IU*	30-50 ng/mL
9-18	1300 mg in divided doses	600 IU*	30-50 ng/mL
19-menopause	1000 mg in divided doses	600 IU*	30-50 ng/mL
menopause	1200 mg in divided doses	600 IU*	30-50 ng/mL

- * May need more vitamin D to reach level > 30, so many bone specialists recommend ≥800-1000 IU/day
- Some literature suggests that athletes may need higher doses of calcium

Treatment Options

- Interdisciplinary Approach-
 - Address Biomechanical, Behavioral, and Biological Factors

Gordon CM, Ackerman KE, et al. Functional Hypothalamic Amenorrhea: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab; May 2017.


Boston Children's Hospital Sports Medicine

The Female Athlete Program

Biomechanics- Strengthening, Stretching, Gait Assessment/Retraining

Images courtesy of A. Tenforde, MD

Boston Children's Hospital Sports Medicine

The Female Athlete Program

Nutrition and Training Modification

Boston Children's Hospital Sports Medicine

The Female Athlete Program

Transdermal Estrogen?

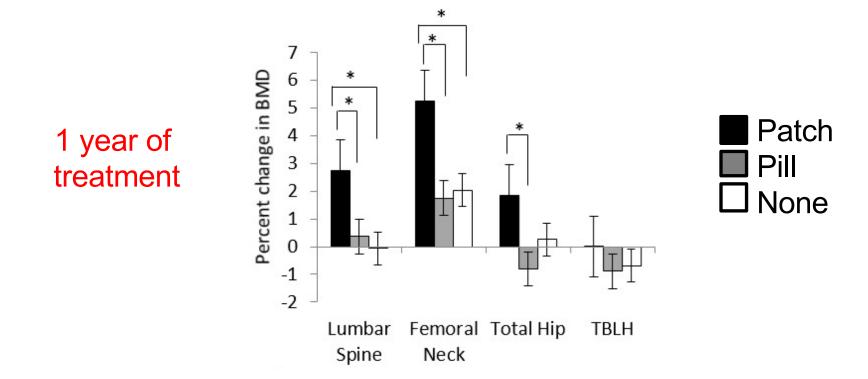
- 121 oligo-amenorrheic athletes 14-25 years old were randomized to receive:
 - 100 mcg 17-β estradiol transdermal patch applied continuously with cyclic oral micronized progesterone (200 mg for 12 days of each month) (PATCH group)

or

30 mcg ethinyl estradiol oral pill with
 0.15 mg desogestrel daily with a week of placebo pills every month (PILL group)

or

no estrogen/progesterone (NONE)



Boston Children's Hospital Sports Medicine

Transdermal Estrogen + Cyclic Oral Progesterone: Greater Increases in BMD

Ackerman KE, et al. Br J Sports Med, 2018.

Boston Children's Hospital Sports Medicine

The Female Athlete Program

Bisphosphonates

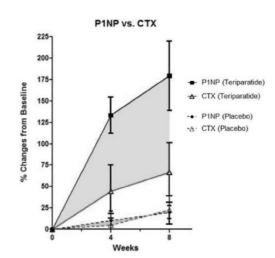
- Antiresorptive agents that inhibit osteoclast function
- Have been used in case series/case reports
- Used off label in professional athletes
- Low energy availability and amenorrhea can both increases bone loss and suppress formation, but bisphosphonates do not address issue of reduced bone formation
- Not recommended in premenopausal women secondary to the long half-life of these drugs (up to 10 years) and their potential teratogenic effects
- Not FDA-supported

Teriparatide?

- An anabolic agent used in some forms of osteoporosis
- A PTH analog that activates osteoblasts more than osteoclasts when used intermittently (e.g., daily injection)
- Used off-label to accelerate fracture healing
 - Almiral et al.: trial for stress fracture tx in women (6 teriparatide vs. 7 placebo)
 - Better anabolic window
 - larger cortical area and thickness vs. placebo at the tibia (placebo group had a greater total tibia and cortical density
 - MRI: 83.3% of the teriparatide and 57.1% of the placebo-treated group had improved or healed stress fractures (p = 0.18).
- Fazeli et al. randomized 21 adult women (mean age 47 y) with anorexia nervosa to teriparatide or placebo:
 - At 6 months, spine BMD increased significantly more with treatment (PA spine, $6.0\% \pm 1.4\%$; lateral spine, $10.5\% \pm 2.5\%$) vs. placebo (PA spine, $0.2\% \pm 0.7\%$; lateral spine, $-0.6\% \pm 1.0\%$)
- No studies yet in Triad/RED-S and not appropriate for adolescents
- Not FDA-supported

Almiral EA, et al. J Clin Transl Endocrinol, 2016.

Boston Children's Hospital Sports Medicine


The Female Athlete Program

Fazeli PK, et al. Clin Endocrinol Metab, 2014.

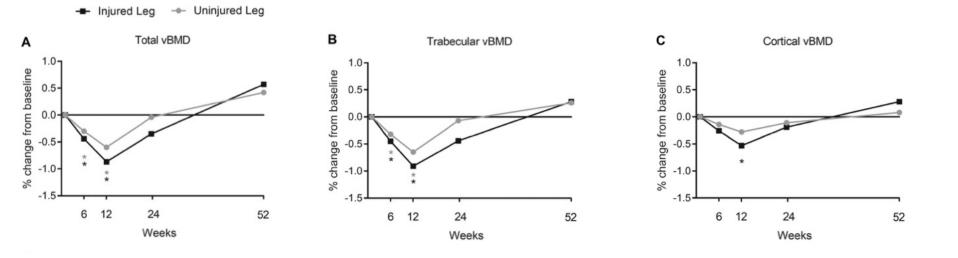
Manufacture of the second seco

Bone Stim? Shockwave?

- capacitively coupled electrical field, CCEF
- pulsed electromagnetic fields, PEMFs
- low intensity pulsed ultrasound system, LIPUS
- extracorporeal shockwave therapy, ESWT

Massari L, et al. Int Orthop, 2019.

Boston Children's Hospital Sports Medicine Reilly JM, et al. PM R, 2018.



The Female Athlete Program

Changes in Bone Microarchitecture after Tibial BSI

 30 women ages 18-30 yrs with tibial BSIs followed for 1 year

Popp KL, et al. Am J Sports Med, 2021.

Boston Children's Hospital Sports Medicine

The Female Athlete Program

Sport and Triad Risk Factors Influence Bone Mineral Density in Collegiate Athletes

ADAM S. TENFORDE¹, JENNIFER L. CARLSON², KRISTIN L. SAINANI³, AUDREY O. CHANG⁴, JAE HYUNG KIM⁵, NEVILLE H. GOLDEN², and MICHAEL FREDERICSON^{5,6}

- All Triad risk factors were associated with lower BMD Z-scores in univariable analyses
- Only low BMI and oligomenorrhea/amenorrhea were associated with lower BMD in multivariable analyses (all p<0.05)

Categories	Unadjusted Model ^a	Р	Model Adjusted for Triad Risk Factors ^a	P	Model Adjusted for Triad Risk Factors and Body Composition ^a	Р
Sport						
Low-impact $(n = 47)$	1.00 (reference)	_	1.00 (reference)	—	1.00 (reference)	_
Nonimpact $(n = 81)$	0.71 (0.32-1.59)	0.4	1.26 (0.50-3.18)	0.63	1.16 (0.45-2.89)	0.75
Multidirectional $(n = 58)$	0.18 (0.04-0.79)	0.0235	0.31 (0.06-1.53)	0.15	0.20 (0.03-1.48)	0.115
High-impact $(n = 53)$	0.10 (0.01-0.75)	0.0251	0.15 (0.02-1.18)	0.072	0.17 (0.03-1.33)	0.092
Triad risk factors						
Oligomenorrhea/amenorrhea, per point added risk ^b			2.05 (1.27-3.31)	0.0031	2.12 (1.34-3.35)	0.0013
Low BMI, per point added risk ^b			2.01 (1.15-3.51)	0.0145	0.98 (0.59-1.65)	0.95
Body composition						
Lean mass (kg)					0.92 (0.87-0.98)	0.0057
Height (in)					1.21 (0.98–1.48)	0.071

^aValues represent rate ratio (95% confidence interval).

^bQuantified risk factor additional point in risk assessment score per De Souza et al. (10).

Tenforde AS, et al. Med Sci Sports Exerc, 2018.

Boston Children's Hospital Sports Medicine

The Female Athlete Program

PREVENTION: FATC's Return to Play Approach

Risk Factors	Low Risk = 0 points each	Magnitude of Risk Moderate Risk = 1 point each			
Low EA with or without DE/ED	□ No dietary restriction	Some dietary restriction‡; current/past history of DE;	Meets DSM-V criteria for ED*		
Low BMI	BMI \geq 18.5 or \geq 90% EW** or weight stable	BMI 17.5 < 18.5 or < 90% EW or 5 to < 10% weight loss/month	BMI ≤ 17.5 or $< 85\%$ EW or $\geq 10\%$ weight loss/month		
Delayed Menarche	Menarche < 15 years	Menarche 15 to < 16 years	☐ Menarche ≥16 years		
Oligomenorrhea and/or Amenorrhea	>9 menses in 12 months*	6-9 menses in 12 months*	\Box < 6 menses in 12 months*		
Low BMD	\Box Z-score \geq -1.0	Z-score -1.0*** < - 2.0	\Box Z-score \leq -2.0		
Stress Reaction/Fracture	None None	□ 1	$\square \ge 2; \ge 1 \text{ high risk or of} \\ \text{trabecular bone sites}^{\dagger}$		
Cumulative Risk (total each column, then add for total score)	points +	points +	points =Total Score		

De Souza MJ, et al. Br J Sports Med, 2014.

Boston Children's Hospital Sports Medicine

Conclusions

- Bone Stress Injuries happen and have intrinsic and extrinsic factors
- We need an interdisciplinary approach to address biological, biomechanical, and behavioral issues for treatment and prevention
- Enhanced knowledge of athletes, providers, and coaches is needed
- Currently hormonal treatments are off-label and not recommended
- Screening tools may be helpful
- More research is needed to determine appropriate loading during healing and return to play

Thank you! Questions?

Funding Sources:

- US Army Medical Research Acquisition Activity (W81XWH-15-C-0024, W81XWH-16-1-0652 229374)
- American Medical Society for Sports Medicine Foundation
- NIH/NICHD/NIDDK (5 R01 HD060827-05)
- Wu Tsai Human Performance Alliance

kathryn.ackerman@childrens.harvard.edu

Boston Children's Hospital Sports Medicine

The Female Athlete Program

