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Preface

What is a “scalar wave” exactly? A scalar wave (hereafter SW) is just another name
for a “longitudinal” wave. The term scalar is sometimes used instead because the
hypothetical source of these waves is thought to be a “scalar field” of some kind,
similar to the Higgs field for example.

There is nothing particularly controversial about longitudinal waves (hereafter
LWs) in general. They are a ubiquitous and well-acknowledged phenomenon in
nature. Sound waves traveling through the atmosphere (or underwater) are longitu-
dinal, as are plasma waves propagating through space (i.e., Birkeland currents). LWs
moving through the Earth’s interior are known as “telluric currents.” They can all be
thought of as pressure waves of sorts.

SWs and LWs are quite different from a “transverse” wave (TW). You can
observe TWs by plucking a guitar string or watching ripples on the surface of a
pond. They oscillate (i.e., vibrate, move up and down or side-to-side) perpendicular
to their arrow of propagation (i.e., directional movement). As a comparison,
SWs/LWs oscillate in the same direction as their arrow of propagation.

Only the well-known (transverse) Hertzian waves can be derived from Maxwell’s
field equations, whereas the calculation of longitudinal SWs gives zero as a result.
This is a flaw of the field theory because SWs exist for all particle waves (e.g., as
plasma wave, as photon- or neutrino radiation). Starting from Faraday’s discovery,
instead of the formulation of the law of induction according to Maxwell, an extended
field theory is derived. It goes beyond the Maxwell theory with the description of
potential vortices (i.e., noise vortices) and their propagation as an SW but contains
the Maxwell theory as a special case. With that the extension is allowed and does not
contradict textbook physics.

William Thomson, who called himself Lord Kelvin after he had been knighted,
already in his lifetime was a recognized and famous theoretical physicist. To him the
airship seemed too unsafe and so he went aboard a steamliner for a journey from
England to America in the summer of 1897. He was on the way for a delicate
mission.
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Eight years before his German colleague Heinrich Hertz had detected the elec-
tromagnetic wave (EW) in experiments in Karlsruhe and scientists all over the world
had rebuilt his antenna arrangements. They all not only confirmed the wave as such,
but also, they could show its characteristic properties. It was a TW, for which the
electric and the magnetic field pointers oscillate perpendicular to the direction of
propagation. This can be seen as the reason that the velocity of propagation is
displays itself as field-independent and constant. It is the speed of light c.

Because Hertz had experimentally proved the properties of this wave, previously
calculated in a theoretical way by Maxwell, and at the same time proved the
correctness of the Maxwellian field theory. The scientists in Europe were just saying
to each other: “Well Done!” While completely other words came across from a
private research laboratory in New York: “Heinrich Hertz is mistaken, it by no
means is a transverse wave but a longitudinal wave!”

Scalar waves also are called ‘“electromagnetic longitudinal waves,” “Maxwellian
waves,” or “Teslawellen” (i.e., Tesla waves). Variants of the theory claim that scalar
electromagnetics, also known as scalar energy, is background quantum mechanical
fluctuations and associated zero-point energies.

In modern-day electrodynamics (both classical and quantum), electromagnetic
waves (EMW) traveling in “free space” (e.g., photons in the “vacuum”) are generally
considered to be TW. But then again, this was not always the case. When the
preeminent mathematician James Clerk Maxwell first modeled and formalized his
unified theory of electromagnetism in the late nineteenth-century, neither the EM
SW/LW nor the EM TW had been experimentally proved, but he had postulated and
calculated the existence of both.

After Hertz demonstrated experimentally the existence of transverse radio waves
in 1887, theoreticians (e.g., Heaviside, Gibbs, and others) went about revising
Maxwell’s original equations; at this time, he was deceased and could not object.
They wrote out the SW/LW component from the original equations because they felt
that the mathematical framework and theory should be made to agree only with
experiments. Obviously, the simplified equations worked—they helped make the
AC/DC electrical age engineerable.

Then in the 1889 Nikola Tesla—a prolific experimental physicist and inventor of
alternating current (AC)—threw a proverbial wrench into the works when he
discovered experimental proof for the elusive electric SW. This seemed to suggest
that SW/LW, as opposed to TW, could propagate as pure electric waves or as pure
magnetic waves. Tesla also believed these waves carried a hitherto unknown form of
excess energy he referred to as “radiant.” This intriguing and unexpected result was
said to have been verified by Lord Kelvin and others soon after.

Instead of merging their experimental results into a unified proof for Maxwell’s
original equations, however, Tesla, Hertz, and others decided to bicker and squabble
over who was more correct because they all derived correct results. Nonetheless,
because humans (even “rational” scientists) are fallible and prone to fits of vanity
and self-aggrandizement, each side insisted dogmatically that they were right, and
the other side was mistaken. The issue was allegedly settled after the dawn of the
twentieth century when (1) the concept of the mechanical (i.e., passive/viscous)
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Ether was purportedly disproved by Michelson-Morley and replaced by Einstein’s
Relativistic Space-Time Manifold, and (2) detection of SW/LWs proved much more
difficult than initially thought; this was mostly because of the wave’s subtle densi-
ties, fluctuating frequencies, and orthogonal directional flow. As a result, the trun-
cation of Maxwell’s equations was upheld. Nevertheless, SW/LW in free space are
quite real.

Besides Tesla, empirical work carried out by electrical engineers (e.g., Eric
Dollard, Konstantin Meyl, Thomas Imlauer, and Jean-Louis Naudin, to name only
some) has clearly demonstrated SW/LWSs’ existence experimentally. These waves
seem able to exceed the speed of light, pass through EM shielding (i.e., Faraday
cages), and produce overunity—more energy out than in—effects. They seem to
propagate in a yet unacknowledged counterspatial dimension (i.e., hyper-space,
pre-space, false-vacuum, Aether, implicit order, etc.).

In addition to the mathematical calculation of SWs, this book contains a volumi-
nous collection of material concerning the information’s technical use of SWs; for
example, if the useful signal and the usually interfering noise signal change their
places, if a separate modulation of frequency and wavelength makes a parallel image
transmission possible, if it concerns questions of the environmental compatibility for
the sake of humanity (e.g., bioresonance, among others) or to harm humanity (e.g.,
electro-smog) or to be used as high-energy directed weapons—also known as Star
Wars or the Strategic Defense Initiative (SDI)—as tomorrow’s battlefield weapons.

Albuquerque, NM, USA B. Zohuri
2018
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Chapter 1 ®)
Foundation of Electromagnetic Theory s

To study the subject of a scalar wave and its physics as well as its behavior as a
source driving various applications of energy, we need to have some understanding
of the fundamental knowledge of electromagnetic theory; such background is
essential. This chapter introduces Maxwell’s equations—particularly Ampere’s
Law as part of his other equations. We mainly are concerned with the law’s missing
term as part of the complete version of Maxwell’s equations. We also examine this
law to show that it sometimes fails, and to find a generalization that always is valid in
classical electromagnetics, whereas it fails in electrodynamics because of the miss-
ing term, which is an important factor to develop the basic scalar wave equation [1].

1.1 Introduction

Although Maxwell formulated his equations (now known as Maxwell’s equations)
more than 100 years ago, the subject of electromagnetism never has been stagnate.
Production of so-called clean energy, driven by magnetic confinement of hot plasma
via a controlled thermonuclear reaction between two isotopes of hydrogen—namely,
deuterium (D) and tritium (T)—results in some behavior in plasma that is known as
magneto hydrodynamics (MHD). Study of such phenomena requires knowledge of
and understanding of fundamental electromagnetism and fluid dynamics combined,
where the fluid dynamics equation and Maxwell’s equations are joined [1].

In the study of electricity and magnetism, as part of understanding the physics of
plasma, however, we need to have some knowledge of notation that may be
accomplished by using vector analysis. By providing a valuable shorthand for
electromagnetics (EM) and electrodynamics, vector analysis also brings to the
forefront the physical ideas involved in these equations; therefore, we briefly
formulate some of these vector analysis concepts and present some of their unique-
ness in this chapter.

© Springer International Publishing AG, part of Springer Nature 2019 1
B. Zohuri, Scalar Wave Driven Energy Applications,
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2 1 Foundation of Electromagnetic Theory
1.2 Vector Analysis

Several kinds of quantities are encountered in the study of the fundamental science
of physics; in particular, we need to distinguish vectors and scalars. For our
purposes, it is sufficient to define them as follows:

1. Scalar: A scalar is a quantity that is characterized completely by its magnitude.
Examples of scalars are mass and volume. A simple extension of the idea of a
scalar is a scalar field—a function of position that is entirely specified by its
magnitude at all points in space.

2. Vector: A vector is a quantity that is characterized completely by its magnitude
and direction. Examples of vectors are: the position from a fixed origin, velocity,
acceleration, and force. The generalization to a vector field gives a function of
position that is entirely specified by its magnitude and direction at all points in
space.

Detailed review of vector analysis is beyond the scope of this book; thus, we
briefly formulate the fundamental layout of vector analysis here for purposes of its
operation for the operator developing essential electromagnetics and electrodynam-
ics that are the foundation for understanding plasma physics.

1.2.1 Vector Algebra

Most everyone is familiar with scalar algebra from basic algebra courses; the same
algebra can be applied to develop vector algebra. For the time being we use a
Cartesian coordinate system to develop a three-dimensional analysis of vector
algebra. The Cartesian system allows representation of a vector by its three compo-
nents, denoting them with x, y, and _; or, when it is more convenient, we use notation
X1, X2, and x3. With respect to the Cartesian coordinate system, a vector is specified
by its x—, y—, and z— components. Thus, a vector 1% (note that the vector quantities
are denoted by symbol of vector — on top) is specified by its components, V,, V,,
and V,, whereV, = ‘ \7| cosay,Vy = | ‘7] cosap,andV, = | \7| cos az. The a's are the
angles between vector V and the appropriate coordinate axes of the Cartesian system.

The scalar |V|=/V2+V2+ V2 is the magnitude of the vector or its

length. On the basis of Fig. 1.1, in the case of vector fields, each of the components
is to be regarded as a function of x, y, and ,. It should be emphasized for the
simplicity of analysis that we are using the Cartesian coordinate system, yet the
similarity of these analyses applies to the other coordinates, such as cylindrical and
spherical as well.



1.2 Vector Analysis 3

Fig. 1.1 Presentation of a z
vector along with its

components in the Cartesian

coordinate system

1. Sum of Two Vectors

The sum of two vectors, Aand E, is defined as vector C with components that are the
sum of corresponding components in the original vectors. Thus, we can write:

C=A+B (1.1)
and

Cr=Ac+B,

C, = A, + B, (1.2)

C.=A.+B.

This definition of the vector sum is completely equivalent to the familiar parallelo-
gram rule for vector addition.

2. Subtraction of Two Vectors

Vector subtraction is defined in terms of the negative of a vector, which is the vector
with components that are the negative of the corresponding components of the
original vector. Thus, if A is a vector, —A is defined by

(_Ax) =—A,
(-A) = -4, (13)
(_Az) =—A;



4 1 Foundation of Electromagnetic Theory

The operation of subtraction is then defined as the addition of the negative and is
written:

A—B=A+ (-B) (1.4)

Because the addition of real numbers is associative and commutative, it follows that
vector addition and subtraction are also associative and commutative. In vector form
notation, this appears as

In other words, the parentheses are not needed, as indicated by the last form.
3. Multiplication of Two Vectors

Now, we proceed to multiplication of two vectors and its process. We note that the
simplest product is a scalar multiplied by a vector. This operation results in a vector,
each component of which is the scalar times the correspondlng component of the
original vector. If ¢ is a scalar and A is a vector, the product cA is a vector, B = cA,
defined by

B, = cA,
B, = A, (1.6)
B, = A,

It is clear that if A is a vector field and c is a scalar field, then B is a new vector
field that is not necessarily a constant multiple of the origin field.

If we want to multiply two vectors, there are two possibilities; they are known as
the vector and the scalar products—sometimes called cross or dot products,
respectively.

3.1 Scalar Product of Two Vectors

First, considering the scalar or dot product of two vectors, A and E, we note that
sometimes the scalar product is called the inner product, which is derived from the
scalar nature of the product. The definition of the scalar product is written as

A-B=AB, +AB, +AB, (1.7)

This definition is equivalent to another, and perhaps more familiar, definition—
that is, as the product of the magnitudes of the original vectors times the cosine of the
angle between these vectors if they are perpendicular to each other.
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A-B=0 (1.8)

Note that the scalar product is commutative. The length of A, then, is:
|A|=VA- A (1.9)

3.2 Vector Product of Two Vectors

The vector product of two vectors is a vector, which accounts for the name and
alternative names: outer product and cross product. The vector product is written as
A x B.If C is the vector product of A and B, then

C=AxB (1.10)
or in terms of their components it can be written as:

C. = A,B. — A.B,
Cy, = A.B, — AB. (1.11)
C.=A,B, — A,B,

It is important to note that the cross product depends on the order of the factors;
interchanging the order of the cross product introduces a minus sign:

BxA=—-AxB (1.12)

Consequently,

AxA=0 (1.13)

This definition is equivalent to the following: The vector product is the product of the
magnitudes times the sine of the angle between the original vectors with the direction
given by the right-hand screw rule (Fig. 1.2). Note that if we let A be rotated into B
through the smallest possible angle, a right-hand screw rotated in this manner will
advance in a direction perpendicular to both A and B; this direction is the direction of
A x B.

The vector product may be easily expressed in terms of a determinant via
the definition of unit vectors as ?, }\, and E, which are vectors of unit magnitude in
the x-, y-, and z-directions, respectively; then we can write:

T7 O
AxB=|a, A, A (1.14)
B, B, B.

If this determinant is evaluated by the usual rules, the result is precisely our
definition of the cross product of two vectors.
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Fig. 1.2 Right-hand
screw rule

The determinant in Eq. 1.14 may be combined in many ways, and most of the
results obtained are obvious; however, two triple products of sufficient importance
need to be mentioned. The triple scalar product, D = A-BxC,is easily found and
given by the determinant as

— -

A, A, A,
D=A-BxC=|B. B, B,

——B-AxC (1.15)
Cc. C C.

This product in Eq. 1.15 is unchanged by an exchange of dot and cross or by a cyclic
permutation of the three vectors. Note that parentheses are not needed because the
cross product of a scalar and a vector is undefined.

The other interesting triple product is the triple vector product,
D= A x (B x 6’) Through repeated application of the definition of the cross
product, Eqs. 1.10 and 1.11, we find:

D=Ax (BxC)=B(A-C)— C(A-B) (1.16)

which frequently is known as the back-cab rule. We should bear in mind that in the
cross product the parentheses are vital as part of the operation; without them the
product is not well defined.

4. Devision of Two Vectors

At this point one might be interested in the possibly of vector division. Division of a
vector by a scalar can, of course, be defined as multiplication by the reciprocal of the
scalar. Division of a vector by another vector, however, is possible only if the two
vectors are parallel. On the other hand, it is possible to write a general solution to
vector equations and so accomplish something akin to division.
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Consider this equation:

- -

c=A4A-X (1.17)

where ¢ is a known scalar, A is a known vector, and X is an unknown vector. A
general solution to Eq. 1.17 is given as follows:

-

Y S
X=—"_+B (1.18)
A A

where Bis an arbitrary vector that is perpendicular to A—thatis, A - B = 0. What we
have done is very nearly to divide ¢ by vector A; more correctly, we have found the
general form of vector X that satisfies Eq. 1.17. There is no unique solution, and this
fact accounts for vector B. In the same fashion, we can consider the vector equation
as

- —

C=AxX (1.19)

In Eq. 1.19 both vectors A and C are known; X is an unknown vector. The general
solution of this equation is then given by
. CxA -
X=""2 kA (1.20)
A-A

where k is an arbitrary scalar. Thus, X, as defined by Eq. 1.20, is very nearly the
quotient of C by A; scalar k takes into account the non-uniqueness of the process. If
X is required to satisfy both Egs. 1.17 and 1.19, then the result is unique if it exists
and is given by

- —

x A cA
— +
A-A

X = (1.21)

N1
N

1.2.2  Vector Gradient

Now that we have covered basic vector algebra, we pay attention to vector calculus,
which extends to vector gradient, integration, vector curl, and differentiation of
vectors. The simplest of these is the relation of a particular vector field to the
derivative of a scalar field.

For that matter, it is convenient to introduce the idea of a directional derivative of
a function of several variables; we leave it to the reader to find these analyses in any
vector calculus book—that is, details of such a derivative are beyond the intended
scope of this book. Thus, we jump to the definition of the vector gradient.
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The vector gradient of a scalar function, ¢, is a vector with a magnitude that is
the maximum directional derivative at the point being considered and with a
direction that is the direction of the maximum directional derivative at the point.
We put this definition into some perspective using the geometry of Fig. 1.3, and it is
evident that the gradient has the direction to the level surface of ¢ through the point,
as we said that is being coinsured.

The most common mathematical symbol for gradient is @; in text form it is grad.
In terms of the gradient, the directional derivative is given by

d
d—f = |grad | cos 0 (1.22)

where 6 is the angle between the direction of d 5 and the direction of the gradient.
This result is evident immediately from Fig. 1.3. If we write d5 for the vector
displacement of magnitude ds, then Eq. 1.22 can be written as

do ds

— =gradg - — 1.23

gy = grad@ - (1.23)
Equation 1.23 enables us to seek the explicit form of the gradient and find it in any

coordinate system in which we know the form of d 5. In a Cartesian or a rectangular

coordinate system, we know that d5 = idx + jdy + kdz. We also know from

differential calculus that

op . Op  Op
dp =5—dx+s—dy+—=-d 1.24
¢ 5xx+ayy+azz (1.24)
From Eq. 1.22, the results are:
Fig. 1.3 Parts of two level n
surfaces of the function
P, y,2)
Q
S = a
P > As
P=@,+A@
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2w, w,
Ox Oy 0z (1.25)
= (gradg) dx + (grade), dy + (grade) dz

dp =—=dx+=—dy+

z
Z

Equating the coefficient of independent variables on both sides of the equation in a
rectangular coordinate gives:

Op~ Op~ O~
dgp = =—i+—=—j+=k 1.26
gde =5 T oy T (1.26)
In a more complicated case, the procedure is very similar as well. In spherical
polar coordinates, by using Fig. 1.4 with denotation of r, 8, and ¢, we can write
Eq. 1.24 in the following form:

L) ol Gl7)
S R W 12
do ardr+aad9+a¢d¢ (1.27)
and
d5 = G,dr + Gprd0 + G,y sin 0dep (1.28)

where @,, dp, and d, are unit vectors in the r, 0, and ¢ directions, respectively.
Applying Eq. 1.23 and equating coefficients of independent variables yields:

10p . 1 O

__0p N
r 00 rsing 0z

gradp = a, = + dy

5 (1.29)

Equation 1.29 is established in a spherical coordinate system.

Fig. 1.4 Definition of the z
polar coordinates




10 1 Foundation of Electromagnetic Theory
1.2.3 Vector Integration

Although there are other aspects of vector differentiation, first we need to consider
vector integration. The details of such analyses are left for the reader to look up in
any vector calculus book; we discuss them just briefly here. For our purposes of
vector integration, we consider three kinds of integrals, according to the nature of the
differential appearing in them:

1. Line integral
2. Surface integral
3. Volume integral

In either case, the integrand may be either a vector or a scalar field; however,
certain combinations of integrands and differentials give rise to uninteresting inte-
grals. Those of most interest here are the scalar line integral of a vector, the scalar
surface integral of a vector, and the volume integral of both vectors and scalars.

If F is a vector field, a line integral of F is written as

Jb F(7)-dl (1.30)

where C is the curve along which the integration is performed, a and b are the initial
and final points on the curve, and dl is an infinitesimal vector displacement along
curve C.

It is obvious that because the result of the dot product of F (?) -dl is scalar, the
result of the linear integral in Eq. 1.30 is scalar. The definition of line integral follows
closely the Riemann definition of the definite integral; thus, the integral can be
written as a segment of curve C between the lower and the upper bounds of a and b,
respectively, and then it can be divided into a large number of small increments, Al
For an increment, an interior point is chosen and the value of F(7) at that point is
found. In other words, Eq. 1.30 can form the following equation as

b N
F(7)-dl= lim Fi(7)-Al 1.31
J,, F)di=m S-S F( (131)

It is important to emphasize that the line integral usually depends not only on the
end points of a and b, but also on curve C along which the integration is to be done,
because the magnitude and direction of F; ( 7) and the direction of dfdepend on curve
C and its tangent, respectively. The line integral around a closed curve is of sufficient
importance that a special notation is used for it—namely,

jﬂ Fodl (1.32)
C
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Note that the integral around a closed curve usually is not zero. The class of
vectors for which the line integral around any closed curve is zero is of considerable
importance. Thus, we normally write line integrals around undesignated closed
paths as

%F‘-d? (1.33)

The form of integral in Eq. 1.33 around a closed curve C is for those cases where the
integral is independent of contour C within rather wide limits.

Now, paying attention to the second kind of integral—namely, surface inte-
grals—we again can define F as a vector, and a surface integral of F is written as

J F-fda (1.34)
s

where S is the surface over which the integral is taken, da is an infinitesimal area on
surface S, and 7 is a unit vector normal to da.

There is an ambiguity of two degrees in the choice of unit vector 7 as far as
outward or downward direction to the normal surface S is concerned if this surface is
a closed one. If S is not closed and is finite, then it has a boundary, and the sense of
the normal is important only with respect to the arbitrary positive sense of traversing
the boundary. The positive sense of the normal is the direction in which a right-hand
screw would advance if rotated in the direction of the positive sense on the bounding
curve, as illustrated in Fig. 1.5. The surface integral of F over a closed surface S is
sometimes denoted by

Fig. 1.5 Illustration of the n
relation of normal unit

vector to surface and the

direction of traversal of the

boundary

<« Boundary
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fi;l_fﬁda (1.35)
N

Comments exactly parallel to those made for the line integral can be made for the
surface integral. This integral is clearly scalar, and it usually depends on surface S;
cases where it does not are particularly important.

Now, we can pay attention to the third type of vector integral—namely, the
volume integral—and we start with vector E. Therefore, if F is a vector and @isa
scalar, then the two volume integrals in which we are interested are written:

J:J pdv I?:J Fdv (1.36)
|4 \%

Clearly, J is a scalar and K is a vector. The definitions of these integrals reduce
quickly to just the Riemann integral in three dimensions, except that in K one must
note that there is one integral for each component of F. We are very familiar with
these integrals, however, and require no further investigation nor any comments.

1.2.4 Vector Divergence

Another important vector operator, which plays an essential role in establishing
electromagnetism equations, is a vector divergence operation; it is a derivative form.
The divergence of vector F, written as div F, is defined as follows.

The divergence of a vector is the limit of its surface integral per unit volume as the
volume enclosed by the surface goes to zero. This statement can be presented
mathematically as follows:

divF = 1im§ F-fda (1.37)
V—0 s

The divergence is clearly a scalar point function; its resulting operation ends up with
a scalar field, and it is defined at the limit point of the surface of integration.

A detailed proof of this concept is beyond the scope of this book, and it is left to
readers to refer to any vector calculus book. Yet, the limit can be taken easily, and the
divergence in rectangular coordinates is found to be:

di F_@+%+5FZ
VT Ty T oz

(1.38)

Equation 1.38 for the vector divergence operation designated for the Cartesian
coordinate and in the spherical coordinate is written in the following form:
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1 0F,

0 (sin@Fy) +

- 10
divF = == (r*F,) + ——=~ - 1.39
WE =55, PF) + e ae rsind 0¢ (1.39)
In the cylindrical coordinate it is represented by
- 10 10 0
divF = —— (rF,) + —== (F| =—(F 1.40
v rar(r )+r59( 9)—’_82( z) ( )

The method to find the explicit form of the divergence is applicable to any coordinate
system, provided that the forms of the volume and the surface elements, or, alterna-
tively, the elements of the length, are known.

Now that we have the idea behind the vector divergence operator and its opera-
tion, we can establish the divergence theorem. The integral of the divergence of a
vector over volume V is equal to the surface integral of the normal component of the
vector over the surface bounding V—that is,

J divF dv = { F-fda (1.41)
% S

We leave it at that; for proof readers can refer to any vector calculus book.

1.2.5 Vector Curl

Another interesting vector differential operator is the vector curl. The curl of a
vector, written as curl F , is defined as the limit of the ratio of the integral of its
cross product with the outward drawn normal, over a closed surface, to the volume
enclosed by the surface as the volume goes to zero—that is,

- 1 (.. =
curl F = lim—=¢ n x Fda (1.42)
v—0V s
Again, the details of proof are left to readers to find in a vector calculus book; we just
write the final result of the curl operator in at least the rectangular coordinate, as
follows:

7k

arf=|9 9 0 (1.43)
ox 0y 0z
F. F, F,

Finding the form of the curl in other coordinate systems is only slightly more
complicated and is left to reader to practice.
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Now that we have an understanding of the vector curl operator, we can state
Stock’s theorem as follows. The line integral of a vector around a closed curve is
equal to the integral of the normal component of its curl over any surface bounded by
the curve—that is,

% Fdl= J curl F - nda (1.44)
c s

where C is a closed curve that bounds surface S.

1.2.6 Vector Differential Operator

We now introduce an alternative notation for the types of vector differentiation that
have been discussed—namely, gradient, divergence, and curl. This notation uses the
vector differential operator, del, and it is identified by the symbol V and written
mathematically as:

_l7+

- ~0p ~0¢ Aago
V=i tig kg, (1.45)

Del is a differential operator in that it is used only in front of a function of (x, y, z),
which it differentiates; it is a vector in that it obeys the laws of vector algebra. It is
also a vector in terms of its transformation properties, and in terms of del, Egs. 1.25,
1.38, and 1.43 are expressed as follows:

Grad = V:
-~ ~0F, ~0F, ~0F,
VF:l a + Terk aZ (146)
Div = V:
- “fan OF, OF,
- F= i +a—y+ 3z (1.47)
Curl = Vx:
ik
VxF=|2 9 0O (1.48)
Ox 0y 0z

e
2
=



