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A recent commentary in Molecular Ecology by Petit (2008)
paints a rather grim picture of the utility of nested clade
phylogeographical analysis (NCPA) for inferring population
history. Drawing on simulation studies based on single locus
data sets, including the recent work by Panchal & Beaumont
(2007), the potential fallibility of NCPA was characterized as
being so dire that the method should be abandoned until
further evidence in support of its legitimacy emerges. Here,
we reconsider the arguments presented by Petit in light of
practical approaches for validating or strengthening inferences
drawn from NCPA. As with any method that attempts to
distinguish processes and events that shaped spatial-genetic
structuring throughout complex evolutionary histories of
natural populations, we propose that treatment of NCPA
inferences should be set in the context of corroborating
evidence (or lack thereof) that support those inferences. Indeed,
results from computer simulation, studies lend no support to
the idea that NCPA should not be employed for generating
plausible hypotheses (i.e. consistent with species biology and
landscape history) that can be further tested using other
methods. Moreover, cross-validation of NCPA inferences via
assessment of multiple independent loci, complementary
analyses, and/or prior expectations, should at least partly —
perhaps considerably — counter high false-positive rates
reported for some inferences. NCPA uniquely offers the ability
to explore patterns relating to complex, historical scenarios:
an over-reaction to Panchal & Beaumont (2007) should not
precipitate throwing out an approach currently with no
computationally feasible substitute.

In recent years, use of the inference key in nested clade
phylogeographical analysis (NCPA) to identify historical

processes has attracted criticism (Knowles & Maddison 2002).
A simulation study (Panchal & Beaumont 2007) has prompted
Petit to suggest that ‘... the method be no longer used until it
has been more thoroughly and critically evaluated ...’. In this
brief communication, we hope to provide a more pragmatic
view of where NCPA fits into the phylogeographer’s toolbox
by making the argument that there is a false dichotomy
between NCPA and alternative ‘statistical’ methods.

The study by Panchal & Beaumont (2007) showed that
clade statistics can be significantly biased, yielding more false-
positives (type I error) than expected. Specifically, it yielded
inferences of either restricted gene flow or contiguous range
expansion under a simulated scenario of panmixia. While
these results are alarming, it is important to point out that to
date, all computer simulation studies that tested NCPA have
been conducted using single locus data sets (e.g. Irwin 2002;
Knowles & Maddison 2002; Panchal & Beaumont 2007).

There are known problems with historical inferences drawn
from single locus data sets. For example, Kuo & Avise (2005)
showed that while individual gene genealogies can exhibit
haphazard phylogeographical breaks, spatially concordant
breaks across multiple loci tend to emerge only in the presence
of historical barriers to gene flow. Accordingly, any phylogeo-
graphical inferences based on a single locus must be interpreted
with caution (Templeton 2002; Knowles 2004), and inclusion
of other genes can substantially improve accuracy when
reconstructing organismal history from molecular data (Ballard
& Whitlock 2004). NCPA is no exception, and a number of
studies have applied the method to multiple independent
loci as means of accommodating coalescent stochasticity
(e.g. Banke & McDonald 2005; Zhang et al. 2005; Garrick et al.
2007). To dismiss NCPA on the basis of its performance with
simulated data sets representing just one ‘snapshot’ of popu-
lation history seems to be at odds with well-documented
difficulties associated with accurately reconstructing past
events from a single locus. To date, no simulation studies have
attempted to ascertain how the incorporation of corroborating
genetic evidence might influence the frequency with which
false-positives are mistakenly accepted. In general, we believe
that as additional loci are added, the bias in type I error will
be reduced.

As noted by Templeton (2004), using NCPA to the exclusion
of all other analyses and without regard to any prior knowl-
edge is not advised. Findings from a literature search presented
by Petit overemphasizes the pervasiveness that reported high
false-positive rates are likely to have on inferences drawn from
empirical data. NCPA is routinely used in conjunction with
complementary analyses and strong prior expectations. For
example, range expansion is often cross validated via supple-
mentary tests of exponential population growth using mismatch
distributions, or coalescent-based methods (e.g. fluctuate,
Kuhner et al. 1998). Similarly, inferences of gene flow restricted
by distance can be re-evaluated via simple linear regression, or
when multilocus allelic data are available, with other more
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geographically explicit approaches (e.g. Wartenberg 1985;
Amos & Manica 2006; Dyer 2007).

Increasingly, empirical studies employ NCPA in the context
of well-defined prior expectations based on information from
Earth science disciplines (e.g. DeChaine & Martin 2004;
Beheregaray et al. 2004; Sunnucks et al. 2006; Bell et al. 2007).
In this regard, integration between phylogeographers and
Earth scientists is critical to better address expectations
about scenarios and temporal axes of diversification. This
integration, together with basic knowledge of the ecology and
life history of the organism(s) under study, permits researchers
to recognize potential sources of error in the estimation of
historical processes (see Masta et al. 2003; Morando et al. 2004).

The recent commentary also depicts phylogeographical
analyses focusing on ‘populations’ as being more desirable
than individual-based approaches. However, when analysing
DNA sequence data from continuously distributed species, it
is often unclear where population boundaries lie and how
permeable such boundaries are to gene flow. Indeed, in the
absence of complementary genetic data (e.g. nuclear genotypes
scored for multiple individuals), an objective identification
of the number, composition, and distribution of biologically
meaningful genetic units can be challenging (Guillot et al.
2005). But it is precisely this a priori delineation of clearly
demarcated populations (e.g. Figure 2 in Petit 2008) that
underpins many of the alternative statistical approaches to
phylogeographical analysis (see Hey & Machado 2003). To our
knowledge, no studies to date have explicitly examined the
impact that incorrectly defining population boundaries might
have on inferences about population history. Thus, NCPA
remains a valuable component in the analytical toolbox, even
if just for comparison with other methods, because it is not
subject to the assumption of crisp, panmictic populations,
as made by popular model-based approaches (e.g. Beerli &
Felsenstein 2001; Hey & Nielsen 2004). Concerns raised by
Petit about the confounding influence that nonhistorical
processes (e.g. kin clustering) might have on NCPA inferences
are also relevant to analyses employing traditional population-
genetic models.

Integrative analytical approaches to interpreting spatial
genetic patterns seen in organisms from landscape settings
with well-understood biogeographical histories will help
pave the way for further refinement of NCPA. Rather than
abandoning the approach in response to indications that the
method can be prone to spurious inferences on some occasions,
a more constructive course of action is to encourage its valida-
tion. The application of NCPA as part of multifaceted battery
of analyses should help provide a better appreciation of the
amount of data needed for sound inferences and the situations
in which inferences may be unreliable. Based on the presently
limited number of null demographic models that have been
considered in simulation studies (i.e. allopatric fragmentation,
one-dimensional isolation by distance, panmixia), and taking
into account Templeton’s (2004) concerns about methodological
oversights pertinent to some of those studies, a more tempered
reaction to the reported high false-positive rates for specific
NCPA inferences is warranted. While it is clear that NCPA
should not be applied blindly, as if merely appealing to
authority for interpretation of data, we do not believe that

NCPA is attractive only to ‘researchers eager to identify statistical
support for their interpretation of the data’. We suspect that, in the
vast majority of applications, the method has not been employed
as a prospecting tool in a relentless pursuit of some form of
statistical significance. Rather, it has been used as one of several
analytical approaches to understand organismal histories.
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