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Preface and Acknowledgments

About 6 years have passed since Stokland et al. published their excellent book on the
“Biodiversity in Dead Wood,” a review of saproxylic life from the European
perspective. With contributions from 84 authors and reviewers from 21 countries,
this volume strives to expand and build upon the foundation established by that
work. The 25 chapters included here are in-depth considerations of prioritized topics
but are united by several broad objectives that were communicated and agreed upon
at the outset. These objectives include (1) incorporating information from tropical
and subtropical forests, (2) recognizing the key roles social insects play in saproxylic
assemblages, (3) highlighting some of the less commonly studied taxa, and
(4) addressing the value of highly decomposed wood. If successful, this collective
effort should result in a more global and holistic understanding of saproxylic insects
including their diversity, ecology, and vulnerability to ongoing and emerging
threats.

I am deeply grateful to Heike Feldhaar for inviting me to edit this book and to the
many researchers who either wrote or cowrote chapters, served as reviewers, or
provided images used in the preparation of figures. Reviews of individual chapters
were provided by the following individuals, in alphabetical order: Keith Alexander
(UK), Manfred Asche (Museum fiir Naturkunde, Germany), Susan Baker (Univer-
sity of Tasmania, Australia), Matthew Bertone (North Carolina State University,
USA), Meredith Blackwell (Louisiana State University and University of South
Carolina, USA), James Cane (USDA Agricultural Research Service, USA), Kevin
Chase (University of Minnesota, USA), Natalie Clay (Louisiana Tech University,
USA), Savel Daniels (Stellenbosch University, South Africa), Francesca Della
Rocca (University of Pavia, Italy), Gary Dodson (Ball State University, USA),
Brian Forschler (University of Georgia, USA), Reinhard Gaedike (Bonn, Germany,
c/o Senckenberg Deutsches Entomologisches Institut, Germany), Alejandra Garcia-
Lépez (University of Alicante, Spain ), Simon Grove (Tasmanian Museum and Art
Gallery, Australia), James Hammond (Canadian Forest Service, Canada), Ernst
Heiss (Tiroler Landesmuseum, Innsbruck, Austria), Rob Higgins (Thompson Rivers
University, Canada), Scott Horn (USDA Forest Service, USA), Jen-Pan Huang
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(Field Museum of Natural History, USA), Philippe Janssen (IRSTEA, France),
Nicklas Jansson (Linkoping University, Sweden), Jari Kouki (University of Eastern
Finland, Finland), John Lawrence (Australian National Insect Collection, Australia),
Simon Lawson (University of the Sunshine Coast, Australia), Richard Leschen
(Landcare Research, New Zealand), Staffan Lindgren (University of Northern Brit-
ish Columbia, Canada (emeritus)), Therese Lofroth (Swedish University of Agricul-
tural Sciences, Sweden), Emiliano Mancini (Roma Tre University, Italy), Joseph
McHugh (University of Georgia, USA), Jorg Miiller (University of Wiirzburg,
Germany), Gino Nearns (USDA Animal and Plant Health Inspection Service,
USA), Anne Oxbrough (Edge Hill University, UK), Thomas Ranius (Swedish
University of Agricultural Sciences, Uppsala, Sweden), Ellen Rotheray (University
of Sussex, UK), Timothy Schowalter (Louisiana State University, USA), Villu Soon
(University of Tartu, Estonia), Nigel Stork (Griffith University, Australia), Gergely
Vérkonyi (Finnish Environment Institute, Finland), Jan Weslien (The Forestry
Research Institute of Sweden, Sweden), and Juan Zuo (Vrije Universiteit Amster-
dam, the Netherlands).

Finally, I would like to thank my family for their patience on nights and weekends
when this project distracted me from them.

Athens, GA Michael D. Ulyshen
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Chapter 1 ®)
An Introduction to the Diversity, Ecology, s
and Conservation of Saproxylic Insects

Michael D. Ulyshen and Jan Sobotnik

Thousands upon thousands of lives would cease and their
races become extinct were it not for the occasional death of
such a jungle giant as this.

Beebe (1925)

Abstract Much like flowering plants set the stage for an explosion of herbivore and
pollinator diversity, the origin of dead wood in early Devonian forests (~400 mya)
was followed by an incredible diversification of life, giving rise to some of the most
successful morphological adaptations and symbioses on Earth. Approximately one
third of all forest insect species worldwide depend directly or indirectly on dying or
dead wood (i.e., saproxylic), with major functional groups including wood feeders,
fungus feeders, saprophages, and predators. Although beetles and flies dominate
saproxylic insect communities worldwide, other orders are represented by a wide
variety of species as well, and the composition of these assemblages varies
biogeographically. Most notably, termites (Blattodea) and the subsocial beetle
family Passalidae are both largely restricted to the tropics where they play a major
role in the decomposition process. The large body of European research linking
declines of saproxylic insect diversity to reductions in the amount of dead wood and
old trees across the landscape serves as a cautionary tale for researchers and land
managers working in other parts of the world. The conservation of saproxylic insects
everywhere can be promoted by efforts to provide an adequate amount and variety of
dead wood and old trees across space and time. The preservation of old-growth
forests is also critically important as they support relict populations of the most
sensitive species. There is a strong need for research outside the boreal and temperate
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zones to develop a more global appreciation for the diversity and ecology of
saproxylic insects and to inform management strategies for conserving these organ-
isms in subtropical and tropical forests.

Although William Beebe made his observations of “the little people of bark and
wood” in a South American rainforest, he could have reached this same conclusion
from studying a recently fallen tree in any of the world’s forests. Indeed, approxi-
mately one third of all forest insect species are saproxylic, meaning they depend,
either directly or indirectly, on dying or dead wood. Directly dependent species are
those that consume parts of woody stems (i.e., bark, phloem, or wood) for food,
whereas indirectly dependent species include those that feed on other wood-
dependent species (e.g., wood-rotting fungi or other saproxylic organisms), require
dead wood for nesting purposes, etc. In addition to the strictly dependent saproxylic
species, a very large number of other invertebrates are known to benefit from the
presence of dead wood in forests but do not require it. Such taxa include a wide
variety of litter-dwelling invertebrates that concentrate near logs, hibernating insects
that overwinter within the shelter provided by dead wood, soil feeders that encounter
richer food sources underneath fallen wood, and predators that respond opportunis-
tically to an abundance of prey in and around woody debris. While dying and dead
wood represent some of the most critical resources to life in forests worldwide, only
in the past few decades have researchers turned their attention to the importance of
dead wood to biodiversity, with most work taking place in boreal or temperate
forests. Moreover, although saproxylic insects are thought to provide some key
ecosystem services, research on the value of these organisms to the resiliency and
productivity of forests is only just beginning.

Early research on saproxylic insects focused primarily on the small fraction of
saproxylic insects that pose a threat to forest health and reduce the marketability of
timber products or are pests of wooden structures. In temperate zones, wood-boring
beetles have received the most attention (Hickin 1963), whereas termites have long
been the focus of study in the tropics. This difference in focus among regions reflects
the uneven distribution of social insects, especially termites and ants, which gener-
ally become more abundant and diverse toward equator (King et al. 2013). Whereas
termites are absent from boreal forests and are represented by just a handful of
species in temperate forests, the number of species present at tropical forest locations
ranges from several dozen to well over a hundred (Krishna et al. 2013). As a
consequence of these patterns, the literature on the diversity and ecology of
saproxylic insects is largely fragmented along taxonomic and geographic lines.
Efforts to unite these bodies of knowledge are needed to achieve a more holistic
understanding of saproxylic insects including how their diversity and functions may
vary geographically.

This book represents an effort by researchers around the world to summarize the
current state of knowledge about the diversity, ecology, and conservation of insect
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life in dying and dead wood. Because a comprehensive coverage of this vast topic is
not possible within the covers of a single book, our main aims here include
(1) uniting bodies of literature on social and nonsocial saproxylic insects that
have, until now, existed in relative isolation from one another; (2) addressing a
number of neglected topics including some less-studied orders or families of
saproxylic insects, insects associated with highly decomposed woody substrates,
and the diversity and ecology of wood-dwelling insect assemblages in tropical
forests; and (3) providing the most up-to-date coverage of topics of particular
ecological importance or interest to those making forest management decisions.
Before further introducing the chapters that follow, it is worth taking a moment to
consider the history of insect life in dead wood. Below we briefly discuss the origins
and properties of woody plants, the origins and diversification of wood-dwelling
insects, and a timeline of research on saproxylic insects.

1.1 Origins and Properties of Wood
1.1.1 Origins

Fossils of a small shrub-like plant similar to the genus Psilophyton from the early
Devonian (~407 mya) represent the earliest known records of wood (Gerrienne et al.
2011). Although the evolution of wood is thought to have initially been driven by
hydraulic constraints (Gerrienne et al. 2011), wood also proved to be an effective
solution to the challenge of maintaining an upright growth form arising from
competition for sunlight among plants (Cichan and Taylor 1990). The earliest
known arborescent plants appeared in the middle Devonian, approximately 380 mil-
lion years ago (Willis and McElwain 2002). By the late Devonian and Carboniferous,
much of the Earth’s land surface was covered in dense forests. These early forests
consisted of a mixture of spore-producing and early seed-producing tree species (Stein
et al. 2007; Willis and McElwain 2002). The spore producers included lycopsids
(Iycopods), sphenopsids (giant horsetails), filicopsids (ferns), cladoxylopsids, and
progymnosperms (extinct), whereas the early seed producers included pteridosperms
(seed ferns, extinct) and Cordaites (extinct). Pteridosperms would later give rise to the
gymnosperms (cycads, ginkgos, and conifers) and angiosperms (flowering plants) that
dominate modern forests (Frohlich and Chase 2007).

Vascular cambium arose multiple times in the evolution of plants (Cichan and
Taylor 1990), and the tree lineages listed above differed in how wood was arranged
within their stems. Many of these early trees possessed unifacial vascular cambium
and only produced small amounts of secondary xylem. One highly successful but
now-extinct genus of trees from the period, for instance, was Lepidodendron, a
lycopod that grew up to 35 m tall and over a meter in trunk diameter (Scheckler
2001; Willis and McElwain 2002). Because the stems of Lepidodendron possessed
unifacial cambium and produced little wood, most of their support came from an
extremely thickened cylinder of bark. In contrast, other early trees, like most forest
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Fig. 1.1 Timeline showing major events in the history of saproxylic life (many of the dates given
here represent median values from ranges reported in the literature). Superscripts refer to the
following references: 1: Misof et al. (2014), 2: Gerrienne et al. (2011), 3: Willis and McElwain
(2002), 4: Cichan and Taylor (1982), 5: Floudas et al. (2012), 6, 8, 11, 13, 15: Grimaldi and Engel
(2005), 7: Bertone and Wiegmann (2009), 9: Wang et al. (2014), 10: Bell et al. (2010), 12: Scholtz
and Chown (1995), 14: Hulcr et al. (2015)

trees living today, possessed bifacial cambium which produces secondary phloem in
addition to secondary xylem. Although easily taken for granted in modern forests,
the appearance of trees possessing bifacial vascular cambium was a major step in the
evolution of plants (Spicer and Groover 2010) as well for arthropods and other
organisms. The first such trees were progymnosperms such as Archaeopteris. These
trees grew 10-30 m in height and produced thick woody stems similar in morphol-
ogy to those of modern conifers (Meyer-Berthaud et al. 1999; Scheckler 2001).
Perhaps due to their perennial lateral branches, deep-rooting structures, and
megaphyllous leaves, Archaeopteris-dominated forests of the carboniferous and
their fossils can be found worldwide (Willis and McElwain 2002). Thus a plausible
approximate beginning of dead wood as an abundant and widespread resource was
the appearance and rapid spread of Archaeopteris in the late Devonian 370 million
years ago (Fig. 1.1).

1.1.2 Modern Wood Producers

Trees, woody shrubs, and lianas are the principle wood-producing plants in modern
ecosystems. All extant species can be categorized as gymnosperms or angiosperms



1 An Introduction to the Diversity, Ecology, and Conservation of. . . 5

(flowering plants) depending on whether their seeds are “naked” or enclosed within
ovaries. Gymnosperms are much older and consist of many fewer species than
angiosperms. Tree forms include approximately 310 species of cycads, 1 ginkgo,
and roughly 615 species of conifers. Although conifers such as pine, spruce, and fir
still dominate forests in many regions and represent some of our most valuable
timber trees, they have been largely displaced by angiosperms throughout much of
the world. Angiosperms include many thousands of species and can be distinguished
between monocots or dicots depending on whether their seeds contain one embry-
onic leaf (i.e., cotyledon) or two. Although some monocots such as palms, bamboo,
and banana trees are arborescent, their stems lack vascular cambium and do not
produce wood. Other nonwoody arborescent plants such as “tree ferns” also lack
vascular cambium and are therefore not considered true trees (Thomas 2000).

1.1.3 Basic Growth Patterns and Products of Woody Stems

All modern wood-producing plants exhibit both primary (length) and secondary
(girth) growth arising from the division of undifferentiated cells in special meriste-
matic tissues. Primary growth occurs in apical meristems located at the tips of shoots
and roots, whereas secondary growth occurs in the vascular cambium, a lateral
meristem, between the bark and the wood. As mentioned previously, the vascular
cambium in modern plants is bifacial, producing secondary phloem to the outside
(i.e., the inner bark) and secondary xylem (wood) to the inside. A third type of
meristem called the cork cambium contributes to the outermost layers of bark. The
cork cambium first arises from parenchyma cells in the cortex (i.e., the outer layer of
the stem) and later from parenchyma cells in older, nonfunctional layers of phloem
(Wilson and White 1986). The walls of cells produced by this meristem become
impregnated with wax and suberin, their protoplasts die, and their lumina become
air-filled (Wilson and White 1986). These resulting layers of outer bark function to
prevent water loss and protect underlying tissues from various external threats such
as fire.

Though essential to the life of a plant, the phloem layer is so thin as to be easily
overlooked when viewed in cross section (Fig. 1.2). The youngest innermost layers,
often only 0.2-0.3 mm in width (Wilson and White 1986), are responsible for
distributing organic substances produced in leaves throughout the rest of the plant
and are particularly rich in sugars. Not surprisingly, therefore, a wide variety of
organisms target these tissues in dying or recently dead trees (see Sect. 1.2.3.1).
Phloem remains active in the transport of photosynthates for just a few years in most
species. Older tissues become blocked by callose or crushed by the forces of
continued cambial activity (Wilson and White 1986). Old layers of phloem gradually
become incorporated into the outer bark.

Wood provides support for the plant and is responsible for conducting water and
minerals upward from the roots. Successive layers of secondary xylem are often
visible in cross section as distinct annual rings. These reflect changes in growth rate
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Fig. 1.2 Cross section of a
woody stem (Liriodendron
tulipifera L.)

d
sapwood

phloem

bark

and are most obvious in regions experiencing strong seasonality with respect to
precipitation or temperature. In temperate regions, for instance, fast-growing wood
produced early in the year (i.e., “early wood”) is typically less dense (consisting of
wider cells with thinner cell walls) and usually lighter in color than slow-growing
“late wood” (Panshin and de Zeeuw 1970). By contrast, in relatively stable tropical
regions where conditions change little over the course of the year, it is not uncom-
mon for trees to lack clearly visible growth rings.

Many tree species produce heartwood which is often visible in cross section as a
central core of darkened wood surrounded by younger sapwood (Fig. 1.2). Heart-
wood differs greatly from sapwood in several physical and chemical properties.
Most notably, heartwood contains greater concentrations of “extractives,” a variety
of extraneous compounds including waxes, fatty acids, alcohols, steroids, higher
carbon compounds, and resins which give it its dark color and have an inhibitory
effect on decay (Rayner and Boddy 1988; Panshin and de Zeeuw 1970). These
compounds are de novo synthesized (from materials stored in parenchyma cells) in a
narrow transition zone in which ethylene levels are high and metabolic levels are
increased (Rayner and Boddy 1988). In addition, tyloses often form in the heartwood
of many hardwood tree species, thereby partially or completely blocking vessels.
This reduces permeability (Panshin and de Zeeuw 1970) and causes heartwood to be
drier and harder than sapwood and also more resistant to all kinds of decay
(Cornwell et al. 2009 and references therein; Thomas 2000). Furthermore, nitrogen,
phosphorus, and potassium concentrations are generally lower in the heartwood than
in sapwood, although the concentrations of magnesium and calcium sometimes
exhibit the opposite pattern (Meerts 2002). Although heartwood is much richer in
defensive secondary metabolites compared to sapwood and its extracts have a clear
inhibitory effect on most organisms (Noll et al. 2016), certain species of fungi, the
“heart-rot fungi,” specialize on heartwood and can play a central role in the creation
of tree cavities (Thomas 2000; Rayner and Boddy 1988).
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1.1.4 The Structure and Composition of Wood

Cells produced by the vascular cambium are either oriented parallel (i.e., “axial
elements”) or perpendicular (i.e., “radial elements”) to the stem or root (Shigo 1984).
The axial elements include vessels, tracheids, fibers, parenchyma, and resin ducts
(Shigo 1984). As soon as the cellular contents of vessels and tracheids die, they
become functional in water transport. Fibers have heavily lignified cell walls and
provide a supportive function to the stem. They too are usually, but not always, dead
at maturity. Parenchyma cells remain alive in functional wood (the wood becomes
heartwood once they die) and store starch along with other compounds. Some of the
substances stored by parenchyma cells are converted to defensive compounds that
have an inhibitory effect on decay fungi and bacteria (Shigo 1984). The radial
elements of wood include ray cells (primarily parenchyma) and resin ducts. The
ray cells are arranged in vertical bands that divide the stem into sections. These
divisions are not complete, however, as the bands of cells are not continuous
throughout the length or across the width of the stem. These cells perform an
important function in the radial transfer of nutrients from the outer bark to the
inner parts of the wood. They also play a key role in tylose formation.

Wood (i.e., the walls of xylem cells) mostly consists of cellulose, hemicelluloses,
and lignins although a wide variety of other less common compounds are present as
well. The most common organic compound on Earth is cellulose, a polysaccharide
consisting of a linear chain of approximately 500-14,000 B-glucose units that
accounts for 40-45% of wood weight (Wilson and White 1986; Sjostrom 1993;
Leschine 1995). Cellulose is an exceptionally strong molecule and plays an impor-
tant role in cell wall structure. As discussed in later sections, very few organisms are
capable of breaking the bonds between the -glucose subunits, and this has given
rise to numerous symbiotic relationships between saproxylic insects and microbes.
Hemicelluloses are also polysaccharides, comprised of various D-pentose sugars
forming branched polymers of up to 3000 units (Sjostrom 1993), and account for
20-40% of wood weight (Wilson and White 1986). Lignin, making up 20-35% of
wood weight, is a heterogeneous biopolymer lacking a well-defined structure but
consisting in general of phenylpropanoid units ( p-hydroxyphenyl, guiacyl, syringyl,
sinapyl, and others), all being aromatic cores with hydroxylated side chains linked
together by C—C or ether bonds (Wilson and White 1986; Freudenberg and Nash
1968). Lignin plays a fundamental role in protecting cellulose and hemicelluloses
from enzymatic attack. The large lignin molecules fill spaces between cellulose and
hemicelluloses in cell walls, bonding predominantly with the latter (Jeffries 1987).
Unlike cellulose and hemicellulose, lignin is hydrophobic which aids in water
conduction (Wilson and White 1986). Together, cellulose, hemicelluloses, and
lignin form a complex matrix generally referred to as lignocellulose.

The digestion of lignocellulose requires specialized enzymes: -cellulases,
hemicellulases, and ligninases. Three basic types of cellulases are needed to cleave
the polymer into glucose units, and these are endo-f-glucanase (cleaving the internal
bonds of cellulose), cellobiohydrolase (breaking usually two glucose units from the
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chain end), and p-glucosidases (splitting the glucose oligomers into monomers)
(Lo et al. 2011). These cellulases can be organized into supramolecular complexes
allowing cellulose to be fully digested (Bayer et al. 1998; Brune and Ohkuma 2011).
Hemicellulases are digested by a wider range of less-specialized enzymes, due to
their heterogeneous chemical nature and branched molecular pattern (Jeffries 1987).
Ligninases include many diverse enzymes, peroxidases, phenoloxidases, and
laccases, produced by many fungi, and also some bacteria and actinomycetes
(Singh and Chen 2008; Sigoillot et al. 2012). Among microorganisms, fungi are
the most important and conspicuous (i.e., often forming macroscopic structures like
mycelia and fruiting bodies) organisms capable of digesting lignocellulose. Fila-
mentous fungi are particularly effective at decomposing wood as they can quickly
extend deep within the wood and can translocate water and nutrients between
locations through their mycelia (Jeffries 1987). Three main wood-rotting fungal
types, as summarized by Rayner and Boddy (1988), are as follows: (1) white rot
fungi, which cause degradation of all basic units of wood (cellulose, hemicellulose,
and lignin), are common in hardwoods and have a more tropical distribution;
(2) brown (or red) rot fungi, which are incapable of degrading lignin, are primarily
associated with conifers and have more of a northern distribution; and (3) soft rot
fungi degrade cellulose and hemicellulose but cause less extensive degradation than
brown rot and give the wood a more spongy consistency. Soft rot is largely confined
to situations where white rot and brown rot are inhibited, such as wood saturated
with water. Bacteria also play significant role in the process of wood degradation
(Kim and Singh 2000) but, due to their small size and limited mobility, are typically
more active in situations where mycelial fungi are less abundant (Rayner and Boddy
1988; Kim and Singh 2000). Examples of situations favoring bacterial activity
include aquatic environments, tree wounds and sap flows, highly decomposed
wood, and wood comminuted or egested by insects (Kim and Singh 2000; Ausmus
1977). Three recognized forms of bacterial decay, as summarized by Kim and Singh
(2000), are as follows: (1) tunneling by bacteria that penetrate cell walls and appear
to be capable of metabolizing lignin in addition to cellulose and hemicellulose;
(2) erosion by bacteria present in wood cells that create troughs in the cell walls; and
(3) cavitation by bacteria that is less well-known and apparently restricted to certain
situations but involves forming cavities within the cell walls. Interestingly, fungi can
digest wood in aerobic conditions, while other wood-digesting microorganisms are
more often anaerobic, due to the need of protecting their extracellular enzymes from
damage by oxidation (Leschine 1995). While fungi and bacteria are the primary
decomposers in all ecosystems, other organisms known to produce the enzymes
necessary to break down one or more compounds comprising the lignocellulose
matrix include protozoa (e.g., ciliates or metamonads; Breznak 1982; Ohkuma et al.
2005; Leschine 1995) and examples from a few groups of Metazoa including
Mollusca (e.g., Haliotis, Mytilus, or Bankia; Suzuki et al. 2003; Xu et al. 2001;
Dean 1978), Nematoda (Smant et al. 1998), crayfish (Byrne et al. 1999), termites and
other cockroaches (Lo et al. 2000; Watanabe et al. 1998), beetles (Girard and
Jouanin 1999), and even certain sea squirts (Dehal et al. 2002).
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In addition to being so recalcitrant, and despite being rich in energy content,
wood is not a very nutritious resource compared to other plant tissues (e.g., leaves,
flowers, seeds, etc.) and especially compared to animal tissues (Woodwell et al.
1975; Kairik 1974). The nitrogen content of wood, for instance, is only 0.03-0.1%
by dry weight compared to 1-5% for living herbaceous tissues (Kédrik 1974, and
reference therein). Of the three major constituents of woody stems, phloem tends to
be the most rich in sugars and nutrients followed by sapwood and heartwood
(Woodwell et al. 1975). Readers interested in a much more detailed description of
wood anatomy are referred to major textbooks on the subject such as Panshin and de
Zeeuw (1970) or Wilson and White (1986).

1.1.5 Differences Between Gymnosperms and Angiosperms

It is worth briefly reviewing some important differences in the structure and com-
position of wood produced by gymnosperms and angiosperms. Gymnosperm wood
is generally more uniform and consistent in structure among taxa than that of
angiosperms (Wilson and White 1986). This is because the wood of gymnosperms
consists almost entirely of tracheids, narrow, and elongated axial elements (com-
monly 100 times longer than wide) with highly lignified and thickened cell walls.
These cells are responsible for providing structural support in addition to the
conduction of water. Some gymnosperm genera (e.g., Pinus, Picea, Larix, and
Psedotsuga) also possess resin canals which produce and carry resin for use in
defense and wound response. Angiosperm wood, by contrast, contains a much more
varied array of axial elements. These include tracheids, parenchyma, vessel ele-
ments, fiber tracheids, and fibers. In addition, these cell types appear in different
proportions and in different arrangements among tree species (Wilson and White
1986). Unique to angiosperms, vessel elements are shorter and generally wider than
tracheids. They are arranged end-to-end longitudinally to form water-conducting
vessels. Vessels can be distributed uniformly within each growth ring (diffuse-
porous trees), concentrated at the beginning of each tree ring (ring-porous trees) or
some variation of this. Unlike the tracheids of gymnosperms, the tracheids and
vessels of angiosperms provide little structural support. This function is instead
performed by fibers, long needle-like cells with thick and heavily lignified walls.
The mechanical strength of angiosperm wood is a function of its density which, in
turn, is related to the proportion of fibers (Wilson and White 1986). Angiosperms
produce a wide range of wood densities but on average produce denser wood than
gymnosperms. The two categories of trees are therefore often referred to as “hard-
woods” and “softwoods,” respectively. It is also relevant to mention that gymno-
sperm wood tends to contain more lignin than angiosperm wood (Weedon et al.
2009) and generally has lower mineral nutrient concentrations including, most
notably, nitrogen, potassium, and magnesium (Meerts 2002). Such differences
have important implications for relative decay rates with the wood of gymnosperms
decaying more slowly than that of angiosperms (Weedon et al. 2009).
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1.1.6 Variety of Wood

Dead wood is a highly variable resource depending on a wide variety of intrinsic and
extrinsic factors, and this in large part explains why it supports so many species of
insects and other organisms. The diversification of woody plants over the past
400 million years has resulted in tens of thousands of species distributed unevenly
around the world. There are more than 60,000 tree species in the world (Beech et al.
2017) as well as many other woody shrubs and lianas. Tropical forests contain the
highest diversity of woody plants, with as many as 283 species per hectare in Peru
alone (Phillips et al. 1994), whereas many temperate or boreal forests are dominated
by just one or several species. There are important physical and chemical differences
in the dead wood produced by these various species. The most obvious differences
concern stem diameter which exhibits a wide range of interspecific variation as well
as intraspecific variation (i.e., depending on tree age) and of course decreases with
distance from the ground within individual trees. In addition, the structure of wood
varies considerably among species, with major differences between the wood of
gymnosperms and angiosperms (see Sect. 1.1.5).

In addition to these intrinsic differences in wood properties, extrinsic factors also
play a vital role in increasing the variety of dead wood in forests. The degree of sun
exposure experienced by a woody substrate, for example, can result in major
differences in wood temperature and moisture content (Graham 1925). Moreover,
the posture (standing or fallen) and vertical position of wood relative to the forest
floor also has important implications for wood conditions (Fig. 1.3). The wood of
standing dead trees (i.e., snags) or of dead branches attached to living trees is
typically drier and decomposes more slowly than wood lying on the forest floor or
dead roots belowground. It is not uncommon for a large proportion of dead wood
volume to be standing or suspended. In old-growth forests in southern Finland, for
instance, Siitonen et al. (2000) found that about 63% of dead wood volume consisted
of logs, with the rest consisting of intact or broken snags. Similar results were
obtained in managed stands (after excluding man-made dead wood), with only
about 56% of the dead wood volume consisting of logs on the forest floor (Siitonen
et al. 2000). Furthermore, a considerable amount of aboveground dead wood exists
within the stems of aging trees. The decomposing cores of living trees often result in
the formation of hollows which form a special habitat for many organisms when they
become open to the outside (Micé 2018; see Chap. 21). One of the most
distinguishing features of old-growth forests is the presence of very old large-
diameter “veteran” trees (Siitonen et al. 2000; Spies et al. 1988; Franklin et al.
1981). These living but declining trees are of immense ecological value due to the
tree cavities they provide as well as the many dead branches they contain within their
Crowns.

Another process contributing to dead wood variety concerns the chemical and
physical changes wood experiences as it decomposes. Although a number of decay
classification systems have been developed, three are of particular relevance with
respect to the succession of insects (see Sect. 1.2.4). The first and shortest of these is
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Fig. 1.3 Examples of dead wood variety. (a) Montane pine-juniper forest, Arizona; (b) veteran
Broussonetia papyrifera (L.) L’'Hér. Ex Vent. (a nonnative species) at Monticello, the historic home
of Thomas Jefferson, Virginia; (¢) dead Pinus palustris Mill. snags in old-growth longleaf pine
forest, Georgia; (d) hollow-bearing Magnolia grandiflora L. in old-growth Beech-Magnolia forest,
Florida; (e) Pinus taeda L. following a prescribed burn, Florida; (f) dead acacia (right) and the
wood-like ribs of a saguaro cactus (left) in the Sonoran desert, Arizona; (g) dead Fagus orientalis
Lipsky with fungal fruiting bodies in old-growth Caspian Hyrcanian forest, Iran; (h) highly
decomposed wood with fungal fruiting bodies, Thailand; (i) charred wood in burned Baobab forest,
western Madagascar; (j) thin layer of highly decomposed pine, Arizona; (k) moss-covered log in the
Adirondacks, New York (Images (a—f), (j), and (k) by Michael Ulyshen, image (h) by Jan Sobotnik,
and images (g) and (i) by Martin Gossner)

the phloem phase which lasts until the nutritious phloem layer beneath the bark gets
entirely degraded by insects and fungi. The second phase is the subcortical-space
phase which begins as soon as the phloem layer becomes partly degraded and
continues until the bark has completely fallen away from the wood. The final rot
phase is the longest and does not end until the wood has become completely
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humified and incorporated into the soil. At the time of death, it is common for a tree
to contain a wide variety of rot holes and pockets of decay. The process of falling to
the ground often results in considerable fragmentation and breakage, and these
damaged areas decay more rapidly than intact portions. Moreover, portions of the
tree in contact with the soil decay more quickly than elevated portions due to
differences in moisture levels. Different parts of the tree are colonized by different
wood-decaying fungi, which results in diverse kinds of rot, and attacks by wood-
feeding arthropods or scavenging vertebrates are similarly patchy. Sapwood usually
decays more rapidly than heartwood, and early wood decays more quickly than late
wood. It is clear from these and other influences that wood decay is not a homoge-
neous process, even within the same piece of wood. Although various classification
schemes have been developed for assigning a piece of wood to a particular decay
class, such designations overlook the inherent variability of wood decay in nature.
Because it is not uncommon for a single log to contain wood at widely varying stages
of decomposition, Pyle and Brown (1999) proposed that decomposing woody sub-
strates are best thought of as falling along a continuum of decay class variability.

1.2 Origins and Diversity of Life in Dead Wood

Much like flowering plants set the stage for an explosion of pollinator and herbivore
diversity (Grimaldi and Engel 2005), the appearance of dead wood in early Devo-
nian forests was followed by a diversification of saproxylic insect life, giving rise to
some of the most successful morphological adaptations (e.g., the elytra of beetles)
and symbiotic relationships on Earth. Because wood provides relatively moist
conditions during times of drought, relatively warm conditions during periods of
cold, protection from many kinds of irradiation, and insulation from fire (Blackman
and Stage 1924; Holmquist 1926, 1928, 1931; Jabin et al. 2004; Seibold et al.
2016a), the first invertebrates to utilize dead wood in early forests likely consisted
primarily of refuge seekers and opportunists that only later became specialists of this
new substrate.

1.2.1 Origins

It is clear from the fossil record and phylogenetics that life was slow to utilize woody
debris in early forests. For example, fungi with the ability to degrade lignin (i.e.,
white rot) are thought to have originated roughly 120 million years after
progymnosperms like Archaeopteris became major components of early forests
(Fig. 1.1). This lag may explain the high rate of organic carbon accumulation during
the intervening Carboniferous period (Floudas et al. 2012) and underscores the
recalcitrance of lignocellulose as well as the low nutritional quality of wood. The
borings of insects and other arthropods provide the earliest and best fossil evidence
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for animal life in dead wood. Frass-filled oribatid mite burrows in petrified Cordaites
wood from the Lower-Middle Pennsylvanian (Carboniferous) represent the earliest
records of wood-boring arthropods (Cichan and Taylor 1982). Indeed, oribatid mites
appear to have been the pioneering wood-boring arthropods for millions of years
until major wood-boring insect groups arose in the Permian (Kellogg and Taylor
2004; Labandeira et al. 1997). Larger diameter frass-filled galleries in petrified
glossopterid wood from the Permian (Zavada and Mentis 1992) may represent the
earliest fossil evidence of insect activity in dead wood, possibly attributable to
beetles (Labandeira et al. 2001). The earliest beetle-like insects are thought to have
originated soon after the Agaricomycetes [but see Toussaint et al. (2017)] and were
likely wood feeders, much like modern Archostemata (e.g., Cupedidae and
Micromalthidae) which belong to the basal-most suborder of extant beetles
(Grimaldi and Engel 2005; Yan et al. 2017). Borings within conifer-like wood
from the Middle Permian represent the first evidence of wood-boring beetles,
tentatively attributed to Permocupedidae, an extinct family of beetles ancestral to
Archostemata (Naugolnykh and Ponomarenko 2010). Late Permian fossil beetle
galleries analogous to those of modern bark beetles, but preceding scolytines by well
over 100 million years, were recently discovered in China (Feng et al. 2017). They
were presumably made by an extinct early lineage of Polyphaga and represent the
earliest known evidence of subsocial behavior in saproxylic insects. The first
eusocial animals on Earth were termites which also originated as wood feeders in
the late Jurassic (Bourguignon et al. 2015). By the time termites and ants appeared
on the scene, the diversity of beetles we know today was largely in place (Grimaldi
and Engel 2005). There can be little doubt that the arrival of these social insects
resulted in profound changes to saproxylic food webs, however, especially in
tropical forests where the highest diversity and abundance of termites and ants are
found.

1.2.2 Insect Diversity

The total number of saproxylic insect species worldwide remains far from known
(Stokland et al. 2012), and this is also true for most regions of the world. Progress
continues to be limited by a shortage of taxonomic knowledge although molecular
tools can be expected to resolve many current problem areas including the existence
of cryptic species (Garrick and Bouget 2018; see Chap. 25). Estimates from the best-
studied forests in developed areas (e.g., northern Europe) suggest approximately
20-30% of all forest insects are saproxylic. Recognition of this in Britain led Elton
(1966) to suggest that dying and dead wood represent one of the two or three most
important resources for animal life in forests. The most diverse and well-studied
order of insects found in dead wood throughout the world is Coleoptera. The earliest
beetle, as mentioned above, was most likely saproxylic, and 122 of all 187 extant
beetle families (65%) contain saproxylic members (Gimmel and Ferro 2018; see
Chap. 2). Saproxylic beetles range more widely in size (<1 mm for families like
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Fig. 1.4 Orthognathotermes gibberorum Mathews (Termitidae: Termitinae), a wood-soil interface
feeder, French Guiana (Jan Sobotnik)

Ptiliidae and Ciidae to >150 mm for certain Scarabaeidae and Cerambycidae) and
functional group than other orders. They also include a number of economically
important groups like bark and ambrosia beetles (Curculionidae: Scolytinae,
Platypodinae) and wood-boring beetles (Cerambycidae, Lymexylidae, Bostrichidae,
etc.) that can be major forest pests.

Blattodea is perhaps the second most studied group of wood-dependent insects,
due to the inclusion of termites into this order (Bignell 2018; see Chap. 11). Termites
are primarily found in tropical and subtropical regions (Fig. 1.4) where they are by
far the most dominant wood-feeding insects and also include some serious pests of
wooden structures. Hymenoptera is another order which contains many saproxylic
members, including parasitoids of other saproxylics that provide an important
ecosystem service (Hilszczariski 2018; see Chap. 6). Diptera has received surpris-
ingly little attention from researchers considering about half of all families contain
saproxylic members, and they rival beetles as the most diverse order of saproxylic
insects (Ulyshen 2018b; see Chap. 5). The orders Hemiptera (Gossner and Damken
2018; see Chap. 9) and Lepidoptera (Jaworski 2018; see Chap. 10) contain relatively
few saproxylic species, but those species tend to be highly specialized for life in dead
wood and are sometimes sensitive to forest management activities. The fact that the
term saproxylic includes species indirectly dependent on dying and dead wood, like
many fungus-feeding and predatory taxa, also adds greatly to the proportion of
species assigned to this category. Major functional groups of saproxylic insects are
discussed briefly below.
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1.2.3 Functional Groups

Saproxylic insects can be assigned to any number of functional groups, and various
classification systems have been proposed (Bouget et al. 2005; Stokland et al. 2012;
Krivosheina 2006; Hovemeyer and Schauermann 2003). For the purpose of this
introduction, we limit our discussion here to four broad groupings: phloem feeders,
wood feeders, fungus feeders, and predators. While these are all functions performed
by saproxylic insects, such designations are often somewhat arbitrary at the species
level as it is not uncommon for a species, even at a single developmental stage, to
qualify for multiple categories. Many wood-boring beetles, for instance, begin life
feeding on phloem before tunneling into the wood. Within the wood the larvae often
obtain some of their nutrients from microbial biomass that is ingested along with the
wood, and it is not uncommon for them to prey upon other insects they happen to
encounter in their tunnels. At later stages of decomposition, the wood ingested by
wood feeders consists mostly of fungal biomass and other microbes, and these
species are commonly considered saprophagous. These four groupings also fail to
capture the entire diversity of saproxylic insects. Species that feed on sap flows, for
instance, are considered by many to be saproxylic (Alexander 2008) and can be
assigned to their own functional group. The same is true for cavity-nesting bees and
wasps (Bogusch and Hordk 2018; see Chap. 7) as well as aquatic insects confined to
water-filled tree holes. Although incomplete, sometimes arbitrary, and overlapping,
these four broad groupings, briefly introduced below, provide a simple and useful
framework for categorizing the major functions performed by saproxylic insects.

1.2.3.1 Phloem Feeders

The soft, sugary, and protein-rich layer of secondary phloem located just beneath the
bark is a particularly desirable resource and ultimately gave rise to a diverse
assemblage of phloem feeders (e.g., bark beetles, cerambycids, buprestids, etc.)
and their predators. Host-specific defensive compounds present in these tissues are
largely responsible for the high degree of host specialization observed within these
groups today (Wende et al. 2017). As proposed by Graham (1925), insects that feed
on phloem fall into two main groups. One consists of species, like many bark beetles,
that never leave the zone between the bark and the wood, while the other group
consists of species that begin feeding on the phloem but later bore into the wood.
This latter group includes many species of wood-boring beetles (e.g., cerambycids,
buprestids, etc.) that attack dying or recently dead trees but are not capable of
colonizing wood that lacks phloem. Some beetle species are considered secondary
phloem feeders. The endangered beetle Pytho kolwensis Sahlberg (Pythidae), for
instance, colonizes large trunks of Norway spruce in the boreal regions of Europe
and Russia after bark beetles and other primary phloem feeders have left (Siitonen
and Saaristo 2000). Even after the phloem layer has been completely consumed, a
large diversity of invertebrates can be found living or sheltering within the
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subcortical space between the bark and wood. The same is true for damp-wood
termites, which primarily colonize the subcortical space of freshly fallen trunks,
where numerous colonies fiercely compete until most are eliminated or fused with
stronger neighbors (Thorne et al. 2003).

1.2.3.2 Wood Feeders

Despite being hard to chew, difficult to digest, and characterized by very low nutrient
concentrations, wood represents a very rich substrate in terms of energy content and
is therefore consumed by a wide variety of wood-feeding insect taxa. These include
various groups of Blattodea (Cryptocercus wood roaches and termites from all
families except for Hodotermitidae), as well as numerous Coleoptera (Anobiidae,
Bostrichidae, Brentidae, Buprestidae, Cerambycidae, Lymexylidae, Zopheridae, and
many others that feed on decomposing wood), Diptera (Pantophthalmidae,
Tipulidae: Ctenophora), Lepidoptera (Cossidae, Hepialidae, Sesiidae), and Hyme-
noptera (Siricidae, Xiphydriidae). Surviving on a diet of wood is largely made
possible for these organisms by interactions with fungi, prokaryotes, and other
microbes. Although cellulases belong to the ancestral biochemical machinery of
protostomes and deuterostomes (Lo et al. 2003), they have been lost in many insect
taxa. Even modern wood-feeding groups usually produce just some of the cellulases
needed for cellulose digestion, most frequently p-glucosidases and sometimes also
endo-p-glucanases (Lo et al. 2011). These insect cellulases are thus called incom-
plete, as cellulose digestion must necessarily be aided by symbiotic microorganisms
(predominantly bacteria including actinomycetes and fungi including yeasts and, to a
lesser extent, protists) (Breznak 1982; Dillon and Dillon 2004; Lo et al. 2011).
Complete cellulases are known only from some bacteria and fungi (Tomme et al.
1995). As a consequence, virtually all wood-feeding insects benefit from endo- or
ecto-symbioses with microbes capable of degrading lignocellulose (Birkemoe et al.
2018; see Chap. 12). Symbioses between insects and microbes are in some cases so
specialized that insects obtain nutrition from wood without ingesting it. Thompson
et al. (2014) showed that Sirex noctilio F. larvae extract and consume liquids from
wood shavings rather than consume the wood itself. The liquid contains compounds
liberated by the enzymatic activities of the insect’s fungal symbiont.

In addition to the important role fungal symbionts play in digesting wood, a large
proportion of the nitrogen requirements of many wood-feeding insects comes from
nitrogen-fixing prokaryotic endosymbionts within their guts (Ulyshen 2015). Nitro-
gen fixation is an energy-demanding process and is typically only seen in insects
feeding on N-poor substrates. Consistent with this pattern, rates of nitrogen fixation
in termites decrease along the humification gradient, typically being higher in
species that feed on sound wood compared to species feeding on more highly
decomposed wood and being mostly absent from soil-feeding or fungus-growing
taxa (Breznak et al. 1973; Yamada et al. 2007; Tayasu et al. 1997).
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1.2.3.3 Fungus Feeders

Dead wood is quickly colonized by a variety of wood-digesting fungi, bacteria, and
other microbes which collectively account for a large proportion of total biomass of
rotting wood as decomposition proceeds (Jones and Worrall 1995; Noll et al. 2016).
It is thus inevitable for these organisms to be consumed, whether intentionally or not,
by wood-feeding insects. Fungal biomass is more nutritious than wood and therefore
acts to enrich the food of many insects in addition to providing the enzymes
necessary to digest the wood itself (Kukor and Martin 1986). Various termite taxa,
for example, have been shown to feed preferentially on wood decayed by fungi, with
documented benefits to colony size and health (Becker 1965; Smythe et al. 1971;
Hendee 1935; Cornelius et al. 2002). The distinction between wood feeding and
fungus feeding is unclear for many saproxylic insect species, especially within
highly decayed wood. Fungi are thought to be the main source of nutrition for
certain “wood-feeding” passalid (Mishima et al. 2016) and lucanid (Tanahashi et al.
2009) beetles, for example. The consumption of wood by many insects may there-
fore be consistent with the peanut butter and cracker analogy developed by Cummins
(1974) for decomposers of coarse particulate organic matter in stream ecosystems.
That is, wood consumption may represent just a strategy utilized by some saproxylic
insects to obtain the more nutritious microbial biomass. Fungi also play an important
role in translocating nutrients into wood from external sources, thus further reducing
the nutritional limitations imposed by wood on wood-feeding insects (Filipiak 2018;
see Chap. 13).

Many other insects are obligate fungus feeders. Some, such as the Hemipteran
family Aradidae, feed on fungal hyphae under bark (Gossner and Damken 2018; see
Chap. 9). Many others, including a large diversity of beetles and flies, feed on fungal
fruiting bodies (Jonsell et al. 2001; Epps and Arnold 2010; Graf-Peters et al. 2011).
Perennial fruiting bodies that provide a relatively stable resource often support a
highly specialized fauna (Jonsell et al. 2001), with approximately half of the species
being monophagous (Jonsell and Nordlander 2004). One of the most specialized
groups of obligate fungus feeders are species that feed on symbiotic fungi they
cultivate within their galleries or nests (Birkemoe et al. 2018; see Chap. 12). There
are two major examples of this among saproxylic insects. The first concerns ambro-
sia beetles of the families Curculionidae [Scolytinae and Platypodinae, including the
eusocial Australian platypodine Austroplatypus incompertus (Schedl)] and
Lymexylidae. These insects cultivate their symbiotic fungi on the walls of their
tunnels, and adults carry the symbionts within special structures on their bodies
called mycangia.

The other major group of insects that cultivate symbiotic fungi is
Macrotermitinae, the most basal subfamily of the crown termite family Termitidae
(Fig. 1.5). Macrotermitinae are commonly referred to as the “fungus-growing
termites” due to their association with ectosymbiotic fungi (Basidiomycetes:
Agaricales: Termitomyces) (Poulsen et al. 2014; Bignell 2016). The fungus repre-
sents the principal food source for the colony, providing protein-rich asexual spores
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Fig. 1.5 Examples of Macrotermitinae (Termitidae), the fungus-growing termites. (a)
Macrotermes carbonarius foraging on a small wood item on the ground, Thailand; (b)
Macrotermes carbonarius (Hagen 1858) workers marching to the nest from a foraging trip (note
trail-following behavior), Thailand; (¢) fungus comb of Odontotermes sp., China; (d) soldier of
Odontotermes sp. spitting the defensive labial gland secretion in response to disturbance (note the
white nodules, conidia, growing from the fungus comb), China (All images by J. Sobotnik)

(nodules). It also supplies the colony with cellulases that complement the innate
enzymes of the host and greatly improve food digestion and detoxification (Hyodo
et al. 2003; Nobre et al. 2011). Due to their symbioses with Termitomyces,
macrotermitines are considered among the most efficient of all insects at
decomposing dead wood and other plant matter (Schuurman 2005; Brune and
Ohkuma 2011), processing 5—6 times more food per unit biomass than other termites
(Bignell and Eggleton 2000).

1.2.3.4 Predators

Predators make up a large proportion of the insect biodiversity associated with dying
and dead wood. For example, predators accounted for about 41% of all saproxylic
beetle species collected in a recent study conducted in Germany (Wende et al. 2017).
While some saproxylic predators opportunistically prey upon a wide range of species
present in dead wood, many others exhibit a high degree of host specificity. This is
especially true among parasitoids that are predatory as larvae and, unlike parasites,
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ultimately kill their hosts (Godfray 1994). Most parasitoids belong to the order
Hymenoptera (major saproxylic families include Braconidae, Ichneumonidae, etc.)
(Hilszczanski 2018; see Chap. 6) although there are some notable groups of dipteran
(e.g., Tachinidae) and coleopteran parasitoids (e.g., Bothrideridae and Passandridae)
as well. Parasitoids typically specialize on particular life stages, with some attacking
only eggs, larvae, or pupae. An important distinction can be made between parasit-
oids that do (idiobionts) or do not (koinobionts) paralyze their hosts at the time of
oviposition. Hosts parasitized by koinobionts continue to feed until they are ulti-
mately killed by the larvae feeding within. Parasitoids can also be categorized as
endo- or ectoparasitoids depending on whether they feed from the outside or within
their hosts. Endoparasitoids tend to be more host-specific than ectoparasitoids, with
some ectoparasitoids known to attack an extremely wide range of host species. The
habitat associations of parasitoids are typically more narrow than those of their hosts.
For example, larval parasitoids that attack hosts hidden under bark can be limited by
the length of their ovipositor, being unable to penetrate thick bark (Abell et al. 2012;
Berisford 2011). Although few species are strictly saproxylic, ants are often
extremely abundant in dead wood, especially toward the tropics, and no doubt
play an important role in structuring saproxylic insect communities (King et al.
2018; see Chap. 8).

1.2.4 Specialization and Succession

The huge diversity of saproxylic insects can largely be attributed to the fact that
many saproxylic insect species specialize on particular species of wood, wood
positions (standing/suspended or fallen), wood diameters, environmental conditions
(sun exposure, temperature, and humidity), etc. There is also a predictable succes-
sion of insects as decomposition proceeds, with some species occurring only during
the phloem stage or while there is bark, whereas others colonize wood only after it
has become highly decomposed by fungi. Although these successional patterns have
been described in multiple studies (Ulyshen and Hanula 2010; Hovemeyer and
Schauermann 2003; Muifloz-Lépez et al. 2016; Lee et al. 2014; Grove and Forster
2011; Derksen 1941), the insects associated with the last stages of decomposition
remain very poorly characterized (Ferro 2018; see Chap. 22). This highly degraded
and fungus-rich substrate is known to support a unique fauna (Grove 2007), how-
ever, including some of the largest and most visually stunning species. A wide
variety of Scarabaeoidea breeds only in highly decomposed wood (including the
material that collects in tree hollows), for example, including lucanids (Huang 2018;
see Chap. 4), passalids (Ulyshen 2018a; see Chap. 3), and the scarab subfamilies
Dynastinae, Cetoniinae, and Rutelinae (Fig. 1.6). These groups appear to be espe-
cially diverse and numerous in the tropics where they process large amounts of
woody material [e.g., 1.5 kg per individual in the case of Megasoma elephas (F.)]
and are thought to strongly influence decomposition (Morén 1985; Morén and
Deloya 2001). Because highly decomposed wood is slow to develop and can be
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Fig. 1.6 North American examples of Scarabaeoidea associated with highly decomposed wood.
(a) Passalid larvae (Odontotaenius disjunctus (Illiger), Georgia); (b) ruteline scarab (Chrysina
gloriosa LeConte, Arizona); (¢) dynastine scarab (Phileurus truncatus (Beauvois), Florida); (d)
lucanid (Lucanus elaphus L., Mississippi); (e) cetoniine scarab (Gymnetina cretacea (LeConte))
emerging from oak tree hollow, Arizona; (f) dynastine scarab (Dynastes granti Horn, Arizona)
(Images (a—d) and (f) by Michael D. Ulyshen, image (e) by Michael L. Ferro)

easily destroyed during timber operations (McCarthy and Bailey 1994), it is typi-
cally more common in older less-disturbed forests, except in the case of legacy
debris from a previous stand (Carmona et al. 2002; McCarthy and Bailey 1994; Idol
et al. 2001). Similar patterns have been shown for insects that depend on highly
decomposed wood. Lucanids, for example, are among the insects most sensitive to
forest disturbance (Lachat et al. 2012) but can persist after a harvest if an adequate
amount of wood is left behind (Michaels and Bornemissza 1999).

1.2.5 Global Diversity Patterns with a Focus on Social Insects

Although the four main functional groups described above occur in all forest types,
the composition of these communities varies greatly among the regions of the world
as dictated by the biogeography of the different taxa. One of the biggest differences
concerns the uneven distribution of eusocial groups like termites (Bignell 2018; see
Chap. 11) and ants (King et al. 2018; see Chap. 8) and subsocial groups like the
beetle family Passalidae (Ulyshen 2018a; see Chap. 3). These groups tend to be more
diverse and abundant toward the tropics compared to more temperate regions (King
et al. 2013; Schuster 1978). It remains largely unknown whether or not the diversity
patterns of nonsocial saproxylic insect groups also become more diverse toward the
tropics. Most organisms exhibit this pattern, however, and it seems likely to hold true
for most groups of saproxylic insects considering tropical forests support a much
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larger number of tree genera than temperate or boreal forests. Tropical forests also
tend to be much older, especially compared to those occurring in areas that were
glaciated just several thousand years ago, and this may also contribute to a higher
insect diversity. Few studies have specifically focused on saproxylic insect biodi-
versity in tropical forests, however, although it is clear from work by Grove (2002a,
c) that a high diversity of saproxylic beetles (>500 species) can be found in the
rainforests of tropical Australia. An analysis of saproxylic hemipteran diversity by
Gossner and Damken (2018; see Chap. 9) shows these insects are more diverse in
tropical and subtropical forests. A related question concerns whether the proportion
of species that is saproxylic differs among regions. Hanski and Hammond (1995)
were among the first to broach this topic, noting that the proportion of beetles that are
“wood-associated” is about equally as high in the rainforests of Sulawesi (33%) as in
the forests of Finland (35%). Because Sulawesi has many times more beetle species
overall than Finland, this suggests the number of saproxylic beetle species should be
an equal degree higher in Sulawesi.

On the other hand, the tremendous abundance of social insects in tropical forests
could potentially cause other saproxylic insects to be less diverse in tropical forests
than expected. Due to their large colonies, for example, termites may meaningfully
reduce the amount of resources available to other insects. The Sulawesi example
mentioned above does not rule this out given the relatively low diversity of termites
there compared to other tropical regions. Indeed, termites richness varies greatly
within the tropics, firstly being more diversified at the southern hemisphere and
secondly being both more diverse and abundant in the Afrotropics followed by the
Neotropics, the Indomalayan region, and Australasia (Davies et al. 2003). While
these patterns are probably a consequence of historical events, such as the origin of
the most successful termite family, Termitidae, in the rainforests of Africa (Bour-
guignon et al. 2017b; Aanen and Eggleton 2005), the same pattern of abundance
calls for a different, yet-unknown, explanation. If termites do negatively influence
the number of saproxylic species present in a forest, the strongest effect might be
seen in places like west Africa where the “higher” termites originated and termite
diversity and abundance remain the highest. While this has never been formally
tested, observations from Cameroon and other tropical locations suggest that fewer
saproxylic insect species are encountered where termites are most active (JS, pers.
obs.).

Ants are also extremely abundant on the forest floor, especially in the tropics
where they have been shown to be the major agents of resource removal (Griffiths
et al. 2018). Ants are among the most important predators of termites (King et al.
2018; see Chap. 8) and are likely to reduce the populations of other insects found
within dead wood as well. There is limited information on this question in the
literature, however. In Puerto Rico, Torres (1994) attributed the low beetle diversity
in logs in part to the presence of many ant species. Stronger evidence that ants
negatively influence insects in dead wood comes from Jackson et al. (2012) who
showed the probability of log occupancy by a species of passalid beetle in Louisiana
to be higher when ants were absent. In Portugal, by contrast, Henin and Paiva (2004)
found no evidence that an aggressive species of ant reduced the ability of a bark
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beetle to colonize logs. Their study found that attempts by the ants to attack the
beetles were not successful and the ants were also unable to access the galleries
under the bark, possibly due to the plug of dust surrounding the boring hole. Insects
have been evolving in the presence of ants for a long time, and many morphological
and/or behavioral adaptations may exist for surviving encounters with these preda-
tors. This certainly seems to be the case for termites which are known to often coexist
in wood with ants (Shelton et al. 1999).

1.3 Wood in Human History

But who really owns the tree stump? The bark beetle that gnaws tunnels inside it? The ants
that travel through the tunnels? The earwig that sleeps under its bark? Or the bear that uses
it to sharpen her claws? Does it belong to the titmouse that flies down upon it? The frog that
find shelter in one of its holes? Or the man who believes he owns the forest? Maybe the
stump belongs to all- the beetle and the ants, the bear and the titmouse, the frog, the earwig,
and even the man. All must live together.

Romanova (1985)

The quote above, translated from the Russian children’s book “Yeit 3to neup?”
(i.e., Whose stump?), nicely captures the conflict between human demand for woody
resources and the importance of those resources to many other species. It also
recognizes our inherent appreciation for biodiversity and desire to protect
it. Throughout most of human history, however, demand drove the relationship
between humans and wood, with wood playing a key role in our quality of life
and technological progress. Perlin (1989) summarized this particularly well:

It may seem bold to assert wood’s crucial place in the evolution of civilization. But consider:
throughout the ages trees have provided the material to make fire, the heat of which has
allowed our species to reshape the earth for its use. With heat from wood fires, relatively cold
climates became habitable; inedible grains were changed into a major source of food; clay
could be converted into pottery, serving as useful containers to store goods; people could
extract metal from stone, revolutionizing the implements used in agriculture, crafts, and
warfare; and builders could make durable construction materials such as brick, cement, lime,
plaster, and tile for housing and storage facilities. Charcoal and wood also provided the heat
necessary to evaporate brine from seawater to make salt; to melt potash and sand into glass;
to bake grains into bread; and to boil mixtures into useful products such as dyes and soap.
Transportation would have been unthinkable without wood. Until the nineteenth century
every ship, from the Bronze Age coaster to the frigate, was built with timber. Every cart,
chariot, and wagon was also made primarily of wood. Early steamboats and railroad
locomotives in the United States used wood as their fuel. Wooden ships were tied up to
piers and wharves made from wood; carts, chariots and wagons made of wood crossed
wooden bridges; and railroad ties, of course, were wooden. Wood was also used for the
beams that propped up mine shafts and formed support for every type of building. Water
wheels and windmills—the major means of mechanical power before electricity was
harnessed—were built of wood. The peasant could not farm without wooden tool handles
or wood plows; the soldier could not throw his spear or shoot his arrows without their
wooden shafts, or hold his gun without its wooden stock. What would the archer have done
lacking wood for his bow; the brewer and vintner, without wood for their barrels and casks;
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or the woolen industry, without wood for its looms? Wood was the foundation upon which
early societies were built.

Whereas many regions were extensively forested for thousands or even millions
of years prior to human colonization, most forests now growing in developed regions
are just decades or centuries old and exist in scattered patches (Speight 1989). These
patches are also known to contain less dead wood in terms of both abundance and
variety compared to the least disturbed old-growth remnants (Stenbacka et al.
2010b). It is ironic but also encouraging to consider that the wood- and coal-fueled
technological progress that gave rise to modern civilization and resulted in drastic
changes in forest cover may have given us the opportunity as a species to stop and
consider how our actions have affected forest ecosystems over time. As it became
apparent, near the end of the twentieth century, that saproxylic organisms were being
lost from intensively managed forests, the conservation of these organisms became a
major research focus in places like Europe, Australia, and North America. There has
been dramatic change in how foresters view dead wood in forests over the past half
century or so. Spaulding and Hansbrough (1944) captured the sentiment held by
many foresters in the mid-twentieth century as follows: “Those who harvest forest
trees are faced with the problem of the disposal of the resulting logging slash. It has
been termed the “garbage” of the woods. Because of its ubiquity in the exploited
forest, however, the tendency has been to accept it as a necessary evil, one about
which little or nothing can be done in a practical way.” Today, by contrast, the value
of woody debris to biodiversity and nutrient cycling is widely recognized although it
should be noted that there is some concern about the role woody debris can play in
increasing certain pest populations. In Europe, for example, major inputs of dead
wood (e.g., severe wind damage) have been shown to briefly (for 1-2 years) increase
the outbreak risk of the bark beetle, Ips typographus L. (Schroeder and Lindelow
2002). Examples from other parts of the world are lacking, but, because most forest-
damaging pests (e.g., bark beetles and various wood borers) are associated with
dying or freshly killed trees, wood at later stages of decay (i.e., after the phloem layer
is gone) poses little threat in this regard.

1.4 History of Research on Saproxylic Insects

Sharp divisions exist in the saproxylic insect literature along both taxonomic and
biogeographical lines. Examples include separate bodies of literature on primarily
tropical groups like eusocial termites, subsocial passalid beetles, and other nonsocial
insect assemblages. Although understandable, these divisions are unfortunate given
the fact that many or all of these groups, depending on the region, interact exten-
sively within their shared substrate. Moreover, progress in a number of research
directions has been limited by this divided view of saproxylic insect communities.
Efforts to quantify the role of insects in decomposition historically focused on
termites, for example, without regard for the activities of other insects. Artificial
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wooden substrates such as machined wooden blocks have been and continue to be
used in these studies despite the fact that they exclude entire guilds of insects (e.g.,
phloem feeders and others associated with the subcortical space) known to facilitate
fungal colonization and have strong but indirect effects on levels of decomposition.
Indeed, it is clear from recent research that ignoring the effects of bark coverage and
phloem-feeding beetles can yield highly unrealistic information on rates of wood
decomposition and the contributions of insects (Ulyshen et al. 2016). As stated
earlier, a major goal of this book is to take steps toward uniting the literature on
nonsocial saproxylic insects and wood-dwelling social insects (including saproxylic
termites as well as ants which are mostly non-saproxylic). The global diversity and
ecology of saproxylic insects cannot be understood without achieving this unified
perspective. As the two largest bodies of literature, brief histories of research on
nonsocial saproxylic insects and research on wood-feeding termites are provided in
the following sections.

1.4.1 Research on Nonsocial Saproxylic Insects

The diversity of wood borers and other species associated with freshly dead woody
material was noted by many early naturalists. At a single small location over a
2-month period in Singapore, for instance, the Victorian-era naturalist Alfred Russell
Wallace (1869) collected at least 700 species of beetles, including 130 distinct kinds
of wood-boring cerambycids, which he attributed in large part to the felling of trees
in the area. Townsend (1886) similarly reported collecting 34 species from the dead
trunks of Tilia americana L. in North America, and Davis and Leng (1912) collected
42 species of beetles in just 2 hours from a recently felled longleaf pine in Florida.
Shelford (1913) recognized the value of dead wood to animal life in his big book on
temperate American zoology. Blackman and Stage (1924) were among the first
researchers to consider the succession of insects throughout the decomposition
process. They published an extremely detailed study of insects and other organisms
associated with the bark and wood of dead hickories in New York, including
information on successional patterns over a period of 6 years. The following year,
Graham (1925) published an article entitled “The felled tree trunk as an ecological
unit” in which he carefully described how nutrition, moisture, and temperature vary
within and among dead trees and how these factors influence early insect colonists.
Other notable contributions from that decade include those of Richards (1926) and
Krogerus (1927). The 1930s saw the publication of a major effort by Savely (1939)
on the ecology of arthropods associated with dead pine and oak in North Carolina.
Several excellent papers were published in German in the 1940s on the succession of
insects in decomposing wood. Derksen (1941) studied the insect communities
associated with beech stumps, for example, and Eidmann (1943) investigated the
succession of wood-dwelling insects in West Africa. In the 1950s, Howden and Vogt
(1951) surveyed the insect communities associated with standing dead pine in
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Maryland, and Wallace (1953) studied the ecology of insects in pine stumps in
Britain.

This growing body of literature along with his own research in England led Elton
(1966) to conclude that “dying and dead wood provides one of the two or three
greatest resources for animal species in a natural forest, and if fallen timber and
slightly decayed trees are removed the whole system is impoverished of perhaps
more than a fifth of its fauna.” Yet it would be some time before the importance of
dead wood to biodiversity would be widely recognized by the community of
researchers and foresters. For example, Stubbs (1972) remarked that “many of
those who manage woodlands for amenity and conservation, and many conserva-
tionists themselves, appear to be uninformed of the immense value of dead and dying
wood for the conservation of a variety of wildlife.” Indeed, for many land managers,
dead wood represented waste, lost revenue, or risk from pest outbreak—concerns
still held by some today. Beginning in the late 1970s, researchers in the northwestern
United States were among the first to fully recognize the value of dead wood to
terrestrial and aquatic ecosystems. Teskey (1976) compiled a list of Diptera known
to utilize dying and dead wood in North America. Thomas et al. (1979) reviewed the
importance of snags to cavity-nesting birds, while Maser et al. (1979) reviewed dead
and downed woody material utilization by vertebrates. Maser and Trappe (1984)
reviewed the properties of dead wood and discuss their ecological importance in
both forests and streams. An even more detailed treatment was provided several
years later by Harmon et al. (1986). In addition to discussing forests and freshwater
systems, Maser et al. (1988) also included lengthy sections on the ecology of dead
wood in estuaries, in the sea, and on coastal beaches.

The modern era of research aimed specifically at conserving insect biodiversity in
dead wood largely began in 1980 when the Council of Europe initiated a project
aimed at using insects dependent on dead wood to compile a list of high-quality
forests and to assess the health of the terrestrial decomposer community (Speight
1989). Before this effort was undertaken, as written by Speight (1989), “the plight of
the saproxylics (i.e., species reliant on dead or dying wood) had not been recognized,
the significance of their role in natural forest had been ignored and only a handful of
European forests supporting a recognizably diverse saproxylic community had been
secured for protection.” The committee began by developing a list of insect species
that were thought to be associated with mature forests and highly localized in their
distribution. They then sent this list to specialists across Europe, requesting infor-
mation on forests likely to be important to such species. The results from the project
were compiled by Speight (1989) who began his report by defining the term
“saproxylic” as species “dependent, during some part of their life cycle, upon the
dead or dying wood of moribund or dead trees (standing or fallen), or upon wood-
inhabiting fungi, or upon the presence of other saproxylics.” Their survey efforts
resulted in a list of approximately 150 forests throughout Europe with potential
conservation value, some of them as little as 40 hectares in size. They were found to
be largely concentrated in mountainous regions, whereas lowland and valley forests
were noticeably lacking, and alluvial forests were almost totally absent from the list
(Speight 1989). According to Speight (1989), these remaining high-value forests, all
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hundreds or even thousands of years old and quite isolated from one another, “have
effectively become islands within a sea of hostile terrain too vast for saproxylics to
successfully traverse.” Perhaps more than any other previous work, Speight’s report
brought attention to the challenges facing saproxylic organisms in Europe after
millennia of deforestation, fragmentation, and intensive management.

The years following Speight’s publication have seen a dramatic increase of
interest in the ecology of dead wood, especially regarding the conservation of
saproxylic organisms. The number of papers using the keyword “saproxylic” in
titles and abstracts, for instance, has been increasing at a rate of about 5 per year
since the year 2000 (source: Scopus, accessed 29 October 2017). This timeline was
punctuated by some major review articles and books aimed at compiling the growing
body of evidence and guiding conservation-oriented management. Samuelsson et al.
(1994) wrote an excellent book outlining the importance of dead and dying trees to
biodiversity in both terrestrial and aquatic environments. McComb and
Lindenmayer (1999) outlined spatiotemporal patterns of dead and dying trees in
forests, with particular attention given to the importance of tree cavities to many
species. A paper by Siitonen (2001) reviewed the state of knowledge for Northern
Europe. The following year Grove (2002b) published another excellent review, also
largely focused on the European case but also including some of his findings from
Australia. Another review article by Bunnell and Houde (2010) focused on verte-
brates associated with dead wood in the Pacific Northwest of North America. Most
recently, Stokland et al. (2012) published their book on Biodiversity in Dead Wood
which is perhaps the most ambitious effort ever undertaken to produce a compre-
hensive synthesis of this vast and multidisciplinary topic.

1.4.2 Research on Wood-Feeding Termites

Such however are the extraordinary circumstances attending their economy and sagacity,
that it is difficult to determine, whether they are more worthy of the attention of the curious
and intelligent part of mankind on these accounts, or from the ruinous consequences of their
depredations, which have deservedly procured them the name of Fatalis or Destructor.
Smeathman (1781)

The above quote came from a letter written by Henry Smeathman to Sir Joseph
Banks of the Royal Society in which he reported his observations of termites in and
around Sierra Leone, Africa. Although termites have been written about since at least
1350 BC (Snyder 1956), Smeathman’s letter stands among the earliest efforts to
accurately report on the natural history of termites, so much so that Smeathman
worried about whether readers would even believe his accounts of these “wonderful
insects.” The first family description, of Termitidae, took place in 1802 (Latreille
1802), and the order Isoptera (in Greek “equally winged”) was introduced by Brullé
(1832). Many important early observations were summarized in a three-volume
book Monographie der Termiten by Hagen (1855, 1858, 1860). Observations on
the nesting biology of Indo-Malayan termites were introduced by Haviland (1898),
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and the relationships between termites and their social parasites were described by
Wasmann (1893). Pioneering work on Asian termites was published by Holmgren
(1909, 1911, 1912) in his extensive descriptions of termite biology, and perhaps the
first modern monograph on termites describing the biology of a single species,
Archotermopsis wroughtoni (Desneux), was published by Imms (1919). A taxo-
nomic survey of African termites was published by Sjostedt in 1926. Research by
Emerson and Snyder on termite evolution, biogeography, and taxonomy was espe-
cially influential in directing the progression of termite research, and Grassé and
Noirot made many important pioneering observations on termite biology, nesting
and feeding habits, ontogenetic patterns, and communication. Several landmark
books have been published on termites in the past 50 years, including the
two-volume Biology of Termites (Krishna and Weesner 1969, 1970) and the
multivolume compendium on termite biology by Grassé (1982, 1984, 1986). More
recent reviews of termite ecology include the books by Abe et al. (2000) and Bignell
et al. (2011), and an excellent survey of termite systematics, including all relevant
resources, was recently published by Krishna et al. (2013).

As urban pests, termites globally have an estimated annual cost of $40 billion
(Rust and Su 2012) and also greatly reduce the value of timber in forests by
hollowing out the centers of living trees (Werner and Prior 2007; Apolindrio and
Martius 2004). According to Rust and Su (2012), about 6.1% of the ~3000 termite
species globally are considered pests, and only about 2.8% (~80 species) cause
severe damage to wooden structures or furniture. These most damaging urban pests
have received the majority of attention from researchers, however. Among these are
termites that have been introduced into new areas. According to Evans et al. (2013),
there are 28 species of termites worldwide considered to be invasive outside their
native ranges, all of which are wood feeders. The most serious invasive termite pests
are the kalotermitids Cryptotermes brevis (Walker) and C. havilandi (Sjostedt); the
rhinotermitids Reticulitermes flavipes (Kollar), Coptotermes formosanus Shiraki,
and C. gestroi (Wasmann); and the nasutitermitine termitid Nasutitermes corniger
(Motschulsky) (Evans et al. 2013). The introduction of these particular invasives can
have major economic consequences and may also have strong effects on native
ecosystems although the latter question has received little attention to date. While the
negative effects of termites have long been a primary focus of termite research,
resulting in the production of books with titles like Termites and Termite Control
(Kofoid 1934), Our enemy the termite (Snyder 1948), or Termites—a world problem
(Hickin 1971), the treatment of termites and other wood-dwelling insects has
expanded over time to include all aspects of their ecology and even concerns
about their conservation. Termite researchers have long speculated about the key
functions termites perform in nutrient cycling and in aerating and turning over the
soil (Noyes 1937; Snyder 1948; Kofoid et al. 1934; Grassé 1984; Ulyshen 2016),
and appreciation for the ecosystem services provided by termites has grown over
time. Indeed, it is now widely acknowledged that termites are among the most
important ecosystem engineers of all invertebrates (Lavelle et al. 1997; Bignell
and Eggleton 2000), with the role they play in promoting decomposition and nutrient
cycling being of particular interest (see Sect. 1.5).



28 M. D. Ulyshen and J. Sobotnik

One of the most fundamental facts and key discoveries about termites is that they
can function as decomposers only in partnership with endo- or ectosymbionts.
Although initially mistaken for parasites (Leidy 1881), the flagellate protists found
in the guts of non-termitid termites and Cryptocercus cockroaches were among the
first endosymbionts of wood-feeding invertebrates to be discovered by researchers.
Cleveland (1923) provided the first experimental evidence that protists play a key
role in the digestion of wood, showing that “lower” termites quickly die of starvation
in the absence of their symbionts. The traditional distinction between “lower” (basal
taxa) and “higher” (Termitidae only) termites is based on the presence of gut
flagellates in the former and absence in the latter (both groups contain bacterial
endosymbionts). Although this separation is artificial from a phylogenetic point of
view, it is often helpful from an ecological perspective. Like Cryprocercus, all
“lower” termites are wood feeders, with the exception of Hodotermitidae, which
feed on dry grasses, and Serritermes (Serritermitidae), which is the sole inquiline
among “lower” termites and feeds on Cornitermes spp. (Termitidae: Syntermitinae)
nest material (Emerson and Krishna 1975). By contrast, not all termitid species are
wood feeders, with some feeding instead on microepiphytes, grasses, leaf litter,
highly decayed wood, upper soil layers, and bare soil and within the nests of other
termites or ants. Indeed, given the diversity of Termitidae, only about 26% of termite
genera overall feed on wood, 59% are soil feeders, and the rest feed on grass, leaf
litter, or microepiphytes (Bignell 2016; Krishna et al. 2013).

After being assigned to their own order (Isoptera) for over 150 years, recognition
that termites are in fact eusocial cockroaches (Blattodea: Termitoidae), with
Cryptocercus wood roaches being their sister group, is another landmark finding
in the history of termite research (Lo et al. 2000; Inward et al. 2007). This fact was
suspected long before it was proven molecularly due to the many similarities (e.g.,
endosymbionts, sociality, xylophagy, etc.) between Cryptocercus and “lower” ter-
mites (Cleveland et al. 1934). Several important classification schemes have been
developed for understanding the ecology of termites. Combined evidence from
termite anatomy and gut content led Donovan et al. (2001) to recognize four distinct
feeding groups, generally corresponding to wood feeders, litter feeders (including
dried grass, dung, etc.), soil/wood feeders (including humus), and soil feeders
(including mound walls) (Bignell 2018; see Chap. 11). More recent work utilizing
carbon and nitrogen stable isotopes, however, suggests termites can be meaningfully
separated into just two broad groups: wood feeders and soil feeders (Bourguignon
etal. 2011). Another classification system based on where termites nest in relation to
their food substrate was first developed by Abe (1987) who distinguished between
termites that feed within the same piece of wood (“one-piece nesters”) and those that
forage away from their nests (“separate-piece nesters”). There are also “intermediate
nesters” that nest and feed within the same substrate but also forage outside the limits
of that substrate. One-piece nesting is probably the ancestral condition, whereas
separate-piece nesting is exemplified by mound-building termitids. An additional
category, the inquilines, was introduced by Shellman-Reeve (1997) for species
feeding on the nest material or stored food of a separate-piece nester host.
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Working in Nigeria, Wood et al. (1977) were perhaps the first to show that
termites, similar to other saproxylic taxa, are highly sensitive to land-use changes.
In fact, soil-feeding termites are negatively influenced by faint changes, such as
selective logging, and deforestation leads to almost immediate disappearance of the
vast majority of soil-feeding taxa. Although wood-feeding guilds are in general less
affected by these man-made perturbations, many specialists quickly disappear, and
only the most resistant segment of the local fauna can survive habitat alterations
(Bourguignon et al. 2017a). The most resilient taxa consist primarily of species
capable of forming large colonies, controlling their environment by bringing water
from distant sources, and building well-defined centralized nest. Examples include
Coptotermes (Rhinotermitidae), Odontotermes (Termitidae: Macrotermitinae),
Microcerotermes (Termitidae: Termitinae), or Nasutitermes (Termitidae:
Nasutitermitinae). The ability to acquire water from air humidity is common only
in several species of Cryptotermes (Kalotermitidae). Wood-feeding species, of
course, cannot persist for long in deforested areas which are commonly colonized
by specialized grass-feeding taxa from neighboring habitats (Eggleton et al. 2002;
Jones et al. 2003; Krishna et al. 2013).

1.5 Valuing and Conserving Saproxylic Insects

1.5.1 Importance to Decomposition, Nutrient Cycling,
and Productivity

Given their taxonomic and functional diversity as well as the abundance of many
species, saproxylic insects may provide important ecosystem services in forests. One
of the most commonly assumed, but rarely quantified, functions provided by these
insects is accelerating wood decomposition. Wood decomposition is largely driven
by fungi in most forested ecosystems, but saproxylic insects may also contribute
significantly to this process (Ulyshen 2016). Termites are thought to be particularly
influential in this regard, as supported by estimates of wood-processing rates and
various experimental approaches. An excellent review of termite contribution to
organic matter turnover, focused mostly on grasses and leaf litter, was provided by
Bignell and Eggleton (2000). The importance of termites for wood mineralization
has received less attention but is thought to be higher in dry habitats (but see
Cheesman et al. in press), where microbial decomposition is slow. Findings from
studies using a variety of estimates and experimental approaches suggest the amount
of wood consumed by termites varies greatly among locations, ranging from <10%
of wood consumed to nearly all of it (Ulyshen 2016). Studies in Africa have reported
some of the largest effects of termites, and macrotermitines stand out as being
particularly important (Buxton 1981; Collins 1981; Schuurman 2005). Despite
being a topic of investigation for over 50 years, estimates of the contributions of
termites to wood decomposition suffer from a number of limitations. First, studies
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using a combination of field-based estimates of termite density and lab-based
measurements of feeding rates may yield highly inaccurate estimates given that
termites exist within complex communities of microbes and other insects that cannot
be recreated under laboratory conditions and wood quality changes as decomposi-
tion proceeds. Past experimental approaches in which chemical or physical methods
were used to exclude termites and other insects are also problematic because most
exclusion methods are known to affect microbial activity (Ulyshen and Wagner
2013). Open-topped pans with screened bottoms may largely overcome this chal-
lenge, at least for studies primarily targeting termites (Ulyshen et al. 2016). Another
shortcoming of decomposition studies is the frequent and continued use of machined
wooden blocks which represent an unnecessary and misleading simplification of
naturally occurring wood. Using wood without the natural bark layer, for instance,
has been shown to greatly underestimate decay rates and excludes an entire guild of
saproxylic insects (Ulyshen et al. 2016).

In addition, because most experimental decomposition studies have been short in
duration (<3 years), thus covering only the early stages of the process, it is not
currently possible to determine whether termites provide more than a short-term
acceleration of wood decomposition. Termites consume large amounts of wood but
are known to focus their feeding on the least dense and most nutritious parts of
wood, leaving the most recalcitrant fractions behind. It thus remains possible that
termites have no net accelerative effect on decomposition over the entire process
(Ulyshen et al. 2014). Long-term studies that extend over almost the entire decom-
position process and allow for interactions among species under field conditions are
needed to adequately address this question. A related question and one of particular
relevance to forest managers concerns the role saproxylic insects play in accelerating
nutrient release from decomposing wood and stimulating tree growth. This question
was recently tested in the southeastern United States where subterranean termites are
known to significantly speed up wood decomposition, but termites were found to
have no effect on tree growth after more than 4 years of decomposition in that study
(Ulyshen et al. 2017).

Although much of the research addressing the value of saproxylic insects to
decomposition has focused on termites, nonsocial taxa are also likely to influence
the process. In addition to those that directly facilitate decomposition by consuming
and digesting wood, saproxylic insects are likely to have a variety of indirect effects
on decomposition. These include promoting fragmentation by scavenging verte-
brates, creating tunnels that facilitate the movement of fungi into wood, and vector-
ing fungi and other decay organisms on or within their bodies (Ulyshen 2016). It is
also important to recognize that insects can have both accelerative and inhibitory
effects on the overall decomposition process. By providing a food source for
woodpeckers, for example, insects can hasten the loss of bark which can greatly
reduce how quickly wood decomposes (Ulyshen et al. 2016).
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1.5.2 Importance as Predators

As discussed earlier, a large proportion of saproxylic insect species are predators,
including parasitoids, and this guild has the potential to reduce economically
damaging pest populations associated with dying or recently dead trees. The best
evidence for this comes from the extensive literature on bark beetles. For example, a
species of monotomid beetle, Rhizophagus grandis Gyllenhal, has been shown to
greatly reduce numbers of Dendroctonus micans (Kugelann) in Europe (Fielding
and Evans 1997) and D. valens LeConte in China (Yang et al. 2014), often below
economically damaging levels. Several fly taxa are also major predators of bark
beetles, with Medetera and Lonchaea (Dolichopodidae and Lonchaeidae, respec-
tively) being particularly influential. Medetera was the only predator significantly
associated with Ips typographus japonicus Niijima mortality in Japan, for example
(Lawson et al. 1996). Medetera was also one of the two most important predators
(the other being Enoclerus sphegeus Fab.) of Dendroctonus in Western North
Anmerica, contributing to over 90% mortality in some trees (Hopping 1947).

Although high rates of mortality have been reported for many parasitoid species
as well, parasitoids are generally expected to play a less important role than predators
in reducing pest populations (Wegensteiner et al. 2015). This is because a parasitoid
larva is confined to a single host, whereas a predatory larva commonly kills multiple
hosts. In some cases, including some lonchaeid and pallopterid flies, predators are
known to kill more hosts than they consume (Wegensteiner et al. 2015). Parasitoids
have been shown to impact pest populations, however. In North America, Duan et al.
(2015) showed that both introduced and native larval parasitoids played a part in
significantly reducing population growth rates of the emerald ash borer, Agrilus
planipennis Fairmaire. The effectiveness of parasitoids at reducing host populations
is often limited by the lengths of their ovipositors, however, with parasitism rates
decreasing with increasing bark thickness (Berisford 2011; Abell et al. 2012).

As reviewed by Wegensteiner et al. (2015), efforts to measure the overall impact
of predators and parasitoids on bark beetle populations suggest a high degree of
variability, with studies reporting mortality rates of between 23 and 90%. They
conclude that natural enemies play an essential role in controlling forest pest
populations and stress the importance of having a diversity of predatory taxa.
More research is needed to understand the role predation and other interspecific
interactions play in structuring saproxylic insect assemblages (Brin and Bouget
2018; see Chap. 14).

1.5.3 Conserving Saproxylic Insect Diversity in Managed
Forests and Beyond

Forest clearance and degradation are the two main processes by which dead wood
has been lost from many landscapes, resulting in a patchwork of forest stands of
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varying size, age, and quality surrounded by a matrix of other land uses. In some
parts of the world, these disturbances happened so long ago that the appearance and
composition of the original forests can only be guessed (Speight 1989). Fragments of
old-growth forests, for which there is no history, records, or suspicion of clearance or
major disturbance, provide invaluable insights into the amount and variety of dead
wood as well as the diversity and composition of saproxylic insects in the absence of
human activity (Lachat and Miiller 2018; see Chap. 17). Many studies indicate that
old-growth forests contain a greater volume and variety of dead wood than younger
managed forests from the same region (Siitonen 2001; Stenbacka et al. 2010a). In
addition to containing larger volumes of dead wood, old-growth forests support a
greater variety of dead wood than most managed forests. In Sweden, for example,
Siitonen et al. (2000) reported the average number of dead trees greater than 40 cm in
diameter to be 25 and 35 times higher in old-growth forests compared to mature
managed forests for coniferous and deciduous species, respectively. Similarly, Spies
et al. (1988) reported twice as many logs exceeding 60 cm in diameter in old-growth
forests as compared to those of intermediate age in northwestern North America.
Old-growth forests also contain more wood at advanced stages of decomposition.
Given these large differences in the amount and variety of dead wood, it is
perhaps not surprising that many studies have highlighted the importance of rela-
tively undisturbed old-growth forests to saproxylic insect communities. Indeed,
numerous studies have shown a positive correlation between saproxylic insect
diversity and dead wood volume (Grove 2002c; Vanderwel et al. 2006; @kland
et al. 1996; Martikainen et al. 2000). Moreover, Grove (2002¢) showed that the basal
area of large-diameter trees can be used as an indicator of ecological integrity for
saproxylic beetles in Australian rainforests. Old trees are particularly valuable
because they frequently contain tree hollows which are required by some of the
most vulnerable species. Floren and Schmidl (2008) estimated that approximately
86% of beetle species dependent on tree hollows in Germany are threatened, for
example. Species with limited dispersal abilities or dependence upon microhabitats
characteristic of old forests are often much more common at locations with a long
history of forest cover. In Germany, for example, Buse (2012) showed that flightless
saproxylic weevils are restricted to “ancient” forests (at least 220 years old). The
relict status of these small-twig feeders is due to their inability to disperse long
distances rather than a dependence on old-growth features. Other species are largely
restricted to old-growth forests due to the absence or rarity of suitable microhabitats
in younger forests. Tree hollows, for example, typically require a long time to
develop and become more common as forests age. A number of hollow-dependent
insect species are thus more common in older forests, although these species can be
supported in other contexts when efforts are taken to protect veteran trees. Indeed,
although old-growth forests play a central role in maintaining populations of sensi-
tive species, second-growth forests are known to support diverse assemblages as
well, including vulnerable species, provided that efforts are taken to provide an
adequate abundance and continuity of critical microhabitats. How much wood is
necessary remains an open question and is perhaps less critical than the variety of
wood provided (Seibold and Thorn 2018; see Chap. 18). It is well-known that
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different saproxylic species utilize different tree genera and also differentiate
between wood that is either standing or suspended in the canopy and wood in
contact with the forest floor (Berkov 2018; see Chap. 16). Fire also plays an
influential role in providing resources for specialist species (Hjdltén et al. 2018;
see Chap. 20). In addition, species separate into groups defined by their preferences
for particular stages of decomposition. Whereas some species attack only trees that
are dying or recently dead, colonization by others occurs only near the end of the
process. These patterns suggest that efforts to maximize the number of tree species,
wood postures, and stages of decomposition will be the most successful at
maintaining diverse saproxylic insect assemblages.

Another key question concerns how much spatial and temporal continuity is
needed. Many studies indicate that spatial and temporal continuity of dead wood is
more important than the amount or variety of dead wood at any particular time and
place (Simild et al. 2003; Sverdrup-Thygeson et al. 2014; Schiegg 2000a, b). In
France, for example, Brin et al. (2016) found forests >200 years old to support a
higher richness of saproxylic beetles, including more large-bodied species, than
younger forests despite having less volume and variety of dead wood. These patterns
may be due in large part to differences in dispersal ability among species (Feldhaar
and Schauer 2018; see Chap. 15), with large-bodied species being generally less
capable of flying long distances (Ranius and Hedin 2001) and/or having shorter
flight periods (Gillespie et al. 2017) than smaller species. The same is of course also
true for flightless species (Buse 2012). Many species with the weakest dispersal
abilities are associated with persistent habitats such as tree hollows, whereas species
associated with ephemeral habitats such as phloem or small-diameter wood tend to
be relatively strong dispersers (Nilsson and Baranowski 1997). Although site history
is important (GoBner et al. 2008) and large blocks of old forest have the highest
conservation value (Irmler et al. 2010; Grove 2002a), it is important to recognize the
value of smaller and younger forest patches in supporting a subset of the saproxylic
fauna (i.e., the strong dispersers), especially within the context of metapopulation
dynamics. One example of this comes from the wheat-farming region of western
Australia where Abensperg-Traun (2000) found that even small and disturbed
patches of Eucalyptus imbedded within an agricultural matrix supported wood-
feeding termites. Termite species richness increased with tree number (patch size),
but distance from other source populations had no effect, probably due to the ability
of termites to disperse over long distances. Similarly, studies on the tree-hollow
specialist, Osmoderma eremita (Scopoli), in Europe show that even scattered trees in
highly managed landscapes can promote the conservation of certain species. In
managed forests, strategies such as retention harvesting, where a certain number of
trees are left behind either in a dispersed or aggregated arrangement, may improve
spatial connectivity, thus softening the impact of harvest operations for many species
(Lee et al. 2018; see Chap. 19).

The relationship between saproxylic insect diversity and canopy openness is
another question of high relevance to managers. Naturalists have long recognized
that many saproxylic insect groups, especially many of the large and colorful taxa
most prized by collectors (e.g., cerambycids, buprestids, etc.), are more readily
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Fig. 1.7 Examples of “remarkable” saproxylic beetles collected by Alfred Russel Wallace (1869)
in Borneo

collected in sunny areas. In his 12 years of collecting insects in the tropics, for
example, Alfred Russel Wallace (1869) found recently cleared areas of forest to be
by far the most productive, with one such place in Borneo yielding nearly 2,000
species of saproxylic beetles (Fig. 1.7). Studies using passive trapping techniques
(e.g., flight intercept traps) have shown this to be true for a wide range of taxa
although many others prefer shady conditions. In Germany, for example, Seibold
et al. (2016b) found that 105 and 57 species of beetles collected in flight intercept
and pitfall traps were significantly associated with sunny and shady plots, respec-
tively. Lachat et al. (2016) compared saproxylic beetle assemblages present in the
centers and on the edges of canopy gaps as well as under closed canopy conditions
away from the gaps in an old-growth Ukrainian beech forest. They found beetle
abundance to be higher and beetle composition to be different in the centers of the
gaps compared to the forest but found no difference in species richness. The findings
from passive trapping have the potential to exaggerate the importance of sunny
conditions, however, as many insects are more active and thus more readily captured
in sunny areas. Few studies have addressed this question using emergence traps
although Gossner et al. (2016) reported a positive correlation between the number of
beetle species emerging from dead wood and canopy openness in Germany. More
emergence-trap studies are needed to better understand these patterns, and studies
targeting less commonly studied insect orders would be particularly informative.
Flies, for example, are dependent on moist or wet substrates, and may be particularly
sensitive the drying effects of more open forest conditions (Ulyshen 2018b; see
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Chap. 5). The needs of such species should be taken into consideration when
developing management plans.

In addition to the effects of forest clearance and degradation, saproxylic insects
are likely to be impacted by the intentional or accidental introduction of nonnative
tree species into many of the remaining forested areas. Invasive trees and shrubs are
a growing problem in many regions, and plantations of nonnative trees are planted
over vast expanses of land that once supported native forests. The quality of these
highly modified forests to saproxylic insects, especially the most vulnerable species,
remains uncertain (Ulyshen et al. 2018; see Chap. 23). The value of urban environ-
ments to saproxylic insects is also an increasingly important question, representing
both a challenge and opportunity for community engagement (Hordk 2018; see
Chap. 24). Although many questions remain about how best to conserve saproxylic
insects in managed landscapes, there can be little doubt that these decisions can have
important and lasting consequences for this major fraction of our biodiversity.

1.6 Aims and Scope of This Book

The 25 chapters included here are in-depth considerations of prioritized topics but
are united by several broad objectives that collectively aim to provide the most
global and inclusive synthesis of current knowledge possible. These objectives
include (1) incorporating information from regions outside of Europe, (2) recogniz-
ing the key roles social insects (e.g., termites, ants, and passalid beetles) play in
saproxylic assemblages, (3) highlighting some of the less commonly studied taxa,
and (4) addressing the value of highly decomposed wood. The book is organized into
four sections. The first section, titled “Diversity,” includes chapters addressing
particular taxonomic groups. Insect orders are presented in decreasing order of
estimated global saproxylic diversity. The three chapters on Coleoptera are thus
presented first, followed by Diptera, Hymenoptera, Hemiptera, Lepidoptera, and
Isoptera. The second section, titled “Ecology,” contains chapters on insect-fungal
interactions, nutrient dynamics in decomposing wood, biotic interactions among
saproxylic insects, dispersal of saproxylic insects, and seasonality and stratification
of saproxylic beetles in tropical forests. The third section is titled “Conservation”
and includes chapters on the importance of primary forests to saproxylic insects, the
importance of dead wood amount and variety, saproxylic insect conservation under
variable retention harvesting, saproxylic insects and fire, saproxylic insects and tree
hollows, insects in highly decomposed wood, utilization of nonnative wood by
saproxylic insects, and the role of urban environments for saproxylic insects. The
fourth section, titled “Methodological advancements,” contains a single chapter on
molecular tools for assessing saproxylic diversity.
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General Overview of Saproxylic Coleoptera <

Matthew L. Gimmel and Michael L. Ferro

Abstract A broad survey of saproxylic beetles (Coleoptera) from literature and
personal observations was conducted, and extensive references were included to
serve as a single resource on the topic. Results are summarized in a table featuring all
beetle families and subfamilies with saproxylicity indicated for both adults and
larvae (where known), along with information on diversity, distribution, habits,
habitat, and other relevant notes. A discussion about the prevalence of and evolu-
tionary origins of beetles in relation to the saproxylic habitat, as well as the variety of
saproxylic beetle habits by microhabitat, is provided. This initial attempt at an
overview of the entire order shows that 122 (about 65%) of the 187 presently
recognized beetle families have at least one saproxylic member. However, the
state of knowledge of most saproxylic beetle groups is extremely fragmentary,
particularly in regard to larval stages and their feeding habits.

2.1 Introduction to Beetles

There are nearly 400,000 described species of beetles, which comprise 40% of all
described insect species (Zhang 2011). In fact, one in every four animal species
(from jellyfish to Javan rhinos) is a beetle. The dominance of this group in terrestrial
ecosystems can hardly be overstated—and the dead wood habitat is no exception in
this regard. The largest (see Acorn 2006), longest-lived, and geologically oldest
beetles are saproxylic. Of the roster of saproxylic insect pests in forests, beetles
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dominate in terms of sheer number of species and, arguably, economic losses
(Furniss and Carolin 1977; Solomon 1995).

Beetles (order Coleoptera) fall within the Endopterygota (Holometabola) and
therefore undergo so-called complete metamorphosis, passing through anatomically
and behaviorally disparate larval, pupal, and adult stages. This temporal division of
labor—in which the primary directive of the larval stage is to eat and grow and the
function of the adult is to disperse and reproduce, often in a habitat quite different
from the larva—is thought to be a key innovation within the insect tree of life.
Indeed, although the Endopterygota contains less than half of the 29 extant insect
orders, it contains over 80% of described insect species [numbers derived from
Zhang (2011)]. When considering saproxylicity among beetle species, the disparate
nature of life stages is a key discussion topic, since a frequent strategy among beetles
is to have a saproxylic larva and a non-saproxylic adult (see Table 2.1).

The anatomy of beetles is peculiar among insects, making them one of the most
distinctive major orders. The most salient feature of beetles is the presence of elytra,
mesothoracic wings modified and corneous and not generally used for flight, which
most often completely cover the dorsal portions of the meso-metathorax (including
flight wings) and abdomen (but can be significantly shortened in some families) and
usually meet in a straight line middorsally. Hardened elytra confer obvious protec-
tion against would-be attackers. As adults, beetles are often heavily armored
throughout and exhibit an ability to retract appendages in defense of predators or
to assist in the ability to squeeze into tight spaces. These adaptations are also related
to protection from pathogens and from water loss in arid habitats (Lawrence and
Newton 1982; Grimaldi and Engel 2005). The general anatomical direction of
beetles has been one of fusion and increased sclerotization; however, there are
many notable exceptions (e.g., Staphylinidae and many Elateroidea).

2.2 Early Evolution of Beetles in Dead Wood

Perhaps no major order of insects typifies the saproxylic habit more than beetles. Of
the “big four” holometabolous insect groups, beetles express the highest diversity in
dead wood habitat in terms of both number of taxa present as well as microhabitat
diversity. They are probably the only order of Endopterygota that can attribute their
evolutionary origins and unique morphology to the dead wood habitat (Hamilton
1978).

During their initial period of diversification, taking place prior to the Early
Permian, beetles experienced major anatomical modifications. Most obvious
among these was the hardening of the forewings into protective elytra. Other
adaptations included dorsoventral flattening of the body, migration of the antennal
insertions laterally (lower) on the head, non-projection of the coxae, rotation of the
mouthparts into a prognathous aspect, reduction of the mesothorax and its fusion
with the metathorax (with concomitant loss of mesothoracic flight muscles), and
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fusion of the hind coxae with the metathorax (see Grimaldi and Engel (2005) for a
good overview).

Based on Lubkin and Engel (2005), the two Early Permian “beetle” families are
Tshekardocoleidae (from Tshekarda, Russia) and Oborocoleidae (from Obora,
Czech Republic); even though the latter are older (268 Ma), they are only known
from scattered elytra. Tshekardocoleidae are conclusively placed as beetles based on
mesothoracic structure (Kukalova 1969). Late Permian beetle families include
Permocupedidae, Asiocoleidae, Rhombocoleidae, and Schizocoleidae. Before
Permocoleus (Lubkin and Engel 2005), no Permian beetles were known from
North American deposits. These families, collectively referred to as Protocoleoptera
(sensu Lawrence and Slipiriski 2013: 4), are distinguished from one another based on
the morphology of the elytra. All possess varying degrees of apparent sclerotization
of the elytra as visualized through the relative area proportion of “window punc-
tures” (presumably the original wing membrane) versus the principal and interstitial
veins separating them.

Recently, however, the fossil beetle Coleopsis archaica (Kirejtshuk et al. 2014)
has come to light from the earliest Permian of Germany (ca. 295 Ma), which was
classified in the Tshekardocoleidae; additionally, the authors synonymized
Uralocoleidae and Moravocoleidae with this family. This fossil in part led Toussaint
et al. (2017) to re-calibrate and re-date the beetle tree of life dataset of McKenna et al.
(2015), shifting the origin of Coleoptera about 80 million years older to approxi-
mately 333 Ma (95% CI: 349 to 317 Ma)—a Late Carboniferous origin for the order.
An excellent summary of the fossil history of beetles can be found in Lawrence and
Slipiriski (2013: 4-8).

Whether the morphological changes outlined above developed in association with
saproxylicity is not known with certainty, though present-day forms adapted to this
habitat possess these features in particular. The Permian experienced a rapid rise in
the dominance of the gymnosperms, while tree lycopods typical of the Carbonifer-
ous went extinct, probably in connection with Northern Hemisphere desertification
and Southern Hemisphere glaciation (Shear and Kukalovad-Peck 1990).
Ponomarenko (2003) concluded that the beetle ancestral habit was
“xylomycetophagy,” with xylophagy and rhizophagy not appearing until later
(Jurassic) times. At the very least, evolution of these Protocoleoptera preadapted
beetles to a saproxylic lifestyle, allowing them to squeeze into bark crevices without
damaging flight wings and other appendages [although Permian Protocoleoptera
tended to have more complete wing venation, suggesting that folding mechanisms
had not yet developed; see Crowson (1975)]. Additionally, fossils of trees whose
bark was probably prone to sloughing were present in the same deposits as these
early beetles (Crowson 1981). Unfortunately there are no known fossils of beetle
larvae or wood borings in these deposits, so this evidence remains strictly circum-
stantial. Since larvae lack the same dispersal abilities as adults and are generally tied
to their habitats more intimately, form is generally much more closely tied to habits
in this life stage. Consequently, larval evidence would go a long way toward
informing the habits of the world’s first beetles. However, Crowson (1981: 660)
believed, based on the presumed groundplan of larval beetle mouthparts, that the first
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beetle larva was more likely to have been a mold-feeding type than a wood-boring
type. Even so, this potentially places the protocoleopteran larvae on or around
decaying wood. Although most of the Permian forms are currently grouped into
the extinct suborder Protocoleoptera, they are quite similar morphologically to many
members of the extant order Archostemata, which contains almost exclusively
saproxylic members today.

One report of Carboniferous wood-boring activity by Cichan and Taylor (1982) is
suggestive of early beetles in a (presumably aerial) root of a gymnosperm and
consists of 0.3-0.6 mm-diameter burrows with accompanying frass. However, it is
not until Triassic fossils that we have unambiguous evidence of wood-inhabiting
activity in beetles. The remarkable published findings of Walker (1938) based on
numerous examples of fossilized wood of Araucarioxylon arizonicum Knowlton
(Araucariaceae) in the Petrified Forest of Arizona exhibit a wide range of boring
patterns, whose similarity to modern boring behavior of Buprestidae and Scolytinae
(Curculionidae) was noted. Tapanila and Roberts (2012) later reported ichnofossils
of pupation in wood that probably represented early beetles from similar deposits
(Late Triassic Chinle Formation of southern Utah). Based on the foregoing evidence,
both fossil and ichnofossil, it seems likely that saproxylic beetles have existed since
at least the Permian, for nearly 300 million years.

2.3 Habits and Habitats of Saproxylic Beetles

Saproxylic beetles can be conceptually divided up along a variety of axes, including
but not limited to (1) taxonomic, (2) feeding type, (3) succession, and (4) microhab-
itat. Division along the taxonomic axis is accomplished in Table 2.1. As the study of
saproxylic beetles progresses, in the future it would be perhaps more biologically
useful to divide up these taxa along the feeding type axis—categories might be, e.g.,
mycophagy, myxomycophagy, xylophagy, predatory, saprophagy, and parasitoids.
However, given the incomplete nature of this knowledge at present and the difficulty
of ascertaining such information through detailed life history studies and careful
labwork, we can only indicate these feeding types where known. An additional axis
related to feeding types is succession, in a sense treating the dead log as a forensic
entomologist treats a dead body; categorizing beetles as early, middle, and late
(veteris) in relation to the death of the tree; and recognizing important differences
related to “carcass” size, position, geography, tree species, and macrohabitat. For the
discussion below we divide up saproxylic beetles into categories based on micro-
habitat, for this can be directly and unambiguously observed in the field. The flow of
categories below progresses (roughly) from the interior of a dead log to the periphery
of dead-wood-dependent habitats, with a discussion of aquatic dead-wood habitats
appearing at the end. For a lengthy discussion of the European saproxylic beetle
fauna by habitat, see Merkl (2016).
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2.3.1 Wood-Inhabiting Taxa

This subcategory is typified by classic wood-boring taxa, which tend to sport strong,
stout mandibles in whichever stage actively tunnels through wood. Larvae that are
borers are more prevalent than adults and tend to be more or less cylindrical and have
a poorly sclerotized cuticle, and the head capsule tends to be retracted into the
thorax. Some adults, however, are wood-boring and include Bostrichidae, Ptinidae,
and Curculionidae (Lawrence and Slipifiski 2013). Beetles in the first two groups are
often pests of wood inside houses (Lewis and Seybold 2010). Other groups include
certain Curculionidae (Platypodinae and Scolytinae: Xyleborini), Cerambycidae,
Passalidae, Buprestidae, Lymexylidae, Ptinidae, and Bostrichidae. For a more
detailed discussion of the ambrosia beetles (Curculionidae: Platypodinae and certain
Scolytinae), see Sect. 2.3.7.

Cerambycidae, which contain an enormous number of wood-borers (“round-
headed borers™), whose adults do not tunnel through wood, typically start as larvae
by boring subcortically and then bore directly into sapwood and heartwood as they
develop (Evans 1975). Buprestidae larvae (“flat-headed borers”) often have similar
habits, boring through wood just under the cambium before plunging into the wood
toward the center of the log to finish larval development and to pupate.

As woody debris reaches an advanced stage of decay, it plays host to a distinct
fauna. Especially rotten wood is known to be a classic habitat for scarabaeoid grubs,
particularly of the families Lucanidae, Passalidae, and Scarabaeidae (chiefly the
subfamilies Cetoniinae and Dynastinae), a fact well-known among enthusiasts of
those groups, while larvae of Callirhipidae are typical of white-rotted wood in an
advanced decay stage (Lawrence and Slipiriski 2013). However, Ferro et al. (2012a)
demonstrated a distinct fauna of smaller beetles within the final decay stage of
hardwood logs in an eastern North American forest (Ferro 2018, see Chap. 22).
For an in-depth discussion of the habits of Passalidae and Lucanidae, see Ulyshen
(2018) and Huang (2018) (Chaps. 3 and 4, respectively).

Some beetles seem to be typical of red-colored rotten wood. Notable examples
include Micromalthus debilis LeConte (Micromalthidae); Schizophilus subrufus
(Randall) of the Eucnemidae (Otto and Young 1998); members of the small family
Prostomidae, which prefer wood with a mud- or clay-like consistency (Lawrence
1991; Klimaszewski and Watt 1997; Lawrence and glipiﬁski 2013); the Nearctic
Priognathus monilicornis (Randall) (Pythidae) (Pollock 2002a); and certain terres-
trial larvae of Scirtidae from the Southern Hemisphere (Lawrence and Slipiriski
2013).

2.3.2 Subcortical Taxa, Including Phloem Feeders

The subcortical group is dominated, both in terms of number of species and
abundance, by the “bark beetles” of the subfamily Scolytinae (Curculionidae).
An extremely wide variety of other beetle groups, however, are typical of this
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habitat. Cucujidae, Laemophloeidae, and Silvanidae, collectively known as “flat
bark beetles,” contain adults and larvae often highly flattened and specialized for
living under bark. Their habits are not entirely clear, but many are at least facultative
predators and are probably opportunistic scavengers or saprophages. Predatory
beetles typical of this habitat, and often associated with Scolytinae, are the
Histeridae, Trogossitidae (Trogossitinae), Carabidae (Bembidiini: Tachyina),
Synteliidae, Chaetosomatidae, Thanerocleridae, Cleridae, Brentidae, larvae of
Brachypsectridae, Cantharidae, Lampyridae, Rhadalidae, adults of Elateridae,
Bothrideridae, and certain Zopheridae (Colydiinae). Parasitoid beetles include
Bothrideridae and Passandridae. Other taxa present in this microhabitat, probably
feeding upon fungal mycelium, are Biphyllidae, Cerylonidae, Cryptophagidae,
Endomychidae, Teredidae, Carabidae (Rhysodinae), Euxestidae, Jacobsoniidae,
Eupsilobiidae, Boridae, Pythidae, Pyrochroidae, Salpingidae, Monotomidae,
Mpyraboliidae, Nitidulidae, Curculionidae (Cossoninae), larvae of Synchroidae,
Mycteridae, and Scraptiidae.

Since microclimates on even a single log can differ greatly (Evans 1975:
159, from Geiger 1950: 235, also Chauvin 1967), their beetle faunas correspond-
ingly differ. The wet, waterlogged parts of the wood-bark interface have a distinctive
beetle fauna, apparently most diverse in the Southern Hemisphere, which may
contain Hydrophilidae (especially Cylominae) and larvae of Scirtidae (M. Fikacek,
pers. com.; MLG, pers. obs.).

2.3.3 Dead Wood Surface (Including Contact with Substrate)

A large number of beetles find optimum shelter under dead logs, since they provide a
relatively stable microclimate along the ground surface, with much lower thermal
conductivity than rocks and with high moisture retention properties. In addition to
those beetles obligately associated with wood-rotting fungi (which often reach their
peak toward the more moist underside), adult and larval beetles typical of this habitat
include in particular Carabidae, Leiodidae (Camiarinae), Staphylinidae,
Tenebrionidae, and Zopheridae.

A large number of adult beetles occur on the surface of dead wood at night; some
of these are predacious (e.g., Carabidae), but many of these graze on lichens and
microfungi and may include certain Tenebrionidae (especially Stenochiinae),
Cerambycidae, Erotylidae, and Chalcodryidae. Adults of Buprestidae are also typ-
ical of this habitat but are mostly diurnal. Some larvae of Cryptocephalinae
(Chrysomelidae) graze the outer layer of dead twigs (Chamorro 2014). Among
predacious Carabidae, remarkable larval examples include tiger beetles of the genera
Collyris, Ctenostoma, Therates, and some Tricondyla, which occupy tunnels open-
ing to the bark surface, from which they hunt prey nocturnally (Balduf 1935;
Trautner and Schawaller 1996; Pearson and Vogler 2001; excellent illustrations of
burrows in Zikan 1929).

An interesting community of beetles is also associated with wounded parts of
living trees (sap flows and slime fluxes), a microhabitat often infected with bacteria,
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yeasts, and other microfungi. Members of the family Nosodendridae are perhaps the
most strikingly adapted beetles in this peculiar habitat, the larvae possessing mostly
dorsal spiracles, with the last pair being located at the apex of an elongated terminal
abdominal segment, allowing the larvae to be totally immersed in the slime flux
(Crowson 1981; Leschen and Beutel 2010b). The larvae also possess a rough dorsal
surface which allows debris to adhere and causes the larvae to virtually disappear in
their habitat. Other taxa typical in the sap flow or slime flux microhabitat include
Peltastica (Derodontidae; Leschen and Beutel 2010a), Sphaeritidae (Newton
2016a), some Histeridae (Kovarik and Caterino 2016), adult Lucanidae (Scholtz
and Grebennikov 2016), Euderia (Bostrichidae; Klimaszewski and Watt 1997), and
many Nitidulidae (Jelinek et al. 2010).

Tree holes (or tree hollows) with an accumulation of woody debris and other
organic matter represent unique environments with a distinct community. These
habitats are covered in detail by Mic6 (2018, see Chap. 21). Coleoptera species in
these habitats are dominated by certain Histeridae, Ptiliidae, Staphylinidae (espe-
cially Pselaphinae), Hybosoridae, Scarabaeidae, Elateridae (larval), Ciidae,
Tenebrionidae, and Curculionidac (Park et al. 1950; Park and Auerbach 1954;
pers. obs.).

2.3.4 Wood-Rotting Fungal Bodies and Slime Molds

Inhabiting fungal fruiting bodies on a dead wood substrate is one of the largest single
categories of saproxylicity in beetles, and many beetle families possess this habit
(Crowson 1981; Lawrence 1989). Perhaps most typical of this habit are the families
Staphylinidae (especially subfamilies Aleocharinae, Oxyporinae, and Tachyporinae)
and Erotylidae. Significant numbers or percentages of Tetratomidae, Tenebrionidae,
Zopheridae, Ciidae, Ptiliidae, Anthribidae, Nitidulidae, Endomychidae,
Anamorphidae, Latridiidae, Discolomatidae, Endecatomidae, Phloiophilidae,
Mycetophagidae, Hobartiidae, Cryptophagidae, Lamingtoniidae, and Leiodidae
also occur in this habitat. Gilled mushrooms (Agaricales) and polypore-style basid-
iomycetes harbor the greatest number of beetles, though significant associations
occur in other wood-inhabiting fungi (including Ascomycetes, see Crowson 1984)
as well. Certain members of Derodontus (Derodontidae) are partial to the “tooth
fungi” (Hydnaceae) (Leschen 1994) and members of Litochropus (Phalacridae)
inhabit and consume the woody galls of Daldinia (Ascomycota: Xylariales)
(Gimmel 2013). Lawrence (1977) reported on a broad collection of beetles from
Hypoxylon on dead oak and discussed this habitat in detail. For an excellent
summary of mycophagy among Coleoptera, see Lawrence (1989).

Inhabitants of myxomycetes (slime molds), which are most often associated with
woody debris, include certain Leiodidae (particularly Leiodinae: Agathidiini) (New-
ton 1984), certain Carabidae, Staphylinidae, Clambidae, Eucinetidae, Cerylonidae,
and Latridiidae (Forrester and McHugh 2010). Perhaps most intimately tied to this
habitat are members of the family Sphindidae, whose members are known to feed
and develop only in myxomycetes, both as larvae and adults.
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2.3.5 Other Woody Plant Parts

Other woody or corky plant tissues (cones, galls, woody carps, etc.) are inhabited by
a variety of small beetles, including a number of Scolytinae and Ptinidae. Scolytines
often found in fallen woody carps include Araptus and Hypothenemus species;
species of Conophthorus develop in cones of Pinus; one species of Spermophthorus
has been reported from a gall (Wood 1982). Members of one spondylidine
cerambycid genus, Paratimia, develop in pine cones (Svacha and Lawrence
2014b). As for Ptinidae, species of Ernobius can be found inhabiting cones of
conifers (Ruckes 1957), while Ozognathus larvae inhabit oak galls (Philips and
Bell 2010). Ommatidae are suspected of developing in underground roots, though
this has not been confirmed (Hornschemeyer and Beutel 2016). Root-feeding larvae
in woody plants are typical of many Scarabaeidae, Elateridae, Cerambycidae and
Curculionidae (Evans 1975), and certain termitophilous beetles are associated with
termites whose nests occupy such roots (e.g., Anorus of the Dascillidae; Lawrence
2016b).

2.3.6 Aquatic Saproxylic Habitats
2.3.6.1 Waterlogged and Submerged Woody Debris

Several families of beetles are typical of wood submerged in lentic or lotic environ-
ments, including Amphizoidae (adults and larvae), Lutrochidae (adults and larvae),
Cneoglossidae (larvae only), some Elmidae (adults and larvae), some Dryopidae
(adults only), some Hydraenidae (adults only), some Psephenidae (larvae only), and
some Eulichadidae (larvae only; Ivie 2016). Larvae of certain Lutrochidae and
Elmidae may even burrow into submerged wood (Valente-Neto and Fonseca-
Gessner 2011). Waterlogged wood may harbor larvae of Oedemeridae and larvae
of some Ptilodactylidae (Ptilodactylinae) (Lawrence and Slipir’lski 2013: 237). Many
larvae of Scirtidae also forage on submerged wood (Lawrence 2016a). Larvae of
Oedemeridae may inhabit intermittently buried pieces of driftwood (Kriska 2002);
the so-called wharf borer, Nacerdes melanura (Linnaeus), even inhabits wood
pilings and other structural timber inundated by seawater and has the potential to
be a minor pest (Arnett 1951). As indicated by Dudley and Anderson (1982), wood-
degrading activity of aquatic beetles is relatively minor, at least in temperate regions.

2.3.6.2 Water Trapped in Tree and Log Holes

These peculiar habitats play host to a few aquatic Coleoptera, primarily including
larvae of Scirtidae and adults and larvae of Dytiscidae. A summary of beetles
recorded from container habitats (including water in saproxylic environments) was
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provided by Kitching (2000, Table A.13). Scirtidae larvae are actively moving
detritus feeders mostly present among debris in the hole but also crawling inverted
just under the water surface (Lawrence 2016a). Dytiscidae are predacious, primarily
on other invertebrates, as both adults and larvae, and are active swimmers through
the water column. A few genera of this family are present in phytotelmata broadly,
including tree and log holes, and the fauna of these habitats is distinctive (Miller and
Bergsten 2016); however, most of these are probably not restricted to particular
types of phytotelmata. A remarkable southeast Asian species of Nitidulidae,
Amphicrossus japonicus Reitter, is an aquatic predator of mosquito larvae in injured
bamboo culms and stumps that have filled with water. Adults seize mosquito larvae
with their front legs (Kovac et al. 2007).

2.3.7 Ambrosia Beetles
2.3.7.1 Saproxylic Beetle Agriculture

Three major groups of beetles may be referred to as “ambrosia beetles™:
Lymexylidae; Curculionidae, Scolytinae (various tribes); and Curculionidae,
Platypodinae. The nature of the ambrosia habit in Lymexylidae is not nearly as
developed as in the curculionid lineages, but they were probably the first group to
evolve such habits (Wheeler 1986). In this family, it is pouches in the female
genitalia that act as mycangia, transporting fungal inoculum to the site of egg laying.
The fungus (which belongs to Ascoidaceae), while containing nutrients consumed
by the larvae, probably serves to condition the wood for tunneling by the larvae
(Wheeler 1986).

Unlike their relatives that create two-dimensional superficial galleries under bark,
most ambrosia beetles in Scolytinae and Platypodinae bore directly into wood,
across the grain, where the larvae feed not on the wood itself but exclusively on
fungi cultivated in the tunnels by the adults. These specialized fungi (primarily
Ophiostomales and Microascales) are delivered using mycangia, which are cuticular
invaginations on the beetle cuticle that transport fungal inoculum. Three types of
mycangia are known in Xyleborini: mandibular, mesothoracic, and elytral (Cognato
et al. 2011) (for a discussion of the distribution of mycangia among beetles, see
Grebennikov and Leschen 2010). As the fungi grow, they form a dark carpet of
conidia that are then fed upon by the larvae (Jordal and Cognato 2012). Not only are
the beetles totally dependent on the fungus for food, but they apparently also cannot
complete development without the presence of certain fungal steroids (Jordal and
Cognato 2012).

About 2000 species of Scolytinae have evolved to use these cultivated fungi as a
primary food source, apparently at least ten separate times, represented by the
following lineages: Corthylini, Corthylina (460 spp.); Scolytini, Camptocerus
(30 spp.); Bothrosternini, Bothrosternus and Eupagiocerus (16 spp.); Xyleborini
(1300 spp.); Xyloterini (24 spp.); Scolytoplatypodini (32 spp.); Hyorrhynchini
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(15 spp.); Premnobiini (25 spp.); and one species each of Hypothenemus
(Cryphalini) and Scolytodes (Hexacolini) (Jordal and Cognato 2012). Xyleborini
are the most widespread and dominant group and comprise about 30 genera and
1300 species that are concentrated in tropical regions but contain a number of
temperate species as well (Cognato et al. 2011; Jordal and Cognato 2012). The
habit of fungus cultivation among Scolytinae is apparently less than 50 million years
old, with Xyleborini developing this trait only about 20 million years ago. This is
corroborated by both a dated phylogenetic hypothesis (Jordal and Cognato 2012)
and lack of presence of Xyleborini in Dominican amber which, however, does
contain inclusions of Corthylina and Platypodinae (Bright and Poinar 1994).

The Platypodinae (“pinhole borers”), the other main beetle group with advanced
fungus-cultivating habits, is probably the oldest such group of insects, estimated at
around 80 ma or older (Jordal 2015), and presumably the habit evolved only once
within the group. All except two of the about 1400 described species are ambrosia
beetles, and they occur primarily in tropical areas (Jordal 2015). However, unlike the
Xyleborini, all Platypodinae are monogamous and not haplodiploid and do not
engage in parthenogenesis. The only known eusocial beetle is the Australian
platypodine species Austroplatypus incompertus (Schedl) (Kent and Simpson 1992).

Ambrosia beetles have a number of advantages through their specialized habits.
The beetles are able to attack a wide variety of tree hosts since their fungi have wide
tolerances, a particular advantage in hyper-diverse tropical regions. In addition, the
Xyleborini have evolved haplodiploidy, with the flightless dwarf (haploid) males
from unfertilized eggs being rarely produced, and matings occurring primarily
between siblings. The fact that a colony can be started by a single female allows
them to colonize rapidly and efficiently (Cognato et al. 2011). Because they tend to
be so widespread and abundant and among the first colonizers of newly created
saproxylic habitats, ambrosia beetle populations in wood generally bring with them
or otherwise attract a veritable ecosystem of associates, including mutualists, pred-
ators, and commensals. Interestingly, ambrosia beetles are much less likely to kill
healthy host trees than certain scolytine bark beetle counterparts which spread
so-called blue-staining pathogenic fungi (Evans 1975; Crowson 1981; see above),
with a few exceptions, such as Fusarium dieback associated with shot-hole borers
(Euwallacea spp.).

2.3.8 Notable Unique Structures, Adaptations, and Mysteries
2.3.8.1 Unique Structures

One extraordinary adaptation of a few saproxylic beetles that deserves mention is the
possession of infrared-sensitive pits on the adult cuticle. These structures are located
in the thoracic sclerites or abdomen and apparently serve as detectors for beetles
seeking to oviposit in fire-killed wood. The structures are known to occur in two
phylogenetically distant families: Buprestidae [represented by Melanophila (s.str.)
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and Merimna atrata (Gory and Laporte)] and Acanthocnemidae (containing only
Acanthocnemus nigricans Hope). In Melanophila (s.str.), each of a pair of pits is
located on the metaventrite, adjacent to the mesocoxal cavity. Each pit contains a
number of spherical sensillae (Evans 1966). In Merimna atrata, these organs are
similar, but 1-3 pairs occur laterally on abdominal ventrites 2—4 (Mainz et al. 2004).
In Acanthocnemus nigricans, each of a pair of pits is located along the notosternal
suture of the prothorax (anterior to procoxae) and is made up of a flat disc overlying a
small airspace. A large number of sensillae are located on the surface of the disc, and
the type of infrared receptor is quite different from that of the buprestids (Kreiss et al.
2005).

Larvae of the family Eucnemidae are unique among Coleoptera for several
structures: (1) non-opposing mandibles that curve outward rather than inward (also
possessed by some Elateridae: Cardiophorinae), (2) microtrichial patches on most
body segments, and (3) areoles (median oval shiny structures) on most body
segments (Muona and Terdvdinen 2008). All of these structures appear to be
adaptations for squeezing through hard, often fluid-filled wood. When the mandib-
ular muscles contract, the mandibular apices move away from each other (Van Horn
1909). The microtrichial patches serve as cuticular anchors as the legless larva creeps
forward using waves of internal fluid pressure, while the areoles apparently drain
excess water from the larva (Muona and Terdvidinen 2008).

As a group, beetles are well-known for their tendency to evolve elaborate
weaponry as adults, usually horns or other cuticular projections, especially among
males. Interestingly, this occurs primarily in saproxylic taxa, especially those spe-
cializing on well-decayed wood, sap flows, or wood-decaying fungi, though it also
occurs in taxa associated with other habitats (e.g., dung). Saproxylic taxa possessing
this trait include Scarabaeidae (several subfamilies), Lucanidae, Staphylinidae
(Piestinae), Ptinidae, Ciidae, and Tenebrionidae. One explanation for this phenom-
enon is that habitats that are highly localized and defendable (e.g., those listed
above), in combination with unrestricted terrain for fighting, such as the surface of
a log or tree trunk, provide selection pressure to evolve fight-performance-related
structures (see Emlen (2008) for an extensive discussion).

2.3.8.2 Parasitoids

There are not many parasitoids among beetles, but two saproxylic families are
exclusively ectoparasitoid as larvae, Bothrideridae and Passandridae, the former
being parasitic on larvae and pupae of wood-boring beetles, as well as Hymenoptera,
Xiphydriidae and Apidae (Xylocopa). Passandridae are also parasites of various
wood-boring beetles (especially Phytophaga) and larval Hymenoptera. The most
advanced forms, however, are represented by the endoparasitoid larvae of
Ripiphoridae, of which members of two of the five subfamilies (Hemirhipidiinae
and Pelecotominae) are known to attack wood-boring beetle larvae, particularly of
the families Ptinidae and Cerambycidae (Lawrence et al. 2010b).
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As pointed out by Crowson (1981: 555), the dividing line between predators and
parasitoids is a blurry one, particularly in saproxylic forms. Brentidae and
Zopheridae contain some species inhabiting brood burrows of Scolytinae; Cleridae
(e.g., Orthopleura) contain more-or-less parasitic forms on wood-boring beetle
larvae (Crowson 1981: 555). Intermediate forms between predators and parasitoids
exist among members of the zopherid genus Colydium, which are often present with
Platypus, and Aulonium which is associated with Scolyfus (Crowson 1981: 556).
Adults of Lasconotus (Zopheridae) often have a concave dorsal surface, presumably
to assist in squeezing past obstacles among the burrows of Scolytinae (MLG, pers.
obs.).

2.3.8.3 Sociality

Eusociality and even subsociality are quite rare among beetles, but it is notable that
these traits are only known to occur in saproxylic species. The most widespread and
well-known among these taxa are within the Passalidae (Ulyshen 2018, see Chap. 3).
Less well-known subsocial species are the passalid-looking members of the genus
Phrenapates (Tenebrionidae: Phrenapatinae) (Lawrence and Slipir’lski 2013). As
mentioned previously, the only known eusocial beetle is Austroplatypus
incompertus (Schedl) (Curculionidae: Platypodinae), which lives in galleries in the
heartwood of Eucalyptus trees in southeastern Australia (Kent and Simpson 1992).

2.3.8.4 A Mystery

The family Trictenotomidae contains some of the largest adult beetles in the world,
which are among the most popular collectors’ items in Coleoptera. There are two
genera (Autocrates and Trictenotoma) that occur in southern and eastern Asia.
However, the presumed saproxylic larva has apparently only been found once, in
Java in association with “débris of pupae and imagines” of Trictenotoma childreni
Gray. This remarkable larva measured 12 cm long (Gahan 1908). Unfortunately the
whereabouts of this specimen are currently unknown, and additional collecting
efforts have so far not been fruitful (M. Barclay, pers. com.). For further notes on
the life history of Trictenotomidae, see Pollock and Telnov (2010).

2.4 Overview of Saproxylic Beetles (Table 2.1)

While a few families of saproxylic beetles are dominant on the research radar of most
dead wood entomologists, one of the primary purposes of this chapter, Table 2.1 in
particular, is to highlight some lesser-known but biologically or numerically signif-
icant groups. Well-known groups with large numbers of well-studied species include
Carabidae, Scarabaeoidea, Buprestidae, Elateridae, Bostrichidae, Cleridae,
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Cerambycidae, and Curculionidae. In our view, the most significant poorly studied
groups in saproxylic habitats are the Leiodidae, Staphylinidae, Eucnemidae,
Ptinidae, Trogossitidae, Laemophloeidae, Silvanidae, Erotylidae, Mordellidae,
Melandryidae, Ciidae, Zopheridae, and Tenebrionidae.

Our working definition of saproxylic for this chapter is any species that would no
longer be present in a community if dead and dying woody material were no longer
available (including dead and dying wood in live trees). This definition is similar to
that of Alexander (2008) in that it includes such habitats as sap flows and slime
fluxes. For this chapter, we elected to favor a more inclusive definition of saproxylic
habitats when deciding about apparently borderline cases. The reason for this was to
highlight taxa that have not been traditionally included in discussions of saproxylic
organisms in the interest of a more complete survey of beetles associated with woody
material. We feel we have provided ample information about the specific habits and
habitats of such organisms (where known) so that researchers employing a more
restricted definition will be able to unambiguously include or exclude taxa belonging
to particular guilds according to whichever scheme is being followed. Additionally,
we hope that this more inclusive approach helps encourage future researchers to
investigate the true habits and habitat requirements of such nontraditional and
otherwise overlooked taxa, particularly where their specific habits and habitats are
currently unknown.

As suggested above, the state of knowledge of the habits and habitats of some
beetle groups is exceedingly poor, so these numbers are certainly underestimates,
though vast numbers of undescribed species are known to occur among both
saproxylic and non-saproxylic Coleoptera. Saproxylicity among Coleoptera broadly
is a vast and largely unexplored research area, and we encourage other researchers
and observers to assist in refining our table of saproxylic beetles. As the core of this
contribution, we have included a list of all beetle families and subfamilies, regardless
of saproxylicity, in order to (1) facilitate the visualization of errors, omissions, or
potential current discoveries, as well as (2) to appreciate the proportion of higher-
level diversity with saproxylic members (Table 2.1). It should be clear based on the
foregoing that lack of indication of saproxylic habits in the table should not be taken
as a positive assertion that the group contains no saproxylic members—immature
stages are still undescribed for most described species of beetles (see, e.g., Acorn
2006) and even among described immatures, habits are incompletely known. For
groups with saproxylic members, we indicate approximate world species totals, an
estimate of the percentage of members saproxylic, world distribution of the group,
and more specific habits and habitats where known (by us) through literature
surveys, personal observations, and communication with other workers. The primary
sources of information for this table were the three volumes of the Handbook of
Zoology, Coleoptera volumes {Volume 1: Beutel and Leschen (2005) [updated
version: Beutel and Leschen (2016a)]; Volume 2: Leschen et al. (2010); Volume
3: Leschen and Beutel (2014)}, the two volumes of American Beetles [Volume 1:
Arnett and Thomas (2000); Volume 2: Arnett et al. (2002)], the Coleoptera chapter
of immature insects (Lawrence 1991), references contained within these sources, and
a smattering of other sources cited in the text and “Notes” section of Table 2.1. Since



114 M. L. Gimmel and M. L. Ferro

the two active stages of beetles, larvae and adults, often have dramatically different
habits or habitats, we created two different columns and indicate habits and habitats
for both, even in the case of larval- or adult-only saproxylic taxa. Entries concerning
habits and feeding types refer to the group as a whole and not just to saproxylic
members. We hope this will be a helpful tool for those investigating the presence of
particular saproxylic taxa, since indirect surveys can be a viable alternative to
directly sampling saproxylic habitats.

The classification used here recognizes 187 beetle families, of which 122, or
about 65%, contain at least one known saproxylic member (Table 2.1). Saproxylic
beetles are represented in three of the four suborders of beetles—only Myxophaga
lacks known saproxylic members. Our current state of knowledge indicates that
there are 32 beetle families in which all or virtually all species (90-100%) would be
considered saproxylic, 31 families in which most species (50-90%) are saproxylic,
35 families with some species (10-50%) that are saproxylic, 22 with a few (<10%)
saproxylic species, and one family (Trictenotomidae) for which no estimate can be
given. Adults of saproxylic species are found within woody debris in about 61 fam-
ilies, on woody debris or fungi in 64 families, and away from woody debris in
43 families (categories overlapping, not cumulative). Where known, adults are
mostly (in descending order) mycophagous, saprophagous, and predacious, with a
few that are phytophagous, non-feeding, pollen-feeding, nectar-feeding,
sap-feeding, or myxomycophagous. Adult feeding is unknown for about 27 families.
Larvae of saproxylic species are found within dead wood for about 100 families and
on dead wood or fungi in about 49 families. Where known, larvae are mostly
mycophagous, saprophagous, or predacious with a very few myxomycophagous,
phytophagous, sap-feeding, or parasitic. Larval feeding is unknown for about seven
saproxylic families.

2.5 Conclusion

The primary purposes of this chapter were twofold: firstly, to assemble what is
known concerning the higher beetle taxa associated with the saproxylic habitat and
provide a broad summary thereof. While we did not attempt an exhaustive review of
the topic, we hope that the information and resources provided in this chapter
provide sufficient ordnance to successfully storm the landscape of this topic and
further interrogate particular saproxylic beetle groups.

Secondly, this chapter provides a map of sorts to parts of the saproxylic beetle
landscape, highlighting those that are unknown, veiled, and beyond the wall of
ignorance. Table 2.1 is bespotted with the term “unk” (i.e., unknown, 153 times!), to
us evoking the spots that cover the fawn of a white-tailed deer—immature, gangly,
and unsure of itself and the world. Our knowledge of saproxylic beetles is in much
the same state, a long way from maturity. The reader is provided with a thin guide
that we hope will be useful when marshalling resources and directing excursions into
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that mysterious realm. Every “unk” is an opportunity for future students of the topic
to help piece together the complex tapestry of saproxylic beetle natural history.
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Chapter 3 )
Ecology and Conservation of Passalidae e

Michael D. Ulyshen

Abstract Consisting of about 1000 species globally, beetles of the family
Passalidae feed on decomposing wood in tropical and subtropical forests throughout
the world. Passalids live in subsocial family groups within their galleries, character-
ized by overlapping generations, cooperative brood care, and a complex communi-
cation system involving stridulations. In what has been referred to as an “external
rumen,” larval passalids feed on the microbe-rich frass and finely chewed wood
paste produced by the wood-feeding adults. Endosymbionts found within the guts of
passalids include a variety of microbes, including nitrogen-fixing prokaryotes and
yeasts that aid in the digestion of wood. In addition to wood consumption, passalids
fragment large amounts of wood in the process of creating extensive tunnel systems
and are, among saproxylic insects, perhaps rivaled only by termites in their impor-
tance to wood decomposition. Although a number of laboratory studies have mea-
sured the amount of wood processed by various passalid species, no attempt has
been made to quantify their contributions to wood decomposition under natural
conditions. Passalids, along with their many microbial and invertebrate associates,
are of considerable conservation concern given high levels of endemism and
flightlessness. Many species appear sensitive to forest loss and disturbance and
they have been used as indicator taxa in the creation of protected natural areas.

3.1 Introduction

Passalidae is a mostly tropical scarabaeoid family of shiny black beetles ranging
from about 1 to 8 cm in length (Fig. 3.1). The family consists of two subfamilies
[Aulacocyclinae (old world, two tribes) and Passalinae (pantropical, five tribes)] and
approximately 1000 species (Boucher 2005). Each of the seven tribes recognized by
Boucher (2005) is restricted to a particular region of the world. Passalini and
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Fig. 3.1 Museum specimens representing <3% (28 spp.) of global passalid diversity: Aceraius
grandis (Burmeister) (Taiwan) (28); Chondrocephalus sp. (Guatemala) (3); Heliscus tropicus
(Percheron) (Mexico) (4); H. yucatanus (Bates) (Mexico) (5); Leptaulax sp. (Philippines) (6);
Odontotaenius disjunctus (Illiger) (USA) (31); Od. striatopunctatus (Percheron) (Honduras) (9);
Oileus sargi (Kaup) (Honduras) (8); Passalus bucki (Luederwaldt) (Trinidad) (7); Pas. caelatus
(Erichson) (Panama) (24); Pas. elfriedae (Luederwaldt) (Trinidad) (25); Pas. interstitialis
(Eschscholtz) (Guatemala) (12); Pas. punctatostriatus (Percheron) (Panama) (13); Pas. punctiger
(LePeletier and Serville) (Mexico) (1,2,16); Pas. spiniger (Bates) (Panama) (17); Paxillus borellii
(Pangella) (Brazil) (20,30); Pax. camerani (Pangella) (Peru) (11); Pax. jamaicensis (Hincks)
(Jamaica) (18); Pax. leachi (MacLeay) (Mexico) (19); Proculus goryi (Melly) (Guatemala) (14);
Pr. mniszechi Kaup (Honduras) (15); Ptichopus angulatus (Percheron) (Mexico) (26); Publius
crassus (Smith) (S. America) (10); Spurius bicornis (Truqui) (Mexico) (23); Verres corticola
(Truqui) (Costa Rica) (27); V. deficiens Kuwert (Costa Rica) (29); V. furcilabris (Eschscholtz)
(Trinidad) (21); V. hageni (Kaup) (Costa Rica) (22)

Proculini are restricted to the Americas, Solenocyclini are found in Africa and
Madagascar, Ceracupini are found in Asia, Aulacocyclini and Macrolinini occur
throughout Southeast Asia and eastern Australia, and Leptaulacini are found
throughout Southeast Asia (Boucher 2005). Passalid richness typically decreases
with increasing latitude or elevation, with the family being most diverse in moist
lowland tropical forests (Schuster 1978; Moreno-Fonseca and Amat-Garcia 2016;
Castillo and Reyes-Castillo 2003). The number of passalid species present varies
widely among locations within the tropics, ranging from 1 to 22 in Central and South
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America, for example (Castillo and Reyes-Castillo 2003). Passalids exhibit high
levels of endemism, including giant flightless species restricted to tropical cloud
forests (Schuster et al. 2003), those occurring only in Andean foothills (Fonseca and
Reyes-Castillo 2004), and species found only on particular islands (Jimenez-Ferbans
et al. 2015) or at locations that were once islands separated from the mainland
(Schuster 1994). Howden (1977) found passalids in driftwood on beaches in
Australia, demonstrating the potential to colonize islands, and one island species
consists almost entirely of females and has been shown to reproduce parthenoge-
netically (Boucher et al. 2015). Although passalid diversity is highest in tropical
forests, a number of species occur in temperate zones, and these are among the best-
studied taxa. These include Odontotaenius disjunctus (Illiger) in North America
(extending as far north as Canada), Cylindrocaulus spp. in Japan and Northern China
(Kon et al. 1999; Mishima et al. 2016), Leptaulax koreanus Nomura in Korea (Kim
and Kim 2014), and Pharochilus politus (Burmeister) in Tasmania (Dibb 1938).

While a few species are known from other habitats [e.g., leaf-cutter ant nests,
termite colonies, caves containing colonies of fruit-eating oilbirds, in detritus among
the roots of epiphytes or from the decomposing debris of non-woody plants
(Schuster 1978)], most passalid species are saproxylic, spending their entire life
cycle within or beneath decomposing wood. Unlike the incredible diversity in form
and coloration exhibited by other saproxylic scarabaeoid families (e.g., Lucanidae,
Scarabaeidae), the body shape of passalids varies remarkably little among species
(Arrow 1950) (Fig. 3.1). Moreover, whereas the males of many saproxylic lucanid
and scarab (e.g., Dynastinae and Cetoniinae) species are famous for their exagger-
ated armaments (e.g., mandibles and horns), sexual dimorphism is largely absent
among passalids. This may be due in part to the fact that passalids remain within
decomposing logs as adults where giant mandibles and horns would be a hindrance
to movement. The absence of sexual dimorphism in passalids may also be related to
their monogamy and sociality, i.e., living in small family groups characterized by
overlapping generations, cooperative brood care, and a complex communication
system involving various stridulations. Compared to the amount of attention
researchers have paid to passalid sociality, the importance of these insects to wood
decomposition remains a relatively neglected topic. This is unfortunate considering
that, among saproxylic insects, passalids are probably exceeded only by termites in
their importance to decomposition in tropical and subtropical forests. These and
other aspects of passalid biology are reviewed below, followed by some consider-
ations for conservation.

3.2 Ecology

3.2.1 Subsocial Behavior

Passalids live in subsocial family groups within tunnels they excavate in moderately
decomposed wood. Tunnel systems, or galleries, which often exceed a meter in
length (Gray 1946; Galindo-Cardona et al. 2007), are initiated by a single female or
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male which is later joined by a member of the opposite sex. Copulation typically
occurs within the galleries (Castillo and Reyes-Castillo 2009) although exceptions
have been documented, e.g., MacGown and MacGown (1996) observed nuptial
flights of O. disjunctus in Mississippi. Passalids are monogamous after gallery
establishment, and both sexes contribute to the creation of galleries. These efforts
result in the production of large amounts of fragmented wood, some of which gets
pushed out of the log near the tunnel entrance (Fig. 3.2d). Eggs are laid upon a nest
of finely chewed wood within the galleries and the adults attend to them. Larvae eat
wood that is shredded and chewed by the adults as well as the frass of mature adults.
In what Mason and Odum (1969) referred to as an “external rumen,” the gut
microbes associated with frass, as well as with the finely chewed wood paste that
is used to line the walls of the galleries (Castillo and Reyes-Castillo 2009), continue
the process of digestion outside the body, ultimately producing a more nutritious
resource than the wood itself (Schuster and Schuster 1997; Rodriguez and Zorrilla
1986; Larroche and Grimaud 1988). Coprophagy is not uncommon among inverte-
brates that feed on decomposing plant matter (Szldvecz and Pobozsny 1995) and
appears to be particularly important to passalids. It has been shown that O. disjunctus
individuals quickly lose weight or even die in the absence of frass, for example
(Pearse et al. 1936; Mason and Odum 1969; Mishima et al. 2016). The parents of at
least one species of passalid, Cylindrocaulus patalis (Lewis) of Japan, go so far as to
provision their larvae with trophic eggs, i.e., nonviable eggs which are consumed by
the larvae (Ento et al. 2008).

The parents and their teneral and mature adult offspring assist larvae in the
creation of a pupal case, constructed out of frass and providing protection for the
vulnerable pupal stage (Schuster and Schuster 1997). Weeks or months are needed
for teneral adults to change from reddish brown to black and to become sexually
mature (Schuster and Schuster 1997). At that point [and sometimes before, see
Jackson et al. (2009)], they either migrate to initiate a new colony [usually nearby,
see Galindo-Cardona et al. (2007)] or excavate galleries off those created by their
parents (Schuster and Schuster 1997). Migration typically takes place during partic-
ular parts of the year (e.g., at the beginning of the wet season in tropical areas) and,
depending on the species, can involve flying and/or walking (Schuster and Schuster
1997). Passalids are known to communicate through tactile, chemical, and acoustic
cues (Castillo and Reyes-Castillo 2009). Both larvae and adults produce a variety of
sounds through stridulation, but the sounds produced by adults are louder and known
to vary depending on the behavioral context. Schuster (1983) reported that the
sounds produced by adult passalids can be separated into seven basic structural
types and exist in 13 different behavioral contexts. The same study showed
O. disjunctus to produce 14 different sound signals depending on the situation,
representing perhaps the most complex repertoire of acoustic signals produced by
any arthropod.

Social behavior is not uncommon among saproxylic insects, as evidenced by the
high number of eusocial (e.g., termites) and subsocial (e.g., Cryptocercus) wood-
feeding cockroaches, the eusocial ambrosia beetle Austroplatypus incompertus
(Schedl) (Kent and Simpson 1992), subsocial stag beetles (Mori and Chiba 2009),
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Fig. 3.2 Odontotaenius disjunctus in the southeastern United States: adult (a); third instar larvae
(b); damage to standing trunk (c); pile of wood fragments near tunnel entrance (d); and galleries
(e-g)

and a particularly interesting group of subsocial tenebrionids (Phrenapates spp.)
which, as briefly discussed below, are in many ways similar to passalids (Nguyen
et al. 2006). It is perhaps not surprising that a substrate as recalcitrant and nutrition-
ally poor as wood would give rise to intraspecific cooperation in addition to the
many examples of interspecific cooperation (e.g., endo- and ectosymbioses)
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documented among these insects. Just as N-fixing gut symbionts can greatly accel-
erate the development rates of their wood-feeding host insects (Ulyshen 2015), the
parental care exhibited by passalids probably has similar benefits to the development
of their offspring. Support for this comes from a study by Mori and Chiba (2009)
who showed that a species of Asian lucanid, Figulus binodulus Waterhouse,
develops more quickly when parents are present than when absent. The researchers
concluded that improving food quality, e.g., by pulverizing wood, is the most likely
mechanism by which F. binodulus parents improved juvenile growth. Moreover,
passalids are known to develop more quickly than less social wood-feeding taxa.
Whereas many lucanid species require one or more years to complete development,
the larval period for passalids lasts for several months at the most (Mishima et al.
2016; Gray 1946; Castillo and Reyes-Castillo 2009). The passalid species with the
shortest known larval period (approximately one month) is Cylindrocaulus patalis in
Japan, a species that exhibits unusually high levels of parental care due to a parent/
offspring ratio of 1:1 (Mishima et al. 2016).

The fact that passalids continue to feed on decomposing wood as adults, unlike
most saproxylic scarabaeoids, may have set the stage for the development of
subsocial behaviors by bringing adults and larvae into close contact (Schuster and
Schuster 1997). Indeed, the wood-digesting gut symbionts passalid parents provide
to their offspring in the form of frass appear to be of huge benefit to larval growth,
and this may have selected for sociality. Evidence for the selective value of symbi-
onts to larval wood-borer development comes from the existence of mycangia in
female lucanids. These structures, which are absent in passalids and related groups,
are thought to provide a mechanism (i.e., in the absence of gut symbionts since adult
lucanids do not feed on wood) by which female lucanids can provide assistance to
their larvae by inoculating oviposition sites with beneficial xylose-fermenting yeasts
stored within their mycangia (Tanahashi et al. 2010). The subsocial behavior of
another group of wood-boring beetles, Central and South American tenebrionids of
the genus Phrenapates, is particularly informative given their similarity, in a number
of respects, to passalids. Phrenapates not only look like passalids (so much so that
they are often confused with them) but also live in subsocial groups within
decomposing wood and have similar symbiotic relationships with xylose-fermenting
yeasts (Nguyen et al. 2006). These similarities appear to reflect convergent solutions
to the challenges facing wood-feeding insects, although it should be noted that
sociality in Phrenapates remains poorly studied.

Other possible factors contributing to the emergence of sociality in passalids have
received less attention, including the role adult passalids may play in protecting their
offspring from predators as well as other passalids [i.e., adult passalids are known to
cannibalize immature stages (Gray 1946)]. Alternative explanations for social
behavior are worth further consideration given that some previous researchers
have cast doubt on the idea that passalid larvae are closely attended to by their
parents and adult siblings. Based on his observations in South America, for example,
Heymons (1929) noted that parents and larvae are often widely separated within a
gallery system, and the space between them is often clogged with wood fragments.
The possibility that these piles of fragments may serve as fortifications against
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predators, similar to the fortifications termites construct using soil carried into logs,
is deserving of investigation, as are the potential benefits parents provide in driving
away predators. In North America, the tachinid Zelia vertebrata (Say), a generalist
parasitoid of saproxylic beetle larvae, is one of the most important predators of
O. disjunctus. It seems possible that walls of wood fragments, as well as the adults
themselves, may provide a protective function against these and other natural
enemies.

3.2.2 Endosymbionts

It has long been known that wood-feeding insects rely on a variety of symbiotic gut-
dwelling microbes to aid in the digestion of wood and that many of them may gain
more nourishment from these microbes than from the wood itself (Uvarov 1928).
Although the gut-dwelling microbes of passalids have been studied for well over a
century (Pearse et al. 1936; Leidy 1852; Lichtwardt et al. 1999), the biggest
advances in understanding have been made in the past 10-20 years, and the findings
from these more recent studies are briefly summarized here. It is clear that passalid
guts house complex assemblages of microorganisms (including bacteria, Archaea,
protists, nematodes, and various fungi) and that the composition of microbial
communities varies among gut regions (Nardi et al. 2006). Ceja-Navarro et al.
(2014), for example, reported significant compositional differences in bacteria and
archaea communities among the four main gut regions (foregut, midgut, anterior
hindgut, and posterior hindgut) of O. disjunctus, although the midgut and posterior
hindgut communities did not differ from one another. Higher taxon richness was
observed in the foregut and posterior hindgut than in the midgut or anterior hindgut.
Moreover, aerobic bacteria were more abundant in the foregut and posterior hind-
guts, while anaerobic bacteria dominated the anterior hindgut and midgut. All gut
regions contained an anaerobic core but also possessed radial gradients in oxygen
concentration, indicating that aerobic and anaerobic metabolism occur within close
proximity. Ceja-Navarro et al. (2014) also confirmed the presence of N-fixing pro-
karyotes (mainly Bacteroidetes spp., rather than the N-fixing spirochetes common in
termites) in various gut regions of O. disjunctus, and these organisms are likely to
contribute to the N economy of their hosts, as they do in so many other wood-feeding
insects (Ulyshen 2015).

The first suspected endosymbionts reported from passalid guts were yeasts that
Suh et al. (2003) found in consistent association with their hosts over a broad
geographical area. Because some of the yeasts are known to ferment and assimilate
xylose or hydrolyze xylan (major components of hemicellulose), they are suspected
to play an important role in the digestion of wood within the passalid gut. More
recently, Nguyen et al. (2006) showed that similar yeasts to those found in the guts of
passalids can also be found in the guts of distantly related wood-boring beetles, such
as Phrenapates bennetti Kirby, a tropical wood-feeding tenebrionid. Urbina et al.
(2013) documented approximately 78 yeast species from 16 Guatemalan passalid
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species. Xylose- and cellobiose-fermenting yeasts belonging to Scheffersomyces and
Spathaspora were the most abundant and consistently present clades reported in that
study. In addition to their role in digesting wood, these yeasts have the potential to
also benefit their hosts by providing certain essential amino acids, vitamins, and
sterols or by detoxifying plant metabolites (Urbina et al. 2013). The importance of
these and other gut-dwelling microbes to their hosts remains poorly understood, and
the extent to which the growth of passalids is fueled by wood vs. microbial biomass
remains an unanswered question. Mishima et al. (2016) recently argued that the
Japanese passalid, Cylindrocaulus patalis, is primarily fungivorous because the
activities of enzymes required to digest $-1,3-glucan (present in fungal cell walls)
were much higher than those required to digest f-1,4-xylan (present in wood).
Moreover, the researchers found much lower enzymatic activity in C. patalis larvae
compared to adults.

3.2.3 Substrate Selection

Like many insects associated with wood at intermediate or late stages of decompo-
sition, passalids are not very discriminating with respect to which wood species they
utilize. The activities of most species are limited to angiosperms, however, with just
a few known from pines or other conifers (Schuster 2008). In Puerto Rico, Galindo-
Cardona et al. (2007) found Spasalus crenatus (MacLeay) in logs belonging to
18 (64%) of the 28 wood species sampled. Some wood species were less readily
colonized than others, however, with the relatively soft wood of pioneer species
being less preferred. Gray (1946) reported that O. disjunctus can be found using the
logs or stumps of nearly all species of tree in North Carolina although only rarely
pine and never cedar. Jackson et al. (2012) found the probability of O. disjunctus
being present in logs to be higher for large logs compared to small logs as well as
logs belonging to intermediate stages of decomposition and logs without heart rot.
Moreover, O. disjunctus appears to strongly prefer white rot (Jackson et al. 2013).
The extent to which these substrate associations hold true for other passalid species
is not clear although many species exhibit preferences for particular microhabitats.
For example, some species focus their activities beneath the bark, within the
sapwood/heartwood or at the wood-soil interface (Kon and Johki 1987; Moreno-
Fonseca and Amat-Garcia 2016). Although the width/length ratio of passalid bodies
is remarkably consistent across taxa (Fig. 3.1), species found primarily under bark
tend to more dorsoventrally flattened than sapwood/heartwood feeders (Johki 1987;
Lobo and Castillo 1997). Moreno-Fonseca and Amat-Garcia (2016) also found
differences in tibia morphology among different passalid guilds. Passalids are not
limited to fallen logs but can also be found tunneling into standing deadwood
(Fig. 3.2c). Working in Brazil at the end of the nineteenth century, Ohaus (1909)
described the experience of witnessing a 20 m tall tree fall nearby. As it came
crashing to the ground, it broke apart, revealing galleries extending along the entire
length of the trunk and containing hundreds of passalids. Similarly, Schuster (1978)
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reported collecting a species of Spasalus at a height of 7 m in a standing trunk in
Peru. Odontotaenius disjunctus has also been collected many meters above the
ground (Schuster 1978) although Jackson et al. (2012) showed that the probability
of standing deadwood being colonized by that species to be lower than that of
downed wood.

Jackson et al. (2013) showed that the positive relationship observed between
O. disjunctus density and log size (Jackson et al. 2012) is better explained by a
preference for larger logs than by differences in habitat quality between large and
small resources (i.e., beetle preference did not correspond with greater reproductive
success). The possibility that large logs may result in higher lifetime fitness or allow
for multiple generations by providing more stable habitats was not tested, however,
and the researchers stopped short of suggesting that large-diameter logs have no
special value to passalid conservation. Although little information has been
published about the importance of large logs in providing long-term resources,
Gray (1946) reported that an oak log approximately 1 m in diameter supported
O. disjunctus for more than a decade in North Carolina. Jackson et al. (2013) also
found that O. disjunctus preferred to colonize logs that already contained conspe-
cifics (something they can detect from outside a log) even though this had short-term
negative effects on reproductive success. Selecting logs that are already colonized
may have benefits not measured in that study, however, including reduced search
costs, increased mating opportunities, and reduced predation risk (Jackson et al.
2013). Although O. disjunctus is the only passalid species present throughout most
of its range, it is not uncommon for multiple species to coexist within many tropical
forests (Kattan et al. 2010) and as many as 5—10 species can be found residing within
the same log (Castillo and Reyes-Castillo 2009; Luederwaldt 1931).

3.2.4 Succession

While relatively few studies have explored the succession of passalid species
throughout the decomposition process, it is well established that species feeding
beneath the bark are typically the first to colonize a dead log (often before the wood
has begun to decompose). These species are characterized by rapid feeding and
reproductive rates as well as strong dispersal abilities relative to those that feed on
decomposing sapwood/heartwood (Castillo and Reyes-Castillo 2009). Castillo and
Reyes-Castillo (2003) provide a table showing which species of passalids were
present in logs belonging to four stages of decomposition in Mexico. While some
species were found in all four decay classes, others showed a preference for those at
early or late stages of decomposition.
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3.2.5 Occupancy Rates

Early naturalists working in South America noted that dead tree trunks and branches
are almost always occupied by passalids (Ohaus 1909). Only a few efforts have been
made to carefully quantify this, however. In Chiapas, Mexico, passalids were found
in 91% of logs examined by Morén et al. (1988). Galindo-Cardona et al. (2007)
reported finding Spasalus crenatus (MacLeay) in 42% of sampled logs in Puerto
Rico, with some wood species more likely to be occupied than others. Out of
248 decomposing logs examined in a primary Mexican rain forest, 64% were
inhabited by one or more passalid species, with 13 species collected overall (Castillo
and Reyes-Castillo 2009). A similar study carried out in a less pristine forest and
pastureland in Brazil found 21.5% of all logs examined to have one or more passalid
species, with a total of nine species detected overall (Castillo and Reyes-Castillo
2009). Castillo and Reyes-Castillo (2009) suggested that the differences in occu-
pancy rates between these Mexican and Brazilian sites may indicate the negative
effects of disturbance on passalid communities. In Colombia, Kattan et al. (2010)
found passalids present within 36% of logs sampled in three forest types, but
old-growth remnants appeared to have higher occupancy rates than Andean alder
plantations or naturally regenerating forests. In Louisiana, Jackson et al. (2012)
found 26% of hardwood logs (>5 cm in diameter and showing evidence of decay)
were colonized by O. disjunctus and found the species in 73% and 95% of their
314 m? subplots and 1256 m? plots, respectively. In order of importance, Jackson
et al. (2012) found the probability of occupancy in sampled log sections was higher
when (1) logs were moderately decomposed, (2) logs were large, (3) the area did not
experience flooding, (4) the surrounding 225 ha was more forested, (5) heartrot was
absent, (6) ants were absent, (7) other wood borers were present, (8) there was less
canopy cover, and (9) the piece of wood was downed and not standing.

3.2.6 Importance as Decomposers

Although passalids obviously play an important role in the physical degradation of
wood (Morén 1985; Castillo and Reyes-Castillo 2003; Rodriguez and Zorrilla 1986)
and are perhaps rivaled only by termites in their importance to wood decomposition
in many tropical forests, their contributions to this process remain poorly quantified.
With respect to insect-mediated decomposition, it is important to distinguish
between the physical destruction (i.e., fragmentation or comminution) and chemical
digestion of wood as these are two completely different processes. Only the latter
qualifies as decomposition although comminution can indirectly accelerate decom-
position by improving gas exchange and increasing the surface area of wood
exposed to microbes (Ulyshen 2016). The extent to which wood-boring insects
consume the wood they fragment varies greatly among species. Ambrosia beetles,
for example, only fragment wood during the creation of the galleries within which
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they cultivate their symbiotic fungi. On the other end of the spectrum are wood-
feeding termites which consume virtually all of the wood that they process and
assimilate much of it with the help of endosymbionts. Passalids fall somewhere in
between, fragmenting large amounts of wood and consuming some of it. Compared
to the high assimilation efficiency exhibited by termites, wood passing through the
gut of a passalid is not well digested. In fact, most of the chemical degradation of
wood consumed by passalids occurs on the frass deposited by the beetles in their
galleries [i.e., the external rumen as described by Mason and Odum (1969)]. The
frass gets re-ingested multiple times and gets more digested and nutrient-enriched
(Larroche and Grimaud 1988; Rodriguez and Zorrilla 1986) with each cycle. A full
understanding of the role passalids play in wood decomposition will thus require
information on how much wood is fragmented, how much of the fragmented wood is
consumed, how thoroughly the consumed wood gets digested after multiple gut
transits, etc. Another important question concerns how much faster (or slower) wood
fragments created but not consumed by passalids decompose relative to intact wood.

The most straightforward way to assess the net effect of insects on wood
decomposition is to compare differences in dry wood mass loss between logs from
which the insects of interest have or have not been excluded [preferably under field
conditions, as discussed below and described by Ulyshen et al. (2016)]. However,
most past efforts to assess the role of passalids in wood decomposition have focused
on measuring the amount of debris (including fragments and frass) produced per
individual over a given unit of time. While such information provides a sense of how
much wood is transformed by these insects, it is technically a measure of physical
breakdown and should not be confused with decomposition. One of the earliest
efforts to quantify the role of passalids as decomposers was a laboratory study by
Preiss and Catts (1968). Although wood mass loss was not calculated in that study,
the researchers found an oak log to be almost completely fragmented by seven adult
O. disjunctus after a 30-week period. In another laboratory study, Rodriguez and
Zorrilla (1986) similarly found Passalus interstitialis (Eschscholtz) fragmented
3-33% of wood weight within one month, with some wood species experiencing
higher rates of fragmentation than others.

A study by Castillo and Morén (1992) yielded some of the best existing infor-
mation about the importance of passalids to both the physical and chemical break-
down of wood. They investigated the rate at which ten species of passalids native to
Mexico processed wood under laboratory conditions. Overall, the 110 beetles used
in the study processed 43.6% of the dry wood weight provided. More than half
(54.7%) of the processed wood (or 23.8% of the total wood provided) was converted
to detritus. Although not explicitly stated in the article, the remaining 45.3%
(or 19.8% of the total wood provided) was presumably respired or assimilated by
the beetles (it is not possible to determine what fraction of this weight was due to
decay fungi active in the wood vs. due to the passalids themselves, however).
Overall, passalids in that study processed about 4.5 times their total body weight
in wood although the relative rate of consumption (i.e., rate of immobilization/
assimilation after correcting for differences in body mass) varied greatly among
the ten passalid species studied. The relative rate of consumption decreased with
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increasing body weight and was highest for P. inferstitialis, a species that feeds on
the relatively nutritious (and perhaps more readily assimilated) wood just beneath
the bark. Species that feed under the bark are also characterized by rapid population
growth in order to make use of an ephemeral resource (Castillo and Reyes-Castillo
2009), and this might also explain their higher relative consumption rate. The
researchers also observed strong differences in the amount of wood processed
(fragmented) by the different passalid species and attributed these to differences in
body size (i.e., large species create larger tunnel systems) as well as to uneven levels
of acceptance among the species for the type of wood used in the experiment.

Most recently, Fonseca (2014) used similar methods to investigate the amount of
wood processed by six species of Colombian passalids held under laboratory
conditions. Closely matching the findings of Castillo and Moré6n (1992), detritus
accounted for about 58%, on average (with a range of about 33—79% among the six
species studied), of wood mass loss. As with the study by Castillo and Morén
(1992), however, it is not possible to determine how much of the remaining wood
loss was due to the activities of wood-rotting fungi vs. the beetles. Future studies
addressing this question would benefit from the addition of a reference treatment as
this would provide information on how much mass loss occurs in the absence of
passalids. Inconsistent with the pattern reported by Castillo and Morén (1992),
Fonseca (2014) found sapwood/heartwood feeders and generalists to exhibit higher
relative consumption rates than species belonging to the under-bark feeding guild. It
is clear from these and other studies that the degree to which passalids accelerate
wood decomposition will ultimately depend on the species of passalid(s) present;
wood characteristics such as density, nutritional content and other factors that vary
among tree species; and abiotic conditions (Cano and Schuster 2012).

To my knowledge, no effort has been made to experimentally quantify the
contributions of passalids to wood decomposition under natural conditions in the
field. Such work would be of great value considering that laboratory studies are
typically done under unnatural conditions including forced colonization by beetles
(after removing them from active colonies located elsewhere), an absence of inter-
specific interactions with other insects known to coexist with passalids in
decomposing logs, and disturbed or unrealistic fungal communities. One of the
biggest challenges to overcome in field-based insect exclusion studies is to avoid
differences in microclimate (and therefore microbial activity) between treatments
(Ulyshen and Wagner 2013; Kampichler and Bruckner 2009). Among several
methods tested in Mississippi over a 10-year period, Ulyshen et al. (2016) found
that pans with screened bottoms and open tops showed the most promise with
respect to excluding termites without resulting in differences in microclimate
between experimental logs protected or unprotected from termites. Although
passalids were not included in that study, future studies could include holes along
the sides of the pans to permit the natural colonization of “unprotected logs” by
walking passalids. Pans without holes could serve as the “protected” treatment.
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3.2.7 Interspecific Interactions

Many animals have been shown to opportunistically use the galleries created by
passalids. Gray (1946), for example, reported a long list of invertebrates (including
nematodes and earthworms) as well as various reptiles and amphibians found within
O. disjunctus tunnels in North America. Some species appear to be strongly, if not
entirely, dependent on passalids for food, shelter, or transportation. Examples
include cockroaches (e.g., Panchlora in Mexico) that feed on detritus within passalid
galleries in Central and South America (Castillo and Reyes-Castillo 2009; Ohaus
1909), ceratocanthids associated with passalid galleries in Southeast Asia and the
Americas (Ballerio and Maruyama 2010; Ohaus 1909; Woodruff 1973), a scarab in
West Africa (Paraphytus aphodioides Boucomont) that forms brood balls from a
mixture of passalid frass and wood fragments (Cambefort and Walter 1985), and
many species of mostly phoretic mites and pseudoscorpions (Ohaus 1909). Hunter
(1993) reported 21 families, 68 genera, and over 200 species of mites known from
passalid beetles, including 6 families found only in association with these insects.
Although a few mite species associated with passalids are believed to be parasitic,
most are believed to be commensal and phoretic, using their hosts as transportation
to new habitats. Different phoretic mite species attach to different parts of the
passalid body. The 16 mite species associated with O. disjunctus in North America,
for example, can be distinguished between those that ride on external surfaces (e.g.,
gular region, frons, near the front coxae) vs. those that ride in protected body niches
(e.g., antennal and maxillary sulci, between the pro- and mesothorax, under the
elytra) (Hunter 1993). By contrast to that of O. disjunctus, the phoretic arthropod
community associated with most passalid species remain mostly, if not entirely,
unknown. This includes even some of the largest mites, as evidenced by the recent
description of a giant (>5 mm) mesostigmatan mite from an Australian passalid
(Seeman 2017). Moreover, only a few studies have investigated the habits of mites
within passalid galleries (e.g., Butler and Hunter 1968).

Passalids commonly share logs with termites and ants throughout the tropics. In
the Brazilian Amazon, for example, Fonseca (1988, see Table 2) reported that ants
and/or termites were present in 86% of the logs containing passalids, with 54% of the
logs containing all three taxa. Mor6n (1985) suggested there is intense competition
for decomposing logs among termites, ants, and passalids in Mexican forests below
1000 m elevation and that the social insects tend to displace the beetles. Ants, in
particular, are major predators of insects within deadwood and no doubt pose a
serious threat to larval passalids. In Chiapas, Mexico, Morén et al. (1988) observed
that ants commonly (in about 50% of the logs examined) colonize galleries exca-
vated by passalids and other wood-boring beetles. They further noted that any larval
or adult beetles present within these galleries were either killed by the ants or forced
to leave. Consistent with this, Jackson et al. (2012) found the probability of a log
section being occupied by O. disjunctus to be lower when ant colonies were present.
The presence of subterranean termites (Reticulitermes spp.) was not important,
however, Gray (1946) reported that adult O. disjunctus sometimes bite into
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Reticulitermes galleries and will sometimes even eat termites they encounter but that
Reticulitermes are only occasional and accidental inhabitants of passalid galleries.

Documented insect predators of passalid larvae include opportunistic predatory
families like Reduviidae and generalist parasitoids like certain members of the fly
family Tachinidae (Castillo and Reyes-Castillo 2003). In North America, Gray
(1946) found O. disjunctus larvae to sometimes be parasitized at very high rates
(up to 60% of third instar larvae, for example) by the tachinid Zelia vertebrata. It is
possible that adult passalids can drive many potential predators out of their tunnels
given the aggressive behaviors (e.g., biting and pushing) they exhibit toward con-
specific intruders (Castillo and Reyes-Castillo 2009). According to Castillo and
Reyes-Castillo (2009), predation of passalids by vertebrates is rarely seen but can
include lizards and woodpeckers. Documented vertebrate predators of O. disjunctus
include lizards, opossums, and bears (Brown 2004; Reynolds 1945; Vitt and Cooper
1985).

3.3 Conservation

3.3.1 Threatened Species

Many passalid species are inherently at risk due to small distributions, dependence
on particular habitats, or an inability to fly, and this appears to be the case throughout
the world, e.g., flightless species are known from all subfamilies (Hinks 1933).
Restricted to the Americas and containing roughly 19 genera (Boucher 2005), the
tribe Proculini (subfamily Passalinae) exhibits particularly high levels of endemism
and flightlessness. This is especially true for species limited to cloud forests,
including the genus Proculus which contain some of the largest passalid species in
the world (Fig. 3.1). Schuster et al. (2003) concluded their revision of the genus with
this warning: “In general Proculus, as well as other montane species of passalids, is
probably in danger of extinction throughout its range due to the elimination of most
of the forest where it occurs.” Odontotaenius also exhibits high levels of endemism.
For example, Schuster (1994) described a second species of North American
Odontotaenius, O. floridanus Schuster, that is restricted to sandy ridges in Florida
that were once islands separated from the mainland. The limited distribution of this
species makes it potentially at risk from future landscape changes.

3.3.2 Sensitivity to Disturbance

Castillo and Lobo (2004) compared passalid diversity and community structure
between primary and secondary (i.e., dominated by pioneer tree species) tropical
forests in Mexico. There were no strong differences in the abundance or richness of
passalids collected in the two forest types. Only one species, Verres cavicollis Bates,
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differed in abundance per log between forest types, being more abundant in the
secondary forest. Two of the least common species were only captured in old-growth
forests, however. Although these findings suggest that passalids are not very sensi-
tive to forest disturbance, not enough information was provided about the secondary
forest to fully interpret these results. It is not clear if the logs sampled in the
secondary forest originated from that or the previous forest, for example. More
recently, Kattan et al. (2010) compared passalid communities among native Andean
alder (Alnus acuminata Kunth) plantations planted as part of a restoration effort,
naturally regenerating forests and old-growth forests in the Colombian Andes. The
two secondary forest types were planted approximately 40 years before sampling
took place on land formerly used for cattle ranching. The old-growth and naturally
regenerating forests had more than twice the wood volume as the alder plantations
and old-growth forests had more passalid individuals overall and per cubic meter of
wood sampled than the other two forest types. Of the six species collected, one was
found only in the regenerating forest, and two were only found in the old-growth
forest. In India, Sarasija et al. (2012) reported that passalids were more common in
natural forests containing moist logs at advanced stages of decay than in teak
plantations.

Jackson et al. (2009) found walking O. disjunctus to be reluctant to venture into
open habitats in Louisiana, suggesting a low likelihood of movement among forest
fragments. Because O. disjunctus is abundant throughout much of its range and is
often present within isolated forest fragments, the researchers predicted that the
species may fly, rather than walk, between patches of forests. Although
O. disjunctus is typically observed walking (Jackson et al. 2009), so much so that
Gray (1946) suggested the species was incapable of flight, the observation of 12-15
individuals flying approximately 30 m from the nearest forest edge at dusk in
Mississippi (MacGown and MacGown 1996) supports the idea that occasional flight
events may be important to the dispersal of the species. Other species of passalids are
truly flightless, however, and may benefit from wooded corridors connecting sepa-
rate patches of forest.

3.3.3 Utility as Indicator Taxa

Because they are relatively well described compared to many other tropical insect
taxa, exhibit high levels of endemism, and can be sampled quickly at any time of the
year, passalids have been used in prioritizing areas for conservation in some coun-
tries. In Guatemala, for example, passalids were used as indicator organisms to
justify the creation of the Sierra de las Minas Biosphere Reserve (Schuster et al.
2000). Schuster et al. (2000) developed a method to identify Guatemalan cloud
forests in the greatest need for protection based on data collected for 66 species of
passalids (e.g., richness, endemism, similarity among guilds) and forest conditions.
Support for the use of passalids as indicator taxa in Guatemala comes from the fact
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that their endemism patterns are similar to those of other animals, e.g., scarab
beetles, salamanders, and small mammals (Cano and Schuster 2009).
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Chapter 4 )
Diversity and Ecology of Stag Beetles e
(Lucanidae)

Ta-1 Huang

Abstract The beetle family Lucanidae contains over 1200 described species world-
wide, with the highest diversity found in Southeast Asia. Most species are
saproxylic, with larvae feeding on deadwood at various stages of decomposition
and contributing to the breakdown of this material. Female lucanids usually oviposit
eggs either directly within decaying wood, at the soil-wood interface beneath logs, or
in the soil. Larvae of lucanid beetles spend the majority of their life span living in
decaying wood or other decomposing substrates, where they feed on materials rich
in fungal biomass. In addition, adults of many lucanid beetles are highly dependent
on living trees where either they can find sap as a food source or locate partners for
mating. Relatively little is known about the biology, life history, or substrate
associations of saproxylic stag beetles despite their striking morphology and popu-
larity among entomologists and amateur insect collectors. In this chapter I discuss
ecological niche partitioning among lucanid beetles, with a focus on the relatively
well-studied fauna of Taiwan as a case study. I also review the importance of fungal
associations to lucanid beetles and the role these insects play in wood
decomposition.

4.1 Diversity and Ecology of Stag Beetles

Lucanid beetles are among the largest and most charismatic groups of insects
associated with decomposing wood and can serve as important bioindicators of
forest integrity. Within a given region, forests with the highest lucanid diversity
are generally characterized by lower levels of disturbance and larger amounts of
deadwood (Wang 1990; Chang 2006). In Europe, for example, Lachat et al. (2012)
reported that lucanids were among the species most sensitive to deadwood amount
and temperature among 69 families of saproxylic beetles examined in that study.
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Although most lucanid adults are thought to feed on sap flows and breed in
decomposing logs or stumps (Blatchley 1910; Kojima 1996), information about
their basic ecology, including host plant associations, is limited. The European giant
stag beetle, Lucanus cervus (L.), is probably the most well-studied lucanid beetle
worldwide, and most studies have focused on its distribution (Thomaes et al. 2008;
Harvey et al. 2011a), monitoring and sampling (Harvey et al. 2011b; Chiari et al.
2014; Bardiani et al. 2017), and morphological variation (Clark 1977; Harvey and
Gange 2006). Recently, Ulyshen et al. (2017) reported on the basic ecology,
genetics, and geographic distribution of the giant stag beetle, L. elaphus, in the
USA. Tropical and subtropical mature forests in East and Southeast Asia host the
highest diversity of lucanid species (Krajcik 2001; Smith 2006), with most published
information focusing on new species description and taxonomy (Araya et al. 1998;
Han et al. 2010; Zilioli 2012) as well as conservation (Lin et al. 2009; Huang 2014).

4.1.1 Breeding Substrates and Behavior

Most lucanid beetles inhabiting decaying wood feed on cellulosic material highly
colonized by fungi and other microorganisms. Although some adult lucanids show
strong preferences for the sap of particular host plants, most female lucanids are less
discriminating about their selection of breeding substrates (Araya 1993a; Chang
2006). When lucanid females find an appropriate log for oviposition, they will
decide how many eggs to lay according to the size and quality of the substrate
(Chang 2006). In general, as long as logs are rotten and soft, with adequate humidity
and without many termites or other insects, they can provide potentially suitable
habitat for oviposition, regardless of whether the log is in contact with the soil or still
standing (Chang 2006). Relationship between the decay types (white, brown, and
soft rot) in decaying wood and occurrence of lucanid beetles was studied in Japan by
Araya (1993a) who found that some lucanid species such as Ceruchus lignarius
(Lewis) and Aesalus asiaticus (Lewis) prefer brown rot and Platycerus acuticollis
(Kurosawa) is associated with soft rot. However, P. delicatulus (Lewis) and other
lucanids such as Prismognathus angularis (Waterhouse), Macrodorcas striatipennis
(Motschulsky), Dorcus montivagus (Lewis), D. rubrofemoratus (Vollenhoven)
showed no clear patterns of decay type use. Araya (1993b) further reported that
C. lignarius occurred exclusively in highly decayed brown rot (brown rot specialist),
whereas the occurrence of P. angularis was not as clearly associated with either
decay type or its stage (decay type generalist).

In Taiwan, females of only a few lucanid species show specificity for particular
kinds of decomposing logs for oviposition. For example, Aegus jengi is distributed
in the northern hills around Taipei City, with adults and larvae being only associated
with large pine logs (Huang and Chen 2016). About 10 years ago, with the
devastating infection of Bursaphelenchus xylophilus (Steiner and Buhrer) vectored
by Monochamus alternatus (Hope), most pine trees in northern Taiwan were
chopped and removed. Although the population and abundance of A. jengi has not
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been officially investigated, such anthropogenic disturbances have the potential to
extirpate populations of specialist species.

4.1.2 Larval Ecology and Development

All the known lucanid larvae in Taiwan go through three instars, with the 1st and 2nd
instars being relatively brief, usually 2-4 weeks (Chang 2006). The 3rd instar is
usually the longest in duration, with most species remaining in this stage for more
than half a year and as long as 2 years at cooler elevations. Due to this age structure,
most larvae encountered in logs or soil are 3rd instars. Due to the relatively large size
of 3rd instar larvae, they typically receive more attention from researchers. However,
lack of information about 1st and 2nd instars in the wild results in incomplete
knowledge about the development of these species and their importance to
decomposition.

Larvae of Odontolabis siva parryi (Boileau) and most species in the genus of
Neolucanus do feed on decaying woody fibrous tissue, but most of the time inhabit
in the decomposed soil underneath dead trees. Therefore, adult females often choose
rotten roots underneath decaying trees or the undersides of large logs adjacent to the
ground for oviposition spots. Aegus laevicollis formosae and most Lucanus larvae
inhabit shallow soil depths where they feed on rich fibrous rotten substrates (Yang
2007). Thus when females of these lucanids find a suitable environment, they will
dig into the soil and crawl around to lay eggs. Several genera mentioned above share
the same habitat in a specific forest belt, partitioning different niches among logs and
the underlying soil to ensure their survivorship and sustainability.

In Australia, different lucanid beetles are reported to utilize white rot, brown rot,
drier substrates, sapwood, lower elevation, etc. (Wood et al. 1996). The rainbow stag
beetle, Phalacrognathus muelleri (Macleay), only breeds in rotting wood in the
rainforests of northern Queensland where larvae have been extracted from the wood
of 27 tree species in 13 families, all logs experiencing white rot (Wood et al. 1996).
In the USA, Lucanus elaphus was found in association with a wide range of rot types
without any noticeable preference, including white rot, brown rot, and even within
veins of relatively intact wood surrounded by rot (Ulyshen et al. 2017).

4.1.3 Fungivory and Symbiotic Microbes

Fungivory is widely observed in insects (Kukor and Martin 1987). Some social
insects such as leaf-cutting ants (Hymenoptera) and macrotermitine termites
(Blattodea) culture specific fungi in their nests and feed directly on the fungal tissues
(Chapela et al. 1994; Wood and Thomas 1989). Some wood-inhabiting insects have
endosymbiotic microbes within their guts that help digestion of wood. For example,
lower termites and wood-feeding cockroaches have protozoa or bacteria in their
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digestive organs which produce cellulolytic enzymes (Cleveland 1924; Slaytor
1992; Breznak and Brune 1994). Ambrosia beetles culture and consume ambrosia
fungi growing within their galleries in wood (Batra 1963; Beaver 1989). Fungivory
is evidently clear for these insect groups. However, for insects that feed on substrates
containing fungi, it is difficult to determine if the fungi are used for nutrients or
merely consumed along with the substrate. Lucanids, some cerambycid and
buprestid beetles, and higher termites inhabit and feed on wood decayed by wood-
rotting fungi (Araya 1993a, b; Saint-Germain et al. 2007; Abe et al. 2000). Passalid
and cerambycid beetles are associated with xylose-fermenting yeasts that may help
in the digestion of wood hemicelluloses (Suh et al. 2003, 2006).

Little is known about what kinds of microbes are associated with stag beetles,
although Kuranouchi et al. (2006) indicated the presence of nitrogen-fixing microbes
within Dorcus rectus (Motschulsky) larvae. Despite their close connection with
decomposing wood and associated microbial activity, it remains poorly understood
how lucanids interact with fungi and other microorganisms. Wood is composed
mostly of cellulose as well as lignin and hemicellulose which together comprise
about 90% of the total volume (Parkin 1940). These compounds are difficult to
digest and contain low contents of nitrogen, sugars, and starch (Haack and Slansky
1987); such nutrient conditions make wood a poor food resource for insects. Hanula
(1996) pointed out five possible advantages of fungal-infested wood over fresh wood
as food for insects:

. Increased concentrations of nitrogen and other elements in fungal mycelia.

. Increased ingestion and digestion of wood made fragile by wood-rotting fungi.
. Increased moisture content of wood.

. Increased digestion of woody tissue by enzymes originating from fungi.

. Detoxification of toxic or repellent allelochemicals in wood.

DN AW =

Tanahashi et al. (2009) suggested that direct nutrient acquisition from the fungal
mycelia may be particularly important. Dorcus rectus represents one of the most
common and widely distributed stag beetles in Japan (Kurosawa 1985). Tanahashi
et al. (2009) reported that adult females of D. rectus locate decaying wood of broad-
leaved trees affected by white-rot fungi, and it was found that the larvae were able to
develop on fungal mycelia without wood; thus, they can be considered fungivorous.
This is the first demonstration of fungivory in stag beetles but may be the case for
other species as well.

Some fungivorous insects possess a mycangium (pl. mycangia), a special struc-
ture on the body in which symbiotic fungi (usually in spore form) are transported to
new locations (Beaver 1989). Mycangia have evolved in a number of beetle lineages
including multiple times in Scolytinae (Curculionidae) and lymexylids. In some
cases, as in ambrosia beetles, the fungi are cultivated for food on the gallery walls. In
other cases, such as the southern pine beetle, Dendroctonus frontalis Zimmermann,
phloem is the main food, and fungi weaken the defense response from host plant (Six
and Wingfield 2011).

Tanahashi et al. (2010) further reported the first evidence of a mycangium in
lucanids which is located near the dorsal side of the rectum in the abdomen.
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Interestingly, there was no mycangium near the rectums of any male lucanid or of
either sex in the sampled passalid, geotrupid, and scarabaeid species, which are
families of beetles closely related to Lucanidae (Smith et al. 2006). Yeastlike
microbes, closely related to the xylose-fermenting yeasts Pichia stipitis Pignal,
P. segobiensis Santa Maria and Garcia Aser, or P. sp., were isolated from the
mycangium of five lucanid species (Tanahashi et al. 2010). The larvae of the five
lucanid species from which xylose-fermenting yeasts were isolated in that study
exclusively feed on wood colonized by white-rot fungi. Dorcus rectus and
D. striatipennis (Motschulsky) are white-rot specialists, and three other species,
D. titanus sakishimanus (Nomura), Prosopocoilus pseudodissimilis (Kurosawa),
and Prismognathus angularis (Waterhouse), are somewhat less specialized.
Although not confirmed, Tanahashi and Fremlin (2013) proposed that ovipositing
female stag beetles may inoculate the substrate with their mycangium yeasts. If so,
this is potentially another example of parental care behavior. The absence of
mycangia in passalids may be explained by the subsocial behavior of this group,
where adults help prepare food for developing larvae (Tanahashi et al. 2010).
Moreover, whereas passalid adults and larvae both feed on decomposing wood,
lucanid adults are primarily sap feeders and may thus lack the gut microbes needed
in the larval stage to digest wood (Tanahashi et al. 2010). Inoculating oviposition
sites with xylose-fermenting yeasts from mycangia may thus be a way for female
lucanids to help their offspring digest wood. More research is needed to explore
these possibilities.

4.1.4 Parental Care

Parental care is thought to be one of the key factors in the evolution of social
behavior and is favored in situations characterized by ephemeral resources (Bartlett
and Ashworth 1988), nesting systems relatively safe from predators (Scott 1990), or
situations where finding and establishing a new nesting system may be difficult and
dangerous (Kirkendall et al. 1997). In Japan, it was found that the initial growth rate
of 3rd instar Figulus binodulus (Waterhouse) was significantly higher when the
larvae were in a nest with adults compared to those in a nest without adults (Mori and
Chiba 2009). Their results suggest that F. binodulus has a level of sociality and nest
mate recognition that is very rare in stag beetles (Mori and Chiba 2009). In Taiwan,
females of all species of Figulus, several species of Aegus, and Nigidionus parryi
(Bates) usually burrow into the log using their mandibles and stay inside the log
laying eggs in the rotten substrates until they die. Nigidionus parryi especially shows
“parental care” as most larvae found in the decaying logs coexist with adults (Chang
2006).
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4.2 Niche Partitioning of Lucanids in Taiwan

4.2.1 Diversity and Environment of the Taiwan Island

Taiwan is unique among all subtropical regions because it is the only sizeable island
located immediately north or south of the tropical zone between the 23rd parallels
(Huang and Lin 2010). The island is unique for its complex terrain, from low altitude
coastal plains to a Central Mountain Range (CMR) containing more than 200 peaks
exceeding 3000 m elevation (Huang et al. 2006). Forests in Taiwan can be catego-
rized as the tropical monsoon forest, the subtropical forest, and the temperate
grassland. Su (1992) categorized seven forest belts based on the seven different
climate zones with their corresponding elevation (Table 4.1). The island contains
more than 4000 native plant species, and a quarter (1054 species) of them are
endemic (Su 1984). The number of insect species recorded in Taiwan is about 2%
of the world’s total, but the total land area of the island accounts for only 0.25% of
the global total. There are nearly 5000 kinds of beetles in Taiwan, including at least
55 described species of Lucanidae (Chang 2006; Huang and Chen 2015, 2016)
(Table 4.2). Taiwan thus contains nearly one twentieth of the 1200 lucanid species
known globally. By contrast, the neighboring country of Japan, which has more than
a tenfold larger land area, has just 40 species of lucanids. On the other side of the
Pacific Ocean, North America harbors only 24 lucanid species, but the total area is
near 700 times larger than the Taiwan Island. The lucanid fauna of Taiwan is not
only diverse but also relatively well-studied, providing an excellent opportunity to
gain insights into the ecology of this group of insects.

Among the 55 lucanid species in Taiwan (Fig. 4.1), all of them are found from
tropical to temperate zones below 2800 m in elevation, and most species are
restricted to a specific vegetation zone (Chang 2006). The absence of species
above 3000 m is presumably due to the low temperatures and low floral diversity
associated with the cool temperate to subarctic zones. Except for some species of
Lucanus that are speculated to feed on grass roots, most lucanids in Taiwan are
considered saproxylic as the larvae feed directly on decomposing woody substrates
or rotten soil that contains highly decomposed wood such as the genus Neolucanus
(Table 4.2). Ecological niches among lucanids in Taiwan are discussed mainly based
on forest belt (climate niche) and host plants (food niche).

Table 4.1 Taiwan flora category with the corresponding climate zone and elevation

Climate zone Flora belt Elevation (m)
Subarctic zone Alpine vegetation >3600

Cold temperate zone Abies zone 3100-3600
Cool temperate zone Tsuga-Picea zone 2500-3100
Temperate zone Quercus zone (upper) 2000-2500
Warm temperate zone Quercus zone (lower) 1500-2000
Subtropical zone Machilus-Castanopsis zone 500-1500
Tropical zone Ficus-Machilus zone <500
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Table 4.2 Lucanid species known from Taiwan and their substrate associations
Breeding substrate
Genus/species Distribution (flora belt) (wood/soil) Rot type
Aegus
Aegus laevicollis Machilus-Castanopsis— Decomposed soil Brown rot
formosae Bates Quercus (lower)
Aegus jengi (Huang and | Machilus-Castanopsis Decomposed pine Brown rot
Chen)
Aegus kurosawai Quercus (upper and lower) Decomposed pine Brown rot
Okajima and Ichikawa mud
Aegus chelifer Macleay Ficus-Machilus Decomposed wood Brown rot
Aesalus
Aesalus imanishii Inahara | Quercus (upper and lower) Decomposed conifer | Brown rot
and Ratti
Cyclommatus
Cyclommatus scutellaris | Ficus-Machilus—Machilus- Decaying hardwood White rot
Mollenkamp Castanopsis
Cyclommatus asahinai Machilus-Castanopsis— Decaying hardwood White rot
Kurosawa Quercus (lower)
Cyclommatus mniszechi | Ficus-Machilus—Machilus- Decaying hardwood White rot
Thomson Castanopsis
Dorcus
Dorcus grandis Ficus-Machilus—Machilus- Decaying hardwood White rot
formosanus Miwa Castanopsis
Dorcus schenkingi Machilus-Castanopsis— Decaying hardwood White rot
Mollenkamp Quercus (lower)
Dorcus miwai Benesh Machilus-Castanopsis— Decaying hardwood White rot
Quercus (upper and lower)
Dorcus yamadai Miwa Machilus-Castanopsis— Decaying hardwood White rot
Quercus (upper and lower)
Dorcus titanus sika Ficus-Machilus—Machilus- Decaying hardwood Generalist
Kriesche Castanopsis
Dorcus kyanrauensis Ficus-Machilus—Quercus Decaying hardwood Generalist
Miwa (lower)
Dorcus parvulus Hope Ficus-Machilus Decaying hardwood Generalist
and Westwood
Dorcus reichei clypeatus | Machilus-Castanopsis— Decaying hardwood White rot
Benesh Quercus (upper and lower)
Dorcus gracilicornis Machilus-Castanopsis— Decaying hardwood White rot
Benesh Quercus (upper and lower)
Dorcus mochizukii Miwa | Machilus-Castanopsis— Decaying hardwood White rot
Quercus (upper and lower)
Dorcus rectus Machilus-Castanopsis— Decaying hardwood White rot
Motschulsky Quercus (lower)
Dorcus striatipennis Quercus (upper and lower) Decaying hardwood White rot
yushiroi Sakaino
Dorcus taiwanicus Machilus-Castanopsis— Decaying hardwood White rot

Nakane and Makino

Quercus (lower)

(continued)
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Table 4.2 (continued)
Breeding substrate
Genus/species Distribution (flora belt) (wood/soil) Rot type
Dorcus carinulatus Nagel | Machilus-Castanopsis— Decaying hardwood White rot
Quercus (lower)
Echinoaesalus
Echinoaesalus chungi Ficus-Machilus Decaying hardwood Unknown
Huang and Chen
Figulus
Figulus binodulus Ficus-Machilus—Machilus- Decaying hardwood White rot
Waterhouse Castanopsis
Figulus punctatus Ficus-Machilus Decaying hardwood Unknown
Waterhouse
Figulus curvicornis Ficus-Machilus Decaying hardwood Unknown
Benesh
Figulus fissicollis Ficus-Machilus Decaying hardwood Unknown
Fairmaire
Lucanus
Lucanus formosanus Machilus-Castanopsis Decomposed soil Brown rot
Planet
Lucanus Machilus-Castanopsis— Decomposed soil Brown rot
maculifemoratus Quercus (upper and lower)
taiwanus Miwa
Lucanus swinhoei Parry | Ficus-Machilus—Quercus Decomposed soil Unknown
(upper)
Lucanus datunensis Machilus-Castanopsis Decomposed soil in Unknown
Hashimoto bottom grassland
Lucanus kanoi Kurosawa | Machilus-Castanopsis— Decomposed soil Brown rot
Quercus (upper and lower)
Lucanus kurosawai Quercus (upper and lower) Decomposed soil Brown rot
Sakaino
Lucanus miwai Kurosawa | Quercus (upper and lower) Decomposed soil Brown rot
Lucanus ogakii Imanishi | Quercus (upper and lower) Decomposed soil Brown rot
Neolucanus
Neolucanus swinhoei Ficus-Machilus—Machilus- Decomposed soil Brown rot
Bates Castanopsis
Neolucanus maximus Machilus-Castanopsis— Decomposed soil Brown rot
vendli Dudich Quercus (lower)
Neolucanus eugeniae Machilus-Castanopsis Decomposed soil Unknown
Bomans
Neolucanus doro Machilus-Castanopsis— Decomposed soil Brown rot
Mizunuma Quercus (lower)
Neolucanus sinicus Ficus-Machilus—Machilus- Decomposed soil Unknown
formosanus Mizunuma Castanopsis
Nigidionus
Nigidionus parryi Bates Machilus-Castanopsis Decaying hardwood | White rot

(continued)
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Table 4.2 (continued)
Breeding substrate

Genus/species Distribution (flora belt) (wood/soil) Rot type
Nigidius

Nigidius acutangulus Machilus-Castanopsis Decaying hardwood Unknown
Heller

Nigidius baeri Boileau Ficus-Machilus Decaying hardwood Brown rot
Nigidius formosanus Ficus-Machilus Decaying hardwood White rot
Bates

Nigidius lewisi Boileau Ficus-Machilus—Machilus- Decaying hardwood Unknown

Castanopsis

Odontolabis

Odontolabis siva parryi Ficus-Machilus—Machilus- Decomposed soil Brown rot
Boileau Castanopsis

Prismognathus

Prismognathus Quercus (upper and lower) Decaying hardwood White rot
Sformosanus Nagel

Prismognathus piluensis | Quercus (upper and lower) Decaying hardwood White rot
Sakaino

Prismognathus davidis Quercus (upper and lower) Decaying hardwood White rot
Bomans and Ratti

Prosopocoilus

Prosopocoilus astacoides | Ficus-Machilus—Quercus Unknown Unknown
blanchardi Parry (lower)

Prosopocoilus forficula Ficus-Machilus—Machilus- Decaying hardwood White rot
austerus DeLisle Castanopsis

Prosopocoilus Ficus-Machilus Decomposed soil Unknown
motschulskii Waterhouse

Prosopocoilus Machilus-Castanopsis— Decaying hardwood White rot
Sformosanus Miwa Quercus (lower)

Pseudorhaetus

Pseudorhaetus sinicus Machilus-Castanopsis Decaying hardwood White rot
concolor Benesh

Rhaetulus

Rhaetulus crenatus Ficus-Machilus—Machilus- Decaying hardwood Generalist
Westwood Castanopsis

4.2.2 Lucanus

The lower and upper Quercus zones, together ranging from 1500 to 2500 m, contain
the most well-protected forest habitats for lucanid beetles in Taiwan. These Quercus
forests are generally given protected status by the government as national parks or
preserves, thus providing relatively less disturbed conditions for a diverse lucanid
assemblage. Lucanus is the typical genus of lucanids living in this temperate
Quercus zone. In the upper Quercus forest, the distributions of Lucanus

maculifemoratus taiwanus Miwa, L.

swinhoei Parry, L. kanoi Kurosawa,
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Fig. 4.1 Lucanid beetle larvae and associated feeding environment: (a) adult and 3rd instar larva of
Pseudorhaetus sinicus associated with white rot; (b) larvae of Neolucanus maximus vendli associ-
ated with brown rot; (c¢) 3rd instar larvae of Lucanus kurosawai associated with decomposed soil;
(d) lucanid diversity in Taiwan

L. kurosawai Sakaino, and L. miwai Kurosawa could overlap in certain areas
(elevation, 1800-2300 m) of the Central Mountain Range (Chang 2006). These
lucanids can be found together in mature forests with one species more numerous
than the others, depending on the location. It is believed that these lucanid species
share the same habitat and utilize similar food sources in the larval stage, all feeding
on decaying rotten wood or soil substrates. The degree of rottenness might be an
important factor in determining where females choose to oviposit. In artificial
rearing chambers, most Lucanus females will lay eggs in fermented rotten soil
made from saw dust of Quercus trees (Lai 2001). However, more eggs can be
found between soil surface and decayed wood when given additional material
(e.g., piece of decayed maple wood) for oviposition (Lai 2001). Interestingly,
these Lucanus larvae were never found in living trees or dead dry logs without
any moisture in the wild. This may explain that these Lucanus can feed on decaying
Quercus wood in general, but the degree of decaying might be the key for females to
determine where to lay eggs. In the USA, Ulyshen et al. (2017) reported the
substrates within which L. elaphus (Fabricius) were found feeding were always
damp and sometimes thoroughly saturated. Drier wood, as sampled at upland sites or
in logs with limited ground contact, never yielded L. elaphus (Ulyshen et al. 2017).
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Niche partitioning among lucanid larvae remains far from understood which requires
more research to explore the ecology of oviposition behavior.

Some lucanid species can be found in several vegetation zones, suggesting a high
degree of flexibility with respect to both adult and larval plant associations. Lucanus
swinhoei, for example, can be found in subtropical and warm temperate (i.e., lower
Quercus) zones and appears to behave differently in the different areas. Within the
lower Quercus zone, for example, adults of L. swinhoei associate strongly with
Quercus variabilis (Blume), commonly feeding on sap flows during the daytime and
rarely coming to lights at night. Lucanus swinhoei also occurs within the Ficus-
Machilus zone (<200 m in the northern coastal hills), where Q. variabilis does not
occur; instead, the dominant plants are Acacia confusa Merr., Sapium sebiferum (L.)
Roxb., and Lauraceae. In addition, adults of L. swinhoei in this region are strongly
attracted to lights at night. How L. swinhoei has adapted to these highly dissimilar
climates and plant communities remains a question for enthusiasts or ecologists to
answer. On the other hand, a related species, L. maculifemoratus taiwanus, inhabits
the same Quercus zone in CMR but never occurs down to Ficus-Machilus zone in
northern coastal hills (Chang 2006).

Another classic example is the endemic lucanid L. formosanus Planet. Adults of
L. formosanus exhibit a strong association with Cyclobalanopsis glauca (Thunb)
distributed in Machilus-Castanopsis zone. Adults of L. formosanus often rest in the
canopy of C. glauca where there is an availability of sap flow on trunks and
branches. A clear preference for the canopy layer of L. formosanus is similar to
L. cervus and L. elaphus, the two large Lucanus species occurring in Europe and the
USA, respectively (Bardiani et al. 2017; Ulyshen et al. 2017). Larvae of
L. formosanus can also be found feeding on rotten soil substrate beneath logs similar
to other members of Lucanus. Ulyshen et al. (2017) also indicated larvae of
L. elaphus were found either tunneling inside logs or feeding beneath logs at the
soil-wood interface.

One that exhibits a completely different ecology from other Lucanus is
L. datunensis (Hashimoto). Its distribution is limited to the hilltop area of Daiton
Mountain (elevation 800—1100 m) located in Yangmingshan National Park in Taipei
City (Lin et al. 2009). Interestingly, although this area is within Machilus-
Castanopsis zone, there is no hardwood forest locally due to severe winter and
northeast monsoon. Instead, only two grasses dominate this habitat, dwarf bamboo
[Pseudosasa usawai (Hayata.) Makino & Nemoto.] and Japanese silver grass
[Miscanthus floridulus (Labill.) Warb. ex K. Schum. & Lauterb.], with some Azaleas
and Eupatorium shimadae (Kitam.) growing along the roadside. Males of
L. datunensis often fly in the daytime around the grassland hovering up and down
among grasses seeking mates; females are rarely found and probably spend most of
the time near their breeding substrates at the bases of grasses. Lin et al. (2009)
hypothesize that diurnal mate searching and the small size of L. datunensis are both
adaptations in response to a habitat shift from forests to grasslands. Although there
have been no field observations of larval L. datunensis, it is speculated that
L. datunensis feed on the rotten soil under the two grass species (Chang 2006).
Due to the extremely limited distribution, Lin et al. (2009) proposed that protection
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and restoration of the grassland habitat consisting of the dwarf bamboo and Japanese
silver grass in Yangmingshan National Park should be a top priority for developing a
conservation strategy for the threatened L. datunensis.

Another daytime-active Lucanus is L. miwai; it inhabits in the Quercus zone in
CMR overlapping with L. maculifemoratus taiwanus, L. swinhoei, L. kanoi, and
L. kurosawai. Males of L. miwai hover up and down along the edge of forests or
grassy areas on warm spring (April-May) days looking for mates (Wang 1990;
Huang 2014), a flying behavior similar to L. datunensis. It is noteworthy that both
L. miwai and L. datunensis are only active in the daytime and are never attracted to
lights at night, contrasting with the nocturnal habits of the other four Lucanus species
found in the same habitat. Males of many lucanid species possess curving and
greatly enlarged mandibles that often are used in male-male competition for access
to females (Clark 1977; Kawano 1992). The active diurnal mate searching flight in
open fields in these two species may result in a better strategy over a more
widespread behavior of intra-sex competition for resources and mating found in
most forest-dwelling lucanids (Harvey and Gange 2006; Rink and Sinsch 2007; Lin
et al. 2009). Diurnal activity has also been observed in other lucanids. In Brazil, all
members of the genus Leptinopterus have diurnal habits and have been collected
flying or feeding at sap flows of trees and shrubs (Grossi 2009).

Spatial niche is also partitioned among these Lucanus species. Although they are
present within the same vegetation zone, the distributions of the various Lucanus
species differ slightly in terms of altitude. In general, L. kurosawai occurs at the
highest elevations, followed by L. miwai, L. kanoi, L. maculifemoratus taiwanus,
and L. swinhoei in the Central Mountain Range. While some species can be found at
a wide range of elevations (L. maculifemoratus taiwanus and L. swinhoei), the
altitudinal distributions of other species are more restricted (L. kurosawai,
L. miwai and L. kanoi) (Chang 2006; Yang 2007).

4.2.3 Aegus

Niche partitioning is well documented among the four species of Aegus found in
Taiwan. Aegus laevicollis formosae (Bates) occurs across a broad range of elevation
from 500 to 2000 m in Taiwan. Adults of A. laevicollis formosae are often seen
feeding on tree flows of Acacia confusa (Merr.) and C. glauca. Larvae of
A. laevicollis formosae were found in rotten substrates under Miscanthus or
Fargesia logs. Aegus jengi (Huang and Chen) occurs in the Machilus-Castanopsis
zone of northern Taiwan, with larvae often found in reddish rotten pine wood,
especially Pinus taiwanensis (Hayata) (Chang 2006). Adults are seldom observed
outside away from breeding substrates. Aegus kurosawai (Okajima and Ichikawa)
also utilizes highly decomposed pine wood that is often mud-like in consistency but
occurs at higher elevations in the Quercus zone (1600-2600 m). Aegus chelifer
(Macleay) is the only Aegus species not living in mountain ranges; instead, they are
only found in deadwood in coastal areas where they are attracted to lights. It is


https://en.wikipedia.org/wiki/Bunz%C5%8D_Hayata

4 Diversity and Ecology of Stag Beetles (Lucanidae) 161

believed that A. chelifer was introduced to Taiwan through the movement of wood
from South Asia, and populations of the species have since become well established
in certain coastal areas.

4.2.4 Neolucanus

Species of the genus Neolucanus prefer to feed on completely decomposed rotten
soil substrates, e.g., under logs in broadleaf forests. Neolucanus swinhoei (Bates) is
diurnally active and is commonly found walking on roadsides or hanging on trees in
the Ficus-Machilus and Machilus-Castanopsis zones. Neolucanus doro (Mizunuma)
occurs at relatively higher elevations from the Machilus-Castanopsis to lower
Quercus zones and is also diurnal, often seen walking on trails or roads similar to
N. swinhoei (Chang 20006). Neolucanus maximus vendli (Dudich) also occurs within
the same forest belt between the Machilus-Castanopsis and lower Quercus zones but
is active at night, and adults can be attracted to lights after 10 pm. However,
N. maximus vendli can also be found in the daytime feeding on tree flows in the
forest canopy (Chang 2006). Larvae of N. maximus vendli are found in red rotten soil
underneath big decaying trunks or dead roots. Temporal and spatial niche
partitioning is demonstrated between N. doro and N. maximus vendli, presumably
a strategy for these species to avoid interspecific competition while sharing the same
habitat.

4.3 Threats to Lucanid Diversity and Future
Recommendation

In Japan, the wild populations of native stag beetles are rapidly decreasing because
of artificial disturbance of habitats, and some species are already close to endangered
(Kojima 2003). It has been reported that Southeast Asia has the highest relative rate
of deforestation of any major tropical region and could lose three quarters of its
original forests by 2100 and up to 42% of its biodiversity (Sodhi et al. 2004). Recent
research has highlighted the sensitivity of saproxylic insects to forest management,
with managed or secondary forests generally supporting fewer individuals, fewer
species, and different assemblages compared to old-growth or primary forests
(Grove 2002). Habitat loss in recent years has been an unsolved issue that will
ultimately lead to extinction of species, including lucanid beetles that are highly
dependent on forest and logs. Meanwhile, biological invasions by exotic stag beetles
may also pose a threat to native lucanid populations (Goka et al. 2004). It is believed
that the first impact will be competition for food and habitat, the second, genetic
introgression as a consequence of hybridization between exotic and native species,
and the third, invasion of imported parasites (Goka et al. 2004). In Japan, Kanzaki
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et al. (2011) reported that eight species of nematodes were cultured from eight
species of lucanid beetles, including four phoretic nematodes considered to predom-
inate. The nematodes exhibited low host specificity and were widely distributed.
Global trading of lucanids among hobbyists thus risks the introduction of exotic
nematodes in Japan and elsewhere, with the potential to be then passed on to native
lucanid populations where they can potentially hybridize or otherwise disrupt native
nematode populations (Kanzaki et al. 2011).

Due to their relatively large size and to the greatly exaggerated mandibles of many
species, stag beetles are among the most enthusiastically collected insect groups by
amateur collectors and insect vendors (Goka et al. 2004). The market size of the stag
beetle commerce is considered to be over 10 billion Japanese yen (USD100 million)
(Goka et al. 2004), involving 700 lucanid species from all over the world with over
15 million specimens imported to Japan each year (Tournant et al. 2012). Mass
capturing for commercial purposes, exotic invasion from global trading, and destruc-
tion of suitable habitats by human activities inevitably threaten stag beetle populations
and their long-term survival (Speight 1989; Berg et al. 1994).

Since 2015, the Taiwanese government implemented a comprehensive replace-
ment of street lights from mercury light bulbs to LED lights throughout the island to
save energy. This action incidentally saved millions of lucanids and other nocturnal
beetles attracted to mercury street lights at night and killed by vehicles, especially in
mountainous areas. Ultimately, in order to protect saproxylic insects like lucanid
beetles, efforts to preserve their original habitats are no doubt the best practice.
Minimizing anthropogenic exploitation, prohibiting or limiting logging activities,
and preserving natural habitats will together promote the long-term conservation of
lucanid beetles.
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Chapter 5 )
Saproxylic Diptera e

Michael D. Ulyshen

Abstract Diptera rivals Coleoptera as perhaps the most abundant and diverse order
of saproxylic insects, with saproxylic habits known from at least 75 (48%) of the
157 fly families recognized globally. Some fly families are mostly if not entirely
saproxylic including Aulacigastridae, Axymyiidae, Canthyloscelidae, Clusiidae,
Pachyneuridae, Pantophthalmidae, Periscelididae, Xylomyidae, and Xylophagidae.
Saproxylic flies are common inhabitants of virtually all moist to wet microhabitats
including sap flows, under bark, in rotting wood, tree hollows, and fungal fruiting
bodies. Most species are saprophagous or fungivorous although many predatory
species exist as well, including some of the most important natural enemies of bark
beetles. Although very poorly studied compared to beetles, it is clear that many
saproxylic fly species are declining due to forest loss or degradation, and some taxa
(e.g., mycetophilids) are good indicators of forest continuity. The dependence of
flies on wet or even saturated substrates suggests they need special consideration
when developing conservation strategies. Studies addressing their sensitivity to
various management interventions are urgently needed.

5.1 Introduction

Originating approximately 270-251 million years ago (Bertone and Wiegmann
2009), flies belong to one of the four most taxonomically diverse insect orders,
Diptera, with approximately 157 extant families and over 160,000 named species
(Marshall 2012). They are also the most ecologically diverse, occurring in virtually
all terrestrial and freshwater habitats where they exploit an unmatched variety of
food resources. Although sometimes overshadowed by beetles and other groups,
flies are ubiquitous and are often among the most numerous insects encountered in
saproxylic habitats (Swift et al. 1984; Krivosheina 2006; Teskey 1976; Derksen
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1941; Vanderwel et al. 2006; Schiegg 2001). Hévemeyer and Schauermann (2003)
collected nearly 12,000 flies from 37 families and 163 species from decomposing
beech logs in Germany, for example, and flies accounted for over 90% of insects
emerging from decaying wood in a Canadian study (Vanderwel et al. 2006). As
members of the saproxylic insect community, flies are second only to beetles in
functional and taxonomic diversity (Figs. 5.1 and 5.2) and may prove to be even
more species rich than beetles in some regions [e.g., Nordic countries, see Stokland
et al. (2012)]. The diversity of saproxylic flies is generally underappreciated due to

Fig. 5.1 Examples of larval saproxylic flies. (a) Xylophagus lugens Loew (Xylophagidae) in
rotting wood, North Carolina; (b) Keroplatidae on a polypore, North Carolina; (¢) Sciaroidea on
the plasmodium of a slime mold (Physarum) atop the rotting fruiting bodies of Pleurotus, South
Carolina; (d) close-up view of the same larvae shown in the previous image; (e) Medetera
(Dolichopodidae) in bark beetle galleries, Florida; (f) Stratiomyidae under bark, North Carolina;
(g) Forcipomyiinae ceratopogonids (pupa and larva) under bark, North Carolina. Images (a), (b),
and (e—g) by Matthew Bertone and images (c) and (d) by Michael Ulyshen



5 Saproxylic Diptera 169

their small size and the difficulty of identifying many families to species. Efforts to
study the most challenging families have revealed an incredible diversity of species
associated with dead wood, however. In Canada, for instance, Selby (2005) collected
323 cecidomyiid species or morphospecies from rotting logs in an old-growth forest.

Flies are typically saproxylic only as larvae (Fig. 5.1), whereas adults (Fig. 5.2)
usually function away from dead wood as nectar feeders, predators, etc. Certain

Fig. 5.2 Examples of adult saproxylic flies. (a) Xylophagus compeditus Meigen (Xylophagidae),
Germany; (b) Tanyptera dorsalis (Walker) (Tipulidae), New York; (¢) Pantophthalmus bellardii
(Bigot) (Pantophthalmidae), Costa Rica; (d) Coenomyia ferruginea (Scopoli) (Xylophagidae),
Illinois; (e) Tachypeza sp. (Hybotidae), Germany; (f) Phaonia rufiventris (Scopoli) (Muscidae),
Germany; (g) Zelia vertebrata (Say) (Tachinidae), North Carolina; (h) Temnostoma balyras
(Walker) (Syrphidae), North Carolina; (i) Temnostoma vespiforme (L.) (Syrphidae), Germany; (j)
Pseudotephritis vau (Say) (Ulidiidae), North Carolina; (k) Clusiodes albimanus (Meigen)
(Clusiidae), Germany; (1) Traginops irroratus Coquillett (Odiniidae), North Carolina. Images (a),
(e), (f), (i), and (k) by Frithjof Kohl; (b) by Brandon Woo; (c) by Piotr Naskrecki; (j) and (1) by
Matthew Bertone; (d) by Thomas Bentley; and (g) and (h) by Patrick Coin
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Fig. 5.3 Flies on slime flux in North Carolina, USA. Members of Aulacigastridae, Drosophilidae,
Odiniidae, and Tabanidae are shown in image (a), and Odiniidae (Traginops) and Drosophilidae are
shown in image (b). Images by Matthew Bertone

syrphids and other species that feed exclusively on sap runs (Fig. 5.3) are some of the
few taxa that are saproxylic as adults (Speight 1989). As with other insect orders,
many non-saproxylic fly taxa also benefit from the conditions and resources pro-
vided by dead wood. In Germany, for instance, Hovemeyer and Schauermann
(2003) found that many fly species benefit from the moss layer that sometimes
forms on rotting logs, with moss coverage being one of the two strongest determi-
nants (the other being water content) of fly diversity associated with dead wood. A
number of non-saproxylic predatory fly taxa also benefit from dead wood. One
example, Pherbellia annulipes (Zetterstedt), is a specialist predator of snails in
Europe that is rarely found away from rotting logs due to the high numbers of snails
to be found there (Speight 1989).

Compared to beetles, the habits of saproxylic flies remain poorly studied. Many
species are presumed to be saproxylic due to their close association with dead wood
(Rohécek and Marshall 2017), but little or nothing is known about their larval habits
or requirements. The threatened status of saproxylic flies is thus likely to be
underestimated (Jonsell et al. 1998). Unlike beetles and other groups, saproxylic
flies typically prefer moist to wet microhabitats and often dominate assemblages in
saturated or submerged wood (Hovemeyer and Schauermann 2003; Braccia and
Batzer 2008). Many saproxylic fly species develop within fermenting sap, either
flowing from wounds on trees or under the bark, where they function as microbial
grazers or predators of other insects (Marshall 2012). Many other species feed within
wet or saturated wood at various stages of decomposition and can best be described
as saprophagous, benefiting more from the microbes associated with rotting wood
than from the wood itself. Species that are restricted to water-filled tree holes,
including many mosquito taxa, are also saproxylic. Saproxylic flies associated
with the wettest environments commonly have special morphological structures to
aid in respiration. Axymyiid larvae, for example, have tail-like respiratory syphons
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ending in a pair of spiracles that allow them to maintain contact with the surface of
wood partially submerged in streams (Marshall 2012) (see Fig. 22.3e, this volume).
Larval sap flies belonging to the family Aulacigastridae also breathe through long
respiratory tubes as do many syrphid larvae (Marshall 2012).

There is some disagreement over family-level divisions among flies, creating
uncertainty about the total number of fly families. Whereas crane flies are typically
divided into four families in Europe (Tipulidae, Limoniidae, Cylindrotomidae, and
Pediciidae), for example, others give these groups subfamily status within Tipulidae
(Petersen et al. 2010). Here I follow the classification system used by Marshall who
listed 157 extant fly families. As summarized in Table 5.1, saproxylic habits are
known from at least 75 (48%) of these families although this probably underesti-
mates the true number given that the habits of many species, genera, and even
families (e.g., Lygistorrhinidae, Rangomaramidae, Syringogastridae, etc.) remain
entirely unknown. While many of the families listed in Table 5.1 contain relatively
few saproxylic species, other families are mostly if not entirely saproxylic. Examples
of the latter include Aulacigastridae, Axymyiidae, Canthyloscelidae, Clusiidae,
Pachyneuridae, Pantophthalmidae, Periscelididae, Xylomyidae, and Xylophagidae.
The most well-studied group of saproxylic flies are those belonging to the family
Syrphidae. Although only a small proportion of syrphid species are saproxylic [e.g.,
~14% of European species (Reemer 2005)], this still amounts to many hundreds of
species including most members of the largest subfamily, Eristalinae. Fungus gnats
belonging to a variety of families are perhaps the most diverse members of the
saproxylic community. They are also among the least understood, with most species
awaiting discovery and description. In the Neotropics, for example, the ratio of
undescribed to known species of mycetophilids is thought to exceed 10:1 (Amorim
2009).

This chapter aims to promote the appreciation for and conservation of saproxylic
flies. My main objectives are to (1) summarize the family-level diversity of
saproxylic flies globally (Table 5.1), (2) describe the main resources utilized by
saproxylic flies, and (3) discuss the conservation status of these insects and how best
to protect them in managed forests.

5.2 Feeding Groups and Microhabitats

Most saproxylic flies are either saprophagous, fungivorous, or predatory as larvae.
The saprophagous species feed on a variety of decomposing substrates including
fermenting sap near tree wounds or under bark, rotting wood and the frass or nest
material of saproxylic insects. Fungivorous species are commonly associated with
the fruiting bodies of wood-rotting fungi. Predatory taxa, including parasitoids, can
be found in all of these microhabitats and attack a wide range of species including
other fly species, wood-boring beetles, termites, etc. According to Krivosheina
(2006), predatory habits are much more widespread among brachyceran (especially
Orthorhapha) saproxylic flies than among the lower families of Diptera. Some fly
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Table 5.1 Alphabetical list of fly families of the world known to include saproxylic species, their

habits, and distribution

Family

Habits of saproxylic members

Acartophthalmidae

Rotting wood, presumably saprophagous (Marshall 2012)
(Holarctic)

Anisopodidae

Saprophagous in decaying wood, roots, wet tree holes,
beetle galleries, or sap flows (e.g., Mycetobia) on wounded
trees (Marshall 2012; Teskey 1976) (widespread)

Anthomyiidae

Saprophagous in rotting wood or under bark and predators
of cavity nesting bees and wasps (e.g., Eustalomyia)
(Teskey 1976; Speight 1989; Marshall 2012) (widespread
but mostly Holarctic)

Asilidae

Predatory in rotting wood (especially Laphriinae) including
within beetle burrows, often in light gaps (Speight 1989;
Rotheray et al. 2001; Teskey 1976) (widespread)

Asteiidae

Saprophagous in tree hollows, fungi, etc. (Marshall 2012)
(widespread)

Aulacigastridae

Saprophagous on sap flows (Aulacigaster) (Rotheray et al.
2001; Teskey 1976) (widespread but concentrated in
Neotropics)

Axymyiidae

Develop only in partially submerged rotting wood in small
forest streams (Wihlm and Courtney 2011) (northern hemi-
sphere, temperate)

Bibionidae

Saprophagous in rotting wood (e.g., Hesperiinae) (Marshall
2012) (widespread)

Bolitophilidae

Fungivorous, some monophagous on wood-rotting fungi
[e.g., Bolitophila (C.) retangulata Lundstrom on Laetiporus
sulphureus (bull.) Murrill.] (Seveik 2010) (Holarctic and
Taiwan)

Braulidae

Inquiline of honey bee hives (widespread)

Calliphoridae

Saprophagous or predatory within termite nests (e.g.,
Bengaliinae and Prosthetosomatinae) (Marshall 2012). Also
reported under bark (Rotheray et al. 2001) (widespread)

Canthyloscelidae

Saprophagous in wet decaying wood (e.g., Synneuron),
especially in “ancient” forests (Teskey 1976; Marshall
2012) (Holarctic, South America and New Zealand)

Cecidomyiidae

Saprophagous, fungivorous, or predatory in rotting wood,
under bark (e.g., Miastor), fungal fruiting bodies, beetle
galleries, or termite nests (Jkland 1995a; Seveik 2010;
Marshall 2012; Teskey 1976; Selby 2005) (widespread)

Ceratopogonidae

Saprophagous or predatory, in tree holes (e.g., Dasyhelea),
under bark, and rotting wood (Marshall 2012; Teskey 1976;
Kitching 1971). Other species are fungivorous (Sev&ik
2010) (widespread)

Chaoboridae

Predators in tree holes (e.g., Corethrella) (Yanoviak 2001)

Chironomidae

Saprophagous in soggy or submerged rotting wood (Braccia
and Batzer 2008; Teskey 1976) or water-filled tree holes
(e.g., Metriocnemus) (Kitching 1971) and a few terrestrial
species are fungivorous (e.g., Bryophaenocladius) (Seveik
2010) (widespread)

(continued)
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Family

Habits of saproxylic members

Chloropidae

Saprophagous or rarely predatory in rotting wood and tree
holes; some species fungivorous on fungal fruiting bodies
(Sevcik 2010; Teskey 1976) (widespread)

Chyromyidae Saprophagous in tree holes (Teskey 1976) (widespread)

Clusiidae Predatory in rotting wood, under bark, and beetle galleries
(Rotheray et al. 2001; Teskey 1976; Marshall 2012)
(widespread)

Corethrellidae Predatory in water-filled tree holes (Marshall 2012) (wide-
spread but mostly tropical)

Culicidae Saprophagous or predatory (e.g., Toxorhynchites) in water-

filled tree holes (Teskey 1976) (widespread)

Cypselosomatidae

Under bark (Krivosheina 1979) (widespread)

Diadocidiidae

Fungivorous in decaying wood (Jakovlev 2011)
(widespread)

Ditomyiidae

Fungivorous (e.g., Ditomyia) on bracket fungi or sapropha-
gous in relatively hard (e.g., Symmerus) or rotting wood
(Seveik 2010; Krivosheina 2006) (widespread but concen-
trated in Australasia and South America)

Dolichopodidae

Predatory (or necrophagous) in rotting wood, sap flows, tree
holes (e.g., Systenus), under bark, and in beetle burrows
(e.g., Medetera) (Rotheray et al. 2001; Teskey 1976; Mar-
shall 2012; Kishi 1969) (widespread)

Drosophilidae

Saprophagous in rotting wood, under/in bark, wet tree holes,
sap flows, and in the tunnels of ambrosia beetles (Amiota)
(Rotheray et al. 2001; Teskey 1976; Krivosheina 2006);
other species are fungivorous (Sevéik 2010; Jonsell et al.
1999) (widespread)

Empididae

Saprophagous in rotting wood (e.g., Rhamphomyia,
Drapetis, and Platypalpus) and under bark (Rotheray et al.
2001); other species are predatory (Hovemeyer and
Schauermann 2003) (widespread)

Fanniidae

Fungivorous in fungal fruiting bodies (Sev¢ik 2010) or
saprophagous in rotting wood or in tree holes (e.g., Fannia)
(Hovemeyer and Schauermann 2003) (widespread)

Heleomyzidae

Fungal fruiting bodies and in wood-boring beetle tunnels
(e.g., the Australian Cairnsimyia) (Marshall 2012)
(widespread)

Hybotidae

Predators in rotting wood, under bark, and rarely in fungi
(Rotheray et al. 2001; Sevéik 2010) (widespread)

Keroplatidae

Fungivorous or predatory on bracket fungi, under bark, or in
rotting wood (Speight 1989; Marshall 2012; Sevcik 2010)
(widespread)

Lauxaniidae

Saprophagous or fungivorous in rotting wood (e.g.,
Lyciella) (Rotheray et al. 2001) (widespread)

Lonchaeidae

Saprophagous or predatory in rotting wood, under bark, and
in beetle galleries (Rotheray et al. 2001; Wegensteiner et al.
2015). Lonchaea is particularly common in dead or dying
wood (Marshall 2012) (widespread but most diverse in north
temperate region)

(continued)
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Family Habits of saproxylic members

Lonchopteridae Saprophagous “surface scrapers” on rotting wood
(Hovemeyer and Schauermann 2003)

Megamerinidae Predatory under bark (Marshall 2012) (Palearctic and
oriental)

Micropezidae Saprophagous in rotting wood and under bark (especially

Taeniapterinae) (Teskey 1976) (widespread)

Milichiidae

Saprophagous? In tree holes (e.g., Stomosis) and under bark
(Teskey 1976; Krivosheina 2006) (widespread)

Muscidae Predatory of saprophagous or predatory in rotting wood
(e.g., Phaonia), tree holes, or at sap flows (Rotheray et al.
2001; Sev¢ik 2010; Marshall 2012; Teskey 1976)
(widespread)

Mycetophilidae Fungivorous or predatory in rotting wood, tree holes, under
bark, and in fungal fruiting bodies (Sev&ik 2010; Marshall
2012; Jakovlev 2011) (widespread)

Mydidae Predatory in rotting wood (e.g., Mydas) (Teskey 1976)
(widespread)

Neriidae Rotting wood and sap flows (Marshall 2012) (widespread
but mostly tropical)

Odiniidae Saprophagous or predatory in sappy wood, beetle and Lep-
idoptera galleries, and fungus (Rotheray et al. 2001; Teskey
1976; Marshall 2012) (widespread)

Opetiidae Rotting wood (Marshall 2012) (Palearctic only)

Pachyneuridae Saprophagous or fungivorous in rotting wood (Marshall
2012; Krivosheina 2006) (Holarctic)

Pallopteridae Predatory under bark (Palloptera) (Rotheray et al. 2001;
Teskey 1976) (mostly Holarctic)

Pantophthalmidae Saprophagous on fermenting sap within their galleries
(Neotropical)

Periscelididae Saprophagous in sap flows (e.g., Periscelis), (Teskey 1976)
(widespread)

Phoridae Saprophagous in rotting wood and under bark; fungivorous

(e.g., Megaselia) and parasitoids or inquilines of termites
(Marshall 2012; Sev¢ik 2010; Matthewman and Pielou
1971) (widespread)

Pipunculidae

Predatory in rotting wood (e.g., Chalarus) (Hovemeyer and
Schauermann 2003)

Platypezidae

Fungivorous in rotting logs, under bark (Callomyia), and on
fungal fruiting bodies (e.g., Agathomyia, Bertamyia, and
Polyporivora) (Marshall 2012; Krivosheina 2006)
(widespread)

Platystomatidae

Saprophagous in rotting wood and root-feeders (Marshall
2012) (mostly Australasian, oriental, and Afrotropical but
also in new world)

Pseudopomyzidae

Under bark (Marshall 2012) (widespread except for the
Afrotropics)

(continued)
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Family Habits of saproxylic members

Psilidae Under bark or in sappy wood (e.g., Chyliza) (Teskey 1976)
(mostly Holarctic and Afrotropical)

Psychodidae Saprophagous in rotting wood (e.g., Trichomyiinae), tree
holes (e.g., Telmatoscopus, Brunettia, and Psychoda), sap
flows, and decaying fungal fruiting bodies (Rotheray et al.
2001; Seveik 2010; Marshall 2012; Teskey 1976)
(widespread)

Rhagionidae Rotting wood (Rotheray et al. 2001) (widespread)

Richardiidae Saprophagous, wet dead wood (e.g., Omomyia) (Marshall
2012) (new world only, especially Neotropics)

Ropalomeridae Rotting wood and tree wounds (Marshall 2012)
(Neotropics)

Sarcophagidae Predatory on termites, honey bees, etc. (Marshall 2012;

Hovemeyer and Schauermann 2003) (widespread)

Scatopsidae

Saprophagous in rotten wood (e.g., Ectaetia), tree holes,
under bark (e.g., Rhexoza), or decaying fungi (Rotheray
et al. 2001; Sevéik 2010; Marshall 2012) (widespread)

Scenopinidae

Predatory in rotting wood, wood-boring insect galleries,
under bark, and termite nests (Marshall 2012; Teskey 1976)
(widespread)

Sciaridae

Saprophagous in rotting wood, under bark, at sap runs, or
fungivorous (Sev¢ik 2010; Sokoloff 1964) (widespread)

Sphaeroceridae

Fungivorous on fungal fruiting bodies (Seveik 2010) or
saprophagous in rotting wood (Rohdcek and Marshall 2017)
(widespread)

Stratiomyidae

Saprophagous or predatory (or necrophagous) under bark
(e.g., Pachygastrinae), rotting wood, tree holes (Rotheray
etal. 2001; Marshall 2012; Krivosheina 2006). Occasionally
fungivorous (Beris) (Krivosheina 2006) (widespread)

Strongylophthalmyiidae

Under bark (Rotheray et al. 2001) (mostly old world but also
North America)

Syrphidae

Saprophagous in rotting wood, under bark
(Hammerschmidtia), in tree holes (Blera, Callicera,
Ceriana, Eristalis, Mallota, Myathropa, Spilomyia, Pocota,
etc.), sap runs (Brachyopa), or insect tunnels (Brachyopa)
(Rotheray et al. 2001; Reemer 2005; Krivosheina 2006).
Most members of Eristalinae are saproxylic (Marshall 2012)
(widespread)

Tabanidae

Predatory in tree holes and rotting wood (e.g.,
Leucotabanus) (Teskey 1976) (widespread)

Tachinidae

Predatory in rotting wood or in fungal fruiting bodies (e.g.,
Elodea and Phytomyptera) (Jonsell et al. 2001)
(widespread)

Tanyderidae

Saprophagous in submerged wood (Marshall 2012)
(widespread)

Tephritidae

Saprophagous in rotting wood (e.g., Phytalmiinae) or under
bark (Lenitovena), predatory in termite nests (Marshall
2012; Krivosheina 2006) (widespread)

(continued)
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Table 5.1 (continued)

Family Habits of saproxylic members

Therevidae Predatory in rotting wood (e.g., Psilocephala and Thereva)
or tree hollows (e.g., Pandivirilia, Thereva) (Marshall 2012;
Stokland et al. 2012) (widespread)

Tipulidae (including Tipulinae, Saprophagous, predatory, or fungivorous in rotting wood
Limoniinae, Cylindrotominae, and | (e.g., Ctenophora), under bark (e.g., Gnophomyia), in tree
Pediciinae) holes (e.g., Sigmatomera, Ctenophora), or fungal fruiting

bodies (Rotheray et al. 2001; Seveik 2010; Marshall 2012;
Yanoviak 2001) (widespread)

Trichoceridae Saprophagous in rotting wood and sometimes fungivorous
in fruiting bodies (Sev¢ik 2010) (widespread)
Ulidiidae Saprophagous in rotting wood or under bark, including the

frass of wood-boring beetles (e.g., Callopistromyia)
(Rotheray et al. 2001; Teskey 1976; Marshall 2012)
(widespread)

Xylomyidae Saprophagous or predacious (or necrophagous) under bark
(e.g., Solva) and in tree holes (e.g., Xylomya) (Krivosheina
2006; Teskey 1976) (widespread)

Xylophagidae Predatory under bark and in rotting wood (e.g., Xylophagus,
Rachicerus, and Coenomyia) (Teskey 1976) (widespread)

species appear to function primarily as necrophages, feeding on dead rather than
living insects, including various xylomyids, stratiomyids, and dolichopodids
(Krivosheina 2006; Kishi 1969). Other flies are inquilines of saproxylic termites
and bees, and there are aquatic species that require water-filled tree holes. Major
microhabitats utilized by saproxylic flies are summarized below.

5.2.1 Sap Runs

Trees wounded by insects [e.g., cossids; see Yoshimoto and Nishida (2007)],
vertebrates, or other factors typically ooze sap, sometimes chronically, and this
sugary substance is quickly colonized by bacteria and yeasts. The term ‘“‘slime
flux” is often used to refer to sap overgrown with microbes (Fig. 5.3). Sap runs
(also referred to as flows or exudations) attract a wide range of insects, including
species that breed in fermenting sap and those that opportunistically feed on this
material as adults or prey upon other insects (Speight 1989). Diptera are typically by
far the most abundant and diverse insects associated with these habitats (Wilson and
Hort 1926; Yoshimoto et al. 2005) (Fig. 5.3). Wilson and Hort (1926) reported
10 families and at least 20 species from sap runs in Britain, with anthomyiids and
muscids being present in the highest numbers. Sokoloff (1964) similarly reported
12 families and 21 species from sap runs in California, including 6 families and at
least 8 species that were present as larvae. Some families of flies are mostly or
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entirely restricted to sap runs such as Aulacigastridae, Odiniidae, and Periscelididae,
and many other families (e.g., Anisopodidae, Cecidomyiidae, Ceratopogonidae,
Dolichopodidae, Drosophilidae, Syrphidae) include species known only from this
microhabitat. Sap-feeding flies are essentially saprophagous, grazing on the
microbes present in this material.

5.2.2 Subcortical Zone

The zone between the bark and wood provides a variety of resources for saproxylic
flies. Many researchers have reported flies from fermenting sap beneath bark, and
this was one of the most productive habitats reported by Rotheray et al. (2001) in
their search for saproxylic flies in Scotland. This resource appears to support a
number of species also found breeding in sap runs, such as Hammerschmidtia
ferruginea (Fallén), an endangered syrphid in Europe (Rotheray et al. 2009).
Krivosheina (2006) listed a number of fly taxa associated with the phloem layer in
Russia, including various tipulids (Libnotes, Gnophomyia), Scatopsidae, syrphids
(Graptomyza), tephritids (Lenitovena), and ulidiids (Pseudoseioptera). Most of
these species are associated with decomposing phloem and are presumably
saprophagous although several cecidomyiids primarily occur beneath the bark
of dying trees. Other families found under bark include Pseudopomyzidae,
Strongylophthalmyiidae, and Megamerinidae, but the habits of these taxa remain
mostly unresolved (Krivosheina 2006). Some of the fly taxa found under bark
(e.g., tipulids of the genera Discobola and Ula) appear to be largely fungivorous,
feeding primarily on growths of mycelia.

In addition to the many saprophagous and fungivorous species, a number of
predatory fly taxa occur under bark, and they often exceed other subcortical preda-
tors in both number and importance (Wegensteiner et al. 2015). Among these are
important natural enemies of bark beetles including genera like Phaonia (Muscidae)
(Fig. 5.2f), Lonchaea (Lonchaeidae), Palloptera (Pallopteridae), and Medetera
(Dolichopodidae) (Fig. 5.1e) (Krivosheina 2006). Species of Medetera in particular
are widely considered to be among the most valuable natural enemies of bark beetles
in many areas (Wegensteiner et al. 2015). Other zoophagous species occurring
beneath bark are thought to be primarily necrophagous, including various
stratiomyids (Neopachygaster, Pachygaster, Zabrachia) (Fig. 5.1f), xylomyids,
and dolichopodids (Kishi 1969; Krivosheina 2006). Some scavenging flies function
as saprophagous detritivores, feeding on the mixture of rotting wood particles, fungi,
bacteria, insect frass, and dead body parts that accumulates under bark and in insect
tunnels. This group includes various species of Scatopsidae, Psychodidae, Tipulidae,
etc. (Krivosheina 2006).
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5.2.3 Wood

Members of many fly families tunnel through wood but are generally more saproph-
agous than xylophagous, benefiting primarily from the microbial biomass within
wood rather than from the plant matter itself. One of the few exceptions is the
phytophagous family Agromyzidae which includes species that feed on the cambium
of living trees (Teskey 1976). Because they feed on healthy tissues, however,
agromyzids are not truly saproxylic and are therefore not listed in Table 5.1. Certain
cecidomyiids also feed on living wood tissue, but this family also includes many
saproxylic species found under bark, in beetle galleries, or in rotting wood (Teskey
1976; Krivosheina 2006). Famous for their large size (20-55 mm in length), timber
flies of the Neotropical family Pantophthalmidae (Fig. 5.2¢) bore through the sound
wood of dying or recently dead trees and are sometimes considered pests of living
trees (e.g., Casuarina introduced into Central America) (Zumbado 2006). Rather
than being xylophagous, the larvae of these flies feed primarily on fermenting sap
within their galleries and are thus saprophagous. According to Zumbado (2006),
pantophthalmids typically attack trees that produce latex or mucilaginous sap such as
Ficus or Ceiba pentandra (L.) in Central America. Tipulidae is among the most
significant families of wood-borers and can be found in all stages of decomposition.
Swift et al. (1984) reported that Tipula flavolineata Meigen was the most common
invertebrate present in branches from the forest floor in England, with evidence of
the species in 39% of the sampled branches. The largest and most colorful tipulid
genera (e.g., Ctenophora, Dictenidia, Phoroctenia, Tanyptera, and Pselliophora),
belonging to the subfamily Tipulinae (or Ctenophorinae, depending on the classifi-
cation system), all develop in dead wood, and many have become rare (Oosterbroek
et al. 2006). Although some tipulid genera are capable of penetrating hardwood (e.g.,
Ctenophora and  Epiphragma), many others (e.g., Austrolimnophila,
Elephantomyia, Limonia) feed primarily in rotting logs and, in some cases (e.g.,
Lipsothrix), in saturated rotten logs (Teskey 1976; Dudley and Anderson 1987;
Krivosheina 2006). Members of other fly families also tunnel in relatively fresh
wood [e.g., Temnostoma syrphids (Fig. 5.2h, 1)], but rotting logs generally support a
greater variety of species from families including Bibionidae, Canthyloscelidae,
Cecidomyiidae, Ditomyiidae, Pachyneuridae, Psychodidae, Scatopsidae, and
Syrphidae (Krivosheina 2006). Some species have very specific substrate require-
ments with respect to moisture levels. For example, axymyiids tunnel into logs
partially submerged in streams and only use wet portions of the log exposed to the
air (Wihlm and Courtney 2011). Wood with a high moisture content is generally
preferred by saproxylic flies, and many taxa are more abundant in downed than in
standing trees, as Dennis et al. (2017) recently reported from Canada. Some species
are known to occur in snags, however. For example, Krivosheina (2006) reported
that Pachyneura oculata Kriv. et Mam. (Pachyneuridae) can be found within the
relatively dry wood of standing dead trees in Russia.

Although flies associated with dying and dead wood in tropical forests have been
less studied than those in temperate regions, they include some of the most
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Fig. 5.4 An illustration of four “horned fly” species (Tephritidae: Phytalmiinae) from New Guinea
observed by Alfred Russel Wallace in the mid-1800s. Wallace (1869) was the first naturalist to
report on their association with dead wood (Glaubrecht and Kotrba 2004). Species shown include
Phytalmia cervicornis Gerstaecker (top left), P. alcicornis (Saunders) (top right), and. P. megalotis
Gerstaecker (lower right) (Gary Dodson, personal communication)

remarkable fly species in the world. Among these are 6 genera and 15 species of
Phytalmiinae tephritids that breed in rotting logs in New Guinea, Northern Australia,
Borneo, and Sulawesi (Dodson 2000). The males of these taxa have dramatic
forward-curving cheek projections that are, depending on the species, often
paddle-shaped, sometimes resembling the antlers of a moose, or thin and branch-
like (Fig. 5.4). The males use these structures to signal body size and, if necessary, to
fight over breeding sites and females (Wilkinson and Dodson 1997). Similar exam-
ples of sexual dimorphism are seen in other saproxylic fly species associated with
rotting logs. The males of many clusiid species, for example, have broadened heads,
cheek projections (e.g., certain Hendelia and Procerosoma), or elongated antennae
(e.g., Hendelia from Australia) used to defend mating territories from rivals (Mar-
shall 2012). These examples are reminiscent of the exaggerated mandibles of
lucanids and the horns of dynastine scarabs, certain ciids, tenebrionids, and other
saproxylic beetle taxa, underscoring the frequency of resource-defense mating
systems and associated sexually dimorphic structures among saproxylic insects
(Hamilton 1978).

Fungivorous flies, especially those belonging to the families Mycetophilidae,
Sciaridae, and Cecidomyiidae, are among the most abundant and diverse fly taxa
associated with rotting wood (Derksen 1941; Hovemeyer and Schauermann 2003;
Krivosheina 2006) where they are thought to primarily feed on mycelia (see Sect.
5.2.5 on associates of fungal fruiting bodies). These flies remain mostly undescribed
throughout much of the world (Amorim 2009), and the habits of most described
species remain unknown. Stokland et al. (2012) suggest that saproxylic flies may
prove to be more diverse than saproxylic beetles in Scandinavia once the habits of
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these fungus gnats are more fully known. Given the same uncertainties, it should not
be assumed that all fungus gnats and other fly taxa that emerge from rotting wood are
saproxylic as many taxa may also breed in other decomposing plant material. A
study of Collembola in North America, for example, found that species occurring in
rotting stumps represented just a subset of the soil-dwelling fauna (Setdld and
Marshall 1994). However, this does not appear to be the case for fungus gnats
based on a comparison of flies associated with rotting wood and leaf litter. In
Germany, Irmler et al. (1996) found that 46% and 32% of mycetophilid species
were found only in association with wood and leaf litter, respectively, with the
remainder occurring in both substrate types. The respective figures for sciarids in
that study were 30% and 45%. These findings indicate that many but not all of the fly
species associated with dead wood are in fact saproxylic and underscore the need for
more life history information.

In addition to the many saprophagous fly species found in dead wood, a wide
variety of predatory taxa are present as well. Some predatory taxa have a wide host
range. The North American tachinid, Zelia vertebrata (Say) (Fig. 5.2g), for instance,
is known to parasitize a wide range of wood-boring beetle taxa including passalids,
tenebrionids lucanids, etc.

5.2.4 Tree Holes

Tree holes are highly variable habitats depending on their age, position relative to the
ground, opening size, water content, and insect community composition. All of these
factors have been shown to influence saproxylic fly assemblages (Sanchez-Galvan
et al. 2014). Water content is a particularly important determinant, ranging from
hollows that are usually or seasonally water-filled to those that are always dry. Flies
typically dominate insect assemblages in the wettest tree holes, as Yanoviak (2001)
observed in Panama, Majumder et al. (2011) reported from India, and Blakely et al.
(2012) reported from New Zealand. Although some of these species are opportunists
that utilize a wide range of water bodies, many of them are restricted to these
structures (Blakely et al. 2012). Of the 25 species of Syrphidae collected by Ricarte
et al. (2009) in Spain, 23 were collected from trunk cavities or tree holes and 12 of
these were found nowhere else. Fly species dependent on water-filled tree cavities
are perhaps best exemplified by Culicidae. In North America alone, for example,
there are 21 species of mosquitoes from four genera (Aedes, Anopheles,
Orthopodomyia, and Toxorhynchites) that are found only in these habitats and are
thus saproxylic (Teskey 1976). Other fly taxa found only in or at the edge of water in
wet tree holes include ceratopogonids (e.g., Dasyhelea, Culicoides, and
Atrichopogon), syrphids (e.g., Callicera, Mallota, and Myathropa), chironomids
(e.g., Metriocnemus), and dolichopodids (e.g., Systenus, a predator of
ceratopogonids), whereas other fly genera (e.g., Brachyopa, Fannia, Forcipomyia,
and Phaonia) are found in drier parts of the hole away from the water surface
(Teskey 1976; Speight 1989). Syrphids exhibit a wide range of variation with respect
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to their affinity to water in tree hollows, with some species requiring it and others
being restricted to drier substrates (Sanchez-Galvan et al. 2014). Moreover, Rotheray
(2013) showed that four species of syrphids that coexist within pine stump rot holes
in Scotland inhabit distinct depths, as permitted by differences in behaviors and
lengths of their respiratory tubes. In addition to water content, Sdnchez-Galvan et al.
(2014) showed cavity height, size, and orientation to also be important determinants
of hollow-dwelling syrphid assemblages in Spain. The most important predictor in
that study was cetoniine beetle activity, however, and the frass from these beetles
was shown to enhance the larval growth rate and adult wing length of Myathropa
florea (L.). In addition, scolytine galleries were particularly important for one
species, Criorhina pachymera Egger. While these findings suggest interspecific
interactions may strongly influence the occurrence and abundance of hollow-
dwelling insect assemblages, not all studies have shown this to be the case (Schmidl
et al. 2008). Fly taxa dependent on tree hollows are probably among the most
vulnerable of all saproxylic fly species due to the rarity of hollow-bearing old trees
and the length of time required for these structures to form. Although similar
estimates for flies are lacking, Floren and Schmidl (2008) estimated that 86% of
beetle species dependent on rot holes in Germany are threatened.

5.2.5 Fungal Fruiting Bodies

Elton (1966b) distinguished between the fruiting bodies of non-saproxylic and
saproxylic fungi and noted that, whereas flies dominate the insect fauna associated
with the former, beetles more commonly dominate the fruiting bodies of saproxylic
fungi. A survey of insects utilizing Fomes fomentarius (L. ex Fr.) in Canada largely
supports this conclusion, at least for this species of hard sporocarp. Matthewman and
Pielou (1971) reported Diptera from only 4.7% of the sporocarps inspected in that
study, and they accounted for just 18% and 14% of the total numbers of species and
individuals collected, respectively (Fig. 5.5). Beetles, by contrast, were found in
34% of all sporocarps and made up about 33% and 37% of all species and individ-
uals collected. Although flies make up a smaller proportion of the fauna in fungal
fruiting bodies than in some other saproxylic habitats, they are nevertheless
represented by a wide variety of taxa and are generally thought to be more numerous
in fruiting bodies that are softer and that decompose more rapidly [i.e., annual
vs. perennial species; see Komonen et al. (2001)]. In a survey of Diptera associated
with fungi (including saproxylic fungi) in the Czech and Slovak Republics,
Mycetophilidae was the most diverse family, accounting for 41% of species,
followed by Phoridae (9%), Cecidomyiidae (8%), Drosophilidae (6%),
Bolitophilidae (4%), Platypezidae (4%), and Muscidae (4%) (éevéﬂ< 2010).

Once established, all wood-rotting basidiomycetes produce fruiting bodies. In
some cases these are short-lived and soft, whereas in perennial species harder
fruiting bodies continue to grow for several years before dying and slowly
decomposing (Gilbertson 1984). Elton (1966b) recognized that fungal fruiting
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Fig. 5.5 Relative richness, abundance, and occupancy rates of Diptera and other insect orders
reported by Matthewman and Pielou (1971, see Table 3) from sporocarps of Fomes fomentarius in
Canada

bodies provide insects with four main resources: (1) spores, (2) living fungal tissue,
and (3—4) aging or dead fungal tissue which, depending on the species, can be hard
and long-lasting or soft and ephemeral. There are saproxylic flies specific to all four
of these categories. An example of a spore-feeding species is the threatened
European keroplatid, Keroplatus tipuloides Bosc, which feeds on the spores of
Fomes fomentarius (L. ex Fr.) within mucilaginous webs they construct beneath
the sporocarps (Speight 1989). A variety of fly species feed on living fungal tissue
(e.g., Cecidomyiidae, Platypezidae, Mycetophilidae, Sciaridae, etc.), and these taxa
tend to be more host specific, but fewer in number, than those feeding on
decomposing fungi (Matthewman and Pielou 1971; Marshall 2012; Jonsell et al.
2001). Most sporocarp-inhabiting fly species are found in dead rather than living
fruiting bodies. Those associated with dead soft fungi (Fig. 5.1c, d) are generally less
host specific than those utilizing hard perennial sporocarps. Graves (1960) distin-
guished between dying or recently dead sporocarps and those that are dead and
decomposing and suggested the former support the greatest diversity of insects. A
variety of intrinsic and extrinsic factors are important in influencing the occurrence
of saproxylic flies in fungal fruiting bodies. In a comparison of insect assemblages
associated with Fomitopsis pinicola and Fomes fomentarius, for example, Jonsell
et al. (2001) showed that most common fly taxa correlated positively with sporocarp
size. Height above the ground was also important for some species (e.g.,
mycetophilids) as was tree diameter and sun exposure.

Predatory flies can often be found inhabiting fungal fruiting bodies. Jonsell et al.
(2001) reported two species of Tachinidae (Elodia and Phytomyptera), both para-
sitoids, from sporocarps in Sweden, for example. Similarly, Komonen et al. (2001)
found another tachinid, Elfia cingulata (Robineau-Desvoidy), parasitizing a tineid
moth in fungal fruiting bodies in Finland. Keroplatids are often associated with
spores from polypore fungi, but will also feed on small invertebrates trapped in their
webs, sometimes very efficiently (Mansbridge and Buston 1933) (Fig. 5.1b).
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5.2.6 Insect Galleries

Many fly taxa are predators within the tunnels of wood-boring beetles and other
insects. Pachygasterine stratiomyids can be found wherever their hosts occur,
including their tunnels. Laphriinae asilids are active predators within the tunnels of
xylophagous beetles and are morphologically adapted for this habitat (Krivosheina
2006). Dolichopodids of the genus Medetera are also confined to the galleries of
various bark beetle species (Fig. 5.1e). Clusiids and odiniids are also among the
predators found within the tunnels of wood-boring insects. Not all fly species found
in beetle tunnels are predators, however. For instance, species of Ulidiidae associ-
ated with dead wood are also thought to feed on frass and other particulate matter in
beetle galleries (Marshall 2012).

5.2.7 Social Insect Nests

A number of flies exist as inquilines within the nests of social saproxylic insects. The
family Braulidae consists of two genera and eight species that are wingless, mite-like
inquilines of honey bees. The larvae live in honeycombs where they feed on pollen,
and the adults can be found clinging to the hairs of their hosts (Marshall 2012).
Species from at least six fly families (Calliphoridae, Cecidomyiidae, Phoridae,
Sarcophagidae, Scenopinidae, and Tephritidae) are known to be associated with
termite nests. Within the family Phoridae alone, there are 190 species known to
associate with termites (Dupont and Pape 2009), including parasitoids, opportunistic
scavengers, and inquilines. The inquilines are often highly specialized, either
protected by armor or by a physical or chemical similarity to their termite hosts
(e.g., see Fig. 1 in Dupont and Pape 2009).

5.3 Substrate Requirements

5.3.1 Successional Patterns

As with beetles and other insects, there is a succession of flies as decomposition
proceeds, with many species exhibiting distinct preferences for fresh or highly
decomposed wood. An excellent demonstration of this was provided by Hovemeyer
and Schauermann (2003) who studied the emergence of flies from decomposing
beech wood over a 10-year period in Germany. Consistent with other studies
(Derksen 1941; Irmler et al. 1996; Kleinevoss et al. 1996; Selby 2005), they showed
that fly abundance and richness generally increased as the logs decomposed. While
many fly taxa were more abundant later in the decomposition process (e.g., species
of Tipula, Caenosciara, Euthyneura, Cordyla, and Neolimonia), some were
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restricted to medium-aged logs (Symmerus), and others were more strongly associ-
ated with younger logs including predatory taxa such as Medetera and Xylophagus.
In Canada, Vanderwel et al. (2006) also found predatory flies (Dolichopodidae and
Lonchaeidae but not Empididae, which showed the opposite pattern) to be more
abundant in younger decay classes, whereas saprophagous and fungivorous taxa
were generally more abundant in later stages of decomposition. The higher abun-
dance of predatory flies in younger decay classes probably reflects the higher
abundance of phloem- and wood-feeding beetle prey in young logs as was shown
in the same study. The pattern of greater saprophage and fungivore abundance in
highly decomposed wood is complicated by the migration of leaf litter fauna into the
wood as decomposition proceeds, as found by Irmler et al. (1996) in Germany.
Clearly, more detailed information on habitat associations will be needed to better
understand the successional patterns of saproxylic Diptera.

Some saproxylic fly taxa are restricted to ephemeral resources or microhabitats
present only at the beginning of the decomposition process. Fermenting sap under
bark, for example, is a breeding substrate for many fly taxa but dries out and
disappears quickly (Rotheray et al. 2009). The subcortical space itself is an important
microhabitat for many species but lasts only as long as the bark remains in place.
Among the North American taxa of Forcipomyia (Ceratopogonidae), for example,
some species are restricted to wood prior to bark loss, whereas others occur only in
highly decomposed wood (Teskey 1976).

Living sporocarps support a different fly fauna than dead sporocarps, and the hard
sporocarps produced by perennial fungal species decompose slowly and host a
succession of fly species. As summarized by Elton (1966a), mycetophilids associ-
ated with the living sporocarps of Piptoporus betulinus (Bull.) P. Karst. in England
were replaced, soon after the death of the fungus, by the larvae of cecidomyiids and
other taxa. Jonsell et al. (2001) reported a similar pattern for flies associated with
Fomitopsis pinicola in Sweden. @kland and Hégvar (1994) showed that living
F. pinicola sporocarps support few species before, compared to after, the develop-
ment of hymenium and that dead sporocarps support the most species. Graves (1960)
suggested that dying or recently dead sporocarps support more insects than those at
latter stages of decomposition. Those associated with decomposing fungi (Fig. 5.1c,
d) are generally believed to exhibit less host specificity. In Canada, Matthewman and
Pielou (1971) found a species of Gaurax (Chloropidae) to be found only in dead
sporocarps of Fomes fomentarius.

5.3.2 Diameter Preferences

Wood diameter probably matters for saproxylic fly communities just as it does for
other insect taxa, but few studies have tested this. In Switzerland, Schiegg (2001)
collected a significantly greater number of species from beech limbs than from beech
trunks, with only a 55.3% similarity between the two diameter classes compared to
82.6% for beetles. Halme et al. (2013) found nematoceran fly communities emerging



5 Saproxylic Diptera 185

from the bases and tops of aspen trunks to be highly variable in Finland and
attributed compositional differences between these locations to random assembly
rather than to diameter preferences. They suggested that the difference in diameters
compared in that study was not large enough to detect strong differences.

5.3.3 Host Specificity

Host tree specificity is common among saproxylic insects, and many saproxylic fly
taxa are largely or entirely restricted to a single genus of trees. Among the species of
Phytalmia (Tephritidae) associated with the wood of decaying rainforest trees, for
example, two are restricted to a single tree species (Dodson 2000). Irmler et al.
(1996) reported a fairly high degree of host specificity among fungus gnats
(mycetophilids and sciarids) in a comparison of three wood genera in Germany.
About 71% and 30% of mycetophilid and sciarid taxa, respectively, were collected
from beech wood but not from the Alnus or Picea wood included in that study. By
contrast, Rotheray et al. (2001) found fly diversity to vary widely among tree species
in Scotland, but relatively few species were restricted to a single genus or species.
Taken together, these findings indicate that the degree of host specificity exhibited
by saproxylic flies varies widely among species but that some species depend on the
presence of particular host tree taxa.

Although some tree species are more likely to form hollows than others, Kitching
(2000) suggested that tree species has little influence on the composition of the insect
fauna occupying a hollow. This appears to be true for many hollow-dwelling fly
species (Ricarte et al. 2009), but some species are known to be strongly associated
with particular tree taxa. The European syrphid species Blera fallax (L.), for
example, is found in water pockets or rot holes of Pinus sylvestris L. stumps
(Rotheray et al. 2016). Another threatened syrphid, Callicera rufa Schummel, also
appears to be restricted to tree holes in conifers (Rotheray and MacGowan 2000).

Saproxylic flies associated with fungal fruiting bodies, especially with living
sporocarps, often exhibit a high degree of host specificity. According to Jonsell
et al. (2001), living fungal species that produce soft ephemeral sporocarps tend to
support a less distinct fauna than those producing perennial sporocarps. Perennial
sporocarps are thought to contain more secondary compounds used in defense, and
this likely gives rise to specialization among fungivorous insects. In a comparison of
insects associated with six species of sporocarps in Norway, @kland (1995b) found
some cecidomyiid species to be restricted to particular genera or species. In Finland,
Komonen et al. (2001) found that species of annual and perennial fungal fruiting
bodies (Amylocystis lapponica (Romell) and Fomitopsis rosea (Alb. et Schw.: Fr.)
Karst., respectively) supported distinct communities of flies and other insects.
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5.3.4 Effects of Sun Exposure

Saproxylic flies prefer wetter substrates than many other saproxylic insect taxa, and
many are adapted to aquatic or semiaquatic microhabitats. Rotheray et al. (2001)
conducted perhaps the single greatest effort to describe the microhabitat associations
of saproxylic Diptera. Over a 10-year period in Scotland, they collected 32 families
and 258 species from sap runs, tree holes, loose bark, and dead wood from a variety
of tree species. They found that some tree genera supported more species than others
and that the occurrence of key microhabitats varied among tree taxa. Saproxylic fly
larvae were almost always collected from damp or wet conditions in that study, with
most coming from decaying sap under bark and decaying sapwood on the ground. In
a study of saproxylic fly succession in Germany, Hovemeyer and Schauermann
(2003) found that flies were most numerous the year following very moist summers
and suggested that log conditions, particularly moisture content, may be more
important than log age in determining substrate suitability. Indeed, of the six
saproxylic fly species abundant enough to analyze individually in that study, the
abundances of all but one were positively and significantly correlated with wood
water content.

Such findings suggest that saproxylic flies may be sensitive to sun exposure. In a
study of insects associated with fungal fruiting bodies in Sweden, Jonsell et al.
(2001) found Medetera to be significantly less frequent under open conditions,
whereas the frequency of Cecidomyiidae and Mycetophilidae did not differ among
exposure categories. Some saproxylic fly taxa are considered thermophilic, however,
such as the European syrphid Mallota dusmeti Andréu (Quinto et al. 2014). More-
over, open conditions may provide important resources for the adult stage of many
saproxylic fly species, such as those that visit flowers.

5.4 Status and Conservation

The literature is full of examples of saproxylic fly species known or suspected to be
in decline if not already extirpated across much of their historic range. Stubbs (1972)
highlighted seven such species from Britain in his early report on the conservation
value of dead wood. Threatened flies also featured prominently in Speight’s later
assessment of the status of saproxylic insects in Europe (Speight 1989). Jonsell et al.
(1998) reported 46 species of saproxylic flies red-listed in Sweden (making up nearly
half of all red-listed Diptera for the country), but noted that this probably underes-
timates the number of threatened species due to limited knowledge. Some saproxylic
fly species have the potential to serve as indicators of habitat quality. Many of the
largest and most charismatic tipulid species are saproxylic, for example, and these
are sensitive to the amount and continuity of dead wood (Oosterbroek et al. 2006). In
some cases, flies are suspected of being saproxylic and limited to old-growth forests
even though their biology remains incompletely known. In northeastern North
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America, for example, the rare sphaerocerid Volumosina voluminosa (Marshall) has
been collected only from old-growth forests and almost exclusively from large
woody debris (Rohdcek and Marshall 2017).

The question of how much dead wood is needed to sustain diverse saproxylic
insect assemblages remains an active area of study. This question has received less
attention for flies than for beetles, however. Vanderwel et al. (2006) showed that the
abundance of fungivorous flies (Cecidomyiidae, Mycetophilidae, and Tipulidae,
which were also combined with the beetle family Melandryidae for the analysis)
emerging from decomposing logs was positively correlated with the volume of dead
wood present within both the surrounding 20 ha and the surrounding 79 ha. It was
not possible to determine which spatial scale was more relevant in that study,
however. As discussed in that paper, these patterns may be due to fungal richness
correlating with coarse woody debris abundance and influencing the richness of
fungivorous insects as has been shown in previous studies (Vanderwel et al. 2006
and references therein). Similarly, Schiegg (2000) found a positive correlation
between the richness of flies emerging from dead wood and the average volume of
subplots within a 150 m radius in Switzerland. In Norway, @kland (1994) found
mycetophilid diversity to be much higher in seminatural forests when compared to
managed forests (clear-cut 70—120 years previously) or recent clear-cuts (2-3 years
previously), suggesting this family may be especially sensitive to the temporal
continuity of forests. @Jkland (1996) also found a positive correlation between
mycetophilid species richness and the amount of old-growth forests in the surround-
ing 100 km® in Norway. It was suggested in the same article that because
mycetophilids must wait until late summer or early autumn for sporocarps suitable
for oviposition to become available, they generally conserve energy by waiting in
humid microhabitats such as under logs rather than wasting energy on dispersal.
Later work by the same author found mycetophilids to be largely unaffected by
harvests that removed, on average, 26% of the basal area (Jkland et al. 2008). Taken
together, these findings indicate that mycetophilids may be less impacted by partial
harvests than clear-cuts.

Although rarely studied, the dispersal abilities of saproxylic flies probably vary
widely among taxa as have been shown for beetles and other groups. Species that
utilize ephemeral and infrequent resources are generally expected to be capable of
travelling long distances. Support for this was provided by a mark-recapture study
by Rotheray et al. (2014) which showed that the syrphid Hammerschmidtia
ferruginea can disperse at least 5 km in Scotland. More limited dispersal abilities
have been reported for other species, however. Jonsell et al. (1999) studied the
ability of insects to colonize fungal fruiting bodies placed at various distances from
source populations in Sweden and found two fly taxa, Leucophenga and Medetera
(Drosophilidae and Dolichopodidae, respectively) to be more affected by distance
than beetles in that study. Jonsell and Nordlander (2002) also found Medetera to be
generally more common in forests with a long history of dead wood continuity
compared to forests with a shorter history, although there were too few records for
statistical analysis. In Finland, Komonen et al. (2000) found Elfia cingulata, a
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tachinid that parasitizes larval tineids in fungal fruiting bodies, to be completely
absent from forest fragments that had been isolated for the longest period of time.

In the Netherlands, Reemer (2005) found that 59% of saproxylic syrphid species
have increased in recent years, whereas 26% have decreased. The increases are
thought to be due to an increase in forest cover since the 1950s, the presence of more
large diameter trees, and efforts to protect dying trees and dead wood. These
numbers suggest that efforts to protect old trees and dead wood in forests can be
expected to benefit saproxylic flies, although the specific requirements of declining
species need to be taken into account. The protection of old trees is likely to be
particularly beneficial to flies dependent on tree hollows (Blakely et al. 2012; Ricarte
et al. 2009). Because these structures take such a long time to develop naturally
(Micé6 2018), management interventions that promote their formation are of great
interest. Traditional pruning practices such as pollarding and coppicing have been
shown to do so in Europe where orchards, parks, old forest pastures, and similar
habitats provide some of the most important habitats for hollow-dependent insects
(Sebek et al. 2013). Indeed, Quinto et al. (2014) suggest that pollarding may benefit
vulnerable hollow-dependent syrphids such as Mallota dusmeti in Spain. Suitable
breeding sites for some species (e.g., Callicera rufa in Europe) can be created more
directly and immediately by simply cutting holes into trees or stumps (Rotheray and
MacGowan 2000). Active recovery efforts for Blera fallax, a syrphid species on the
edge of extinction in Scotland, involve captive rearing of the fly and reintroducing it
into areas where pine stump rot holes have been artificially created (Rotheray et al.
2012).

Efforts to conserve saproxylic Diptera should recognize that these insects typi-
cally exhibit a stronger affinity for moist or wet habitats than most beetles or other
saproxylic groups. Quinto et al. (2014) found syrphid abundance to be positively
correlated with the amount of water in tree cavities, for example, whereas the
opposite was the case for beetles. Rotheray et al. (2001) showed that even small
young trees can provide breeding habitat for many flies, including red-listed species,
provided that the necessary wet microhabitats are provided. Whereas the results from
beetle studies often suggest that more open forests and sunnier conditions will
promote the conservation of saproxylic insects, this may not be true for other groups,
including flies. In Scotland, the endangered syrphid Hammerschmidtia ferruginea is
known to breed in the wet fermenting sap beneath bark as well as in sap runs. The
former resource is more productive but is also more ephemeral. The speed at which
fermenting sap beneath bark dries out is thought to be one of the major challenges
facing efforts to conserve this species (Rotheray et al. 2009), suggesting such taxa
may be sensitive to efforts aimed at creating more open conditions.

Finally, aquatic flies dependent on submerged wood are thought to be sensitive to
forest clearance. In Brazil, for instance, Valente-Neto et al. (2015) showed that
deforestation decreased the abundance and richness of saproxylic flies (chironomids)
in wood submerged in streams. The researchers attributed these effects to increased
sedimentation caused by the harvesting operations.
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5.5 Conclusions

Flies are extremely diverse members of saproxylic insect assemblages and com-
monly exceed even beetles in abundance and richness. This is especially true in the
wettest microhabitats including sap runs, wet tree holes, and submerged wood.
Although the diversity, ecology, and conservation status of these insects have
received little attention, it is clear that many species are declining or have experi-
enced significant range contractions. Because saproxylic Diptera exhibit a strong
affinity for wet or even saturated substrates, they deserve special consideration when
developing conservation strategies for saproxylic insects. Studies addressing their
sensitivity to forest management interventions are urgently needed.
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Chapter 6 )
Ecology, Diversity and Conservation s
of Saproxylic Hymenopteran Parasitoids

Jacek Hilszczanski

Abstract The ecological adaptations of parasitoids associated with bark- and wood-
boring insects, i.e. saproxylic insects, are presented principally from examples of
Ichneumonoidea but also other families of saproxylic parasitoids typically associated
with insects inhabiting dead wood. Morphological adaptations to hosts living in
wood, behaviours related to parasitism of the host and life strategies of saproxylic
idiobionts and koinobionts are characterised. From the example of Doryctes
leucogaster (Nees) (Doryctinae, Braconidae), details of searching behaviour and
the oviposition process are described. Brief summaries of the main “saproxylic”
subfamilies of Ichneumonidae and Braconidae followed by Stephanidae, Aulacidae,
Ibaliidae and Orussidae are included. Habitat requirements of saproxylic
ichneumonoid parasitoids in boreal and temperate forests are presented in relation
to forest successional stage and the type and position of woody substrates. The
potential role of saproxylic parasitoids as indicators of saproxylic habitat quality is
discussed, and the lack of ecological knowledge for most saproxylic parasitoid taxa,
especially from tropical zones, is indicated.

6.1 Introduction

Parasitoids comprise one of the most numerous groups of insects (Gaston 1991) and
are distinguished from parasites in that they are parasitic only as larvae and eventu-
ally kill their hosts. Moreover, unlike many solitary wasps, female parasitoids do not
attempt to move a host after parasitising it (Godfray 1994). Although many insect
orders include saproxylic parasitoid taxa [e.g. Diptera (Tachinidae), Coleoptera
(Bothrideridae) and Lepidoptera (Sesiidae)] (Hellrigl 1984; Hilszczanski, pers.
obs.), Hymenoptera contains the highest number of species. This chapter is limited
to hymenopteran parasitoids that are saproxylic (hereafter referred to as parasitoids
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for brevity), i.e. meaning they specifically target hosts that depend directly or
indirectly on dead wood (Speight 1989).

Saproxylic insects pose unique challenges to parasitoids as hosts hidden beneath
bark or within wood are inherently harder to locate and parasitise than are exposed
hosts (Gross 1991). Although many parasitoid species target insects feeding within
the phloem layer beneath the bark (e.g. Cerambycidae, Buprestidae, Curculionidae,
etc.), bark thickness and ovipositor length limit host availability for some species
(Abell et al. 2012). How far insects bore into wood can be expected to similarly
influence the susceptibility of a species to parasitism. Indeed, saproxylic insects with
the most cryptic habits experience the lowest rates of parasitism. Wood-dwelling
termites, for example, and especially those that nest below ground, are parasitised by
few species and more often by Diptera (e.g. Phoridae) than Hymenoptera
(e.g. Bethylidae attacking drywood termites) (Culliney and Grace 2000). In this
chapter, I first provide a brief overview of the ecology of saproxylic parasitoids
before summarising the global diversity of these insects and groups of particular
importance in European forests (e.g. Braconidae, Ichneumonidae and various other
families such as Aulacidae, Stephanidae, Orussidae and Ibaliidae) which are exclu-
sively or almost exclusively associated with hosts of typical saproxylic families such
as wood-boring beetles (Cerambycidae, Buprestidae, Ipinae, Anobiidae) and wood
wasps (Siricidae, Xiphydriidae). The chapter ends with a discussion of parasitoid
habitat requirements and conservation considerations.

6.2 Ecological Importance

A key ecosystem service provided by saproxylic hymenopteran parasitoids is reduc-
ing host populations which can, in turn, result in measurable benefits to forest health.
This is especially relevant with respect to reducing populations of bark beetles and
various wood-boring insect species, including those that pose a threat to healthy trees
during outbreaks (Kenis and Hilszczanski 2004). Moreover, in the case of invasive
insect species, parasitoids and other biocontrol agents, including both native species
and those intentionally introduced from the pest’s native range, sometimes represent
one of the best available options for reducing mortality in native host trees (Van
Driesche and Reardon 2014; Duan et al. 2016). Although relatively few studies have
attempted to quantify the ecosystem services provided by saproxylic hymenopteran
parasitoids, those that have been conducted support the idea that these insects have a
significant top-down effect on host populations. The most detailed assessments have
involved bark beetles such as Dendroctonus frontalis Zimmermann in North Amer-
ica and Ips typographus (L.) in Europe, and the parasitoid communities associated
with these species are thought to play an important role in reducing population
growth and perhaps also outbreak severity (Wermelinger 2004; Berisford 2011).
Particularly strong experimental evidence that hymenopteran parasitoids have sig-
nificant negative impacts on their host populations was recently provided by Duan
et al. (2015) who found that both native and introduced (i.e. classical biocontrol
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agents) hymenopteran parasitoids significantly reduce population growth rates of the
invasive emerald ash borer in North America.

6.3 Parasitoid Natural History

Parasitoids can be variously categorised on the basis of host stage specificity
(e.g. eggs, larvae, pupae or adults), whether they are solitary or gregarious
(i.e. one or multiple eggs laid per host), whether eggs are laid internally or externally
and whether the host is killed at the time of oviposition or continues to grow after
eggs are laid. Although a detailed review of these differences is beyond the scope of
this article, and can be found elsewhere (e.g. Godfray 1994), it is worth briefly
discussing differences between koinobionts and idiobionts.

6.3.1 Koinobionts vs. Idiobionts

As in most ecological groups of parasitoids, saproxylic species can be divided into
koinobionts and idiobionts according to the classification proposed by Haeselbarth
(1979) and further developed by Askew and Shaw (1986). The main feature of that
classification is whether or not the host insect continues its development after it has
been paralysed.

Koinobionts do not paralyse or immediately kill their hosts, allowing them to
instead continue feeding and growing. Some koinobionts are known to manipulate
the growth physiology of their hosts, sometimes causing them to delay maturation
and suppress pupation (Godfray 1994). Most koinobionts are associated with
exposed hosts; however, there are species which parasitise concealed hosts including
saproxylic ones. Saproxylic koinobionts attack larvae and very often early instars,
sometimes even eggs, of insects living in wood. Examples include several braconid
genera such as Eubazus (Helconinae) (Kenis and Mills 1998) and certain eulophids
(e.g. Tetrastichus) that attack beetles and species of Aulacidae and Ibaliidae that
attack wood wasps. Hosts parasitised by koinobionts often reach a late larval or
pupal stage before getting entirely consumed and killed. Saproxylic koinobionts are
necessarily endoparasitoids as it would be impossible to live externally attached to a
host larva which is moving inside narrow galleries. Because the larvae of
koinobionts live inside the bodies of active hosts, their physiology is adapted to
that way of life, which implies adaptations to overcome the immunological system of
the host. This specific adaptation makes koinobionts rather host-specific although it
is known that species are sometimes related to a specific niche rather than strictly to a
host species and are sometimes able to parasitise several host species which are
characterised by similar biology. Although most saproxylic koinobionts are known
from single host species, there are quite a few exceptions, though often based on
unreliable data (Shaw 2017). For example, the koinobiotic braconid Helcon tardator
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Nees (Helconinae) is recorded from at least 14 cerambycid hosts associated with
coniferous and deciduous trees. Koinobionts are rather pro-ovigenic which means
that emerged females have a full set of developed small eggs. Data on longevity of
parasitoid adults, especially in the field, are very scarce, but typically koinobionts are
shorter-lived than idiobionts. Unlike the adults, larvae of koinobionts tend to live
longer than idiobionts and do not have “to be in hurry” inside their developing host.

Saproxylic idiobionts paralyse or kill their hosts permanently, and because of that
they have to look for bigger larvae, rarely pupae, of wood-inhabiting insects to fully
support the development of their larvae. Idiobionts have developed the ability to
determine the sex of the egg to match the host’s size, which has not been observed in
koinobionts. Idiobionts are ectoparasitoids with few exceptions, and their larvae are
not in danger from the immovable larva of the host (Quicke 2015). Idiobionts have
not evolved sophisticated physiological adaptations to their host; however they do
possess abilities to make their lives easier. To protect their paralysed or killed host
from rotting away, some species produce antifungal or antibacterial secretions which
is probably the case in the braconid Histeromerus mystacinus Wesmael
(Rhyssalinae) whereby larva of the lepturine host (Cerambycidae) was found to be
fresh during the whole lifetime of the parasitoid larvae (Shaw 1995). Saproxylic
idiobionts tend to be generalists, and most of them are known from numerous hosts.
One of the most common Palaearctic xoridines, Xorides praecatorius (F.)
(Ichneumonidae), for example, has been reared from galleries of at least 30 species
of mostly cerambycids and buprestids and from both dead and living coniferous and
deciduous trees and shrubs (Hilszczariski 2002). Idiobionts are synovigenic which
means that they produce relatively big eggs successively during their adult life. This
requires supplementary feeding on flowers, honeydew or hosts (host feeding),
although the latter has not been actually observed in saproxylic idiobionts. Adults
drink water, and the presence of water, for example, dew, is probably a limiting
factor for these insects (Vanlaerhoven et al. 2005). Idiobionts are generally longer-
lived than koinobionts, which is explained mainly by their successive development
of large well-yolked eggs, which is an ongoing process, and the consequent limits to
the frequency of ovipositions that can be achieved.

6.4 Behavioural and Morphological Adaptations
of Saproxylic Parasitoids

Compared to parasitoids of exposed hosts (e.g. such as those attacking caterpillars
that feed externally on leaves), saproxylic parasitoids face a number of unique
challenges arising from their specificity for hosts concealed under bark or within
dying or dead wood. Host location is the first challenge, followed by ovipositing
through hard layers of bark or wood and finally emerging as new adults from deep
within the galleries of host insects. As discussed below, these insects have developed
a wide variety of behavioural and morphological adaptations to cope with these
challenges.
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6.4.1 Host Location

Successful parasitism involves a sequence of steps including host habitat location,
host location, host acceptance and host suitability (Godfray 1994). To find a host
concealed in wood, parasitoids use a combination of chemical and physical cues.
Vibrations made by the host are often a very good indication of host presence [see
example of Doryctes leucogaster (Nees) below]. However some parasitoids use a
form of echolocation, i.e. vibrational sounding, whereby vibrations are made by the
parasitoid female with the use of special antennal hammers (Fig. 6.2¢c, f) (Vilhelmsen
et al. 2001). The response of the substrate is then detected in subgenual organs
located in the swollen fore tibia (Fig. 6.2d) (Broad and Quicke 2000).

6.4.2 Oviposition

A long ovipositor is the most obvious feature which is very often connected with
morphological adaptations of parasitoids to lay eggs on hosts concealed in wood.
Indeed a long ovipositor is one of the main tools, but the ovipositor itself has many
other adaptations which enable parasitoid females to assure reproductive success
(Quicke 2015).

Typically the ovipositor of ichneumonoids consists of a single upper and a pair of
lower valves, which are protected by sheaths when not in use. In the case of
saproxylic species, the ovipositor is used to penetrate the substrate, and because of
that it is constructed to be able to get through sometimes hard wood. The most
commonly seen ovipositors in saproxylic parasitoids are equipped with a sharp
strong tip, sometimes pre-apical protuberances (nodus) on the upper valve, and
distinct lower valve serrations (Fig. 6.2a). Variations in those features are sometimes
used as important morphological features used in species identification (Zwakhals
2010). The ovipositor works similarly to a ratchet drill; finding the right place for the
tip of ovipositor to start the whole process is of paramount importance (see below for
the example of Doryctes leucogaster). “Drilling” or cutting through a hard substrate
requires a strong cuticle on the ovipositor teeth. The apex of the ovipositor was
found in some species to largely consist of a zinc- or manganese-protein complex
(Quicke et al. 1998). Some species of parasitoids use oviposition holes made by
females of the host species, and such females have a much more “delicate” ovipos-
itor which is thinner than the host one and does not possess strong serrations. For
example, Aulacus striatus Jurine (Aulacidae) lays its eggs using the hole made by
wood wasps (Xiphydria sp.), while in a similar fashion, the ichneumonid
kleptoparasitoid Pseudorhyssa (Poemeniinae) uses the boring made by the female
of the primary ichneumonid rhyssine parasitoids Rhyssa sp. or Rhysella sp. to steal
the host of these primary parasitoids. Despite its narrower ovipositor, Pseudorhyssa
lays much bigger eggs than the primary parasitoids, and its first instar larva has a
great advantage over them in having far more powerful mandibles, through which it
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is able to kill their egg or win contests with the primary parasitoid larva. In the case
of saproxylic species which are able to reach their host in other ways than by drilling
through substrate, the ovipositor can be small and with reduced serrations as in the
case of Histeromerus sp. (Braconidae, Histeromerinae) (Shaw 1995).

An important thing for species having a long ovipositor, which might be five to
ten times longer than the body, is to stabilise it and prevent it from buckling. To
penetrate a woody substrate, the ovipositor has to be pushed with force. A thin and
long ovipositor is prone to buckle, so many species have special adaptations to
reduce the effective (force-bearing) length of the ovipositor by clamping it using
grooves located on the hind coxae (Pristaulacus sp., Aulacidae (Fig. 6.1f);
Cenocoelinae, Braconidae) or special guides with hooks on the metasomal sternites

Fig. 6.1 Morphological features of saproxylic parasitoids. (a) Orussus abietinus (Scopoli) spines
on the head; (b) Neoxorides sp. scalelike ridges on the head; (¢) Stephanus serrator (F.) spines on
the head; (d) Coleocentrus croceicornis (Gravenhorst) enlarged hypopygium; (e) Megarhyssa
ridges on mesosoma; (f) Pristaulacus sp. groove on hind coxa; (g) Megarhyssa sp. groove with
hooks; (h) Megarhyssa sp. groove on the base of hind coxa (Photos by Jacek Hilszczanski)
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in some Rhyssinae (Megarhyssa sp.) (Fig. 6.1g). In some Megarhyssa, the ovipos-
itor can be looped in an internal membranous sac between tergites 6 and 7 of the
metasoma, which facilitates the use of a much longer ovipositor. To use long
ovipositors, many parasitoids also have thin and long legs, which enable them to
position the ovipositor perpendicularly to the wood when starting the process of
penetration (Fig. 6.4b, g).

Megarhyssa and other Rhyssinae and some Ephialtini (Dolichomitus) stabilise
the ovipositor by positioning it in a special groove at the base of the hind coxae
(Figs. 6.1h and 6.4e, g). In the case of Acaenitinae, a stabilisation role is played by
the enlarged hypopygium (Fig. 6.1d), which reduces the effective length of the
ovipositor by a factor of about two. Species with shorter ovipositors, or those
associated with a host occupying a softer substrate such as bracket fungi, manage
without additional stabilisation (Fig. 6.4d).

Although it is not well studied in saproxylic parasitoids, it is known that some
species are able to steer the distal part of the ovipositor through fissures as an
adaptation to reach their host in its galleries. The mechanism for this is similar to a
bimetallic strip, i.e. the shortening of one side causing bending of the ovipositor to
the shorter side. The effect is achieved with the help of various modifications of the
valves such as swollen parts, scarped butts and notches which work as the valves are
moving.

Another function of the ovipositor that is provided by sense organs on the tip is to
locate the host in the substrate and assess whether it is acceptable for ovipositing.

The next task for the ovipositor is to temporarily paralyse or kill the host by
injecting venom. Most probably the saproxylic host larva is not indifferent to what is
going on and is able to escape or defend itself by trying to bite the emerging
ovipositor tip, as has been observed in the case of Diprion sp. sawfly larvae attacked
by the cryptine Agrothereutes adustus (Gravenhorst) (Hilszczariski, pers. obs.).

The last thing is to lay an egg. Saproxylic parasitoids typically have long highly
elastic eggs which are able to pass along the thin egg canal of the ovipositor. The
inner walls of the ovipositor are equipped with ctenidia-like microsculpture to drag
the chorion of the egg down it.

6.4.3 Emergence from Dead Wood

Newly hatched saproxylic parasitoid adults have to egress from the substrate, which
usually involves passing a certain distance through wood or bark. They have to chew
their way out, which is made easier by having the chisel-like mandibles found in
several groups (Fig. 6.2e). Mandibular teeth are hardened by zinc- or manganese-
protein complex (Quicke et al. 1998). While chewing their way out, it is important to
get sufficient purchase, and many saproxylic parasitoids have evolved a variety of
spines and ridges on the head and mesosoma (Fig. 6.1a, b, c, €) and pegs or spines on
legs. The characteristic set of spines located on the head of stephanids and orussids is
called the ocellar corona (Fig. 6.1a, ¢) (Vilhelmsen 2011).
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Fig. 6.2 Morphological features of saproxylic parasitoids. (a) Dolichomitus sp. tip of the ovipos-
itor; (b) Cosmophorus regius Niezabitowski strong mandibles for keeping adult host; (¢) Orussus
abietinus (Scopoli) antennal hammer; (d) Xorides irrigator (F.) swollen front tibia; (e) X. irrigator
chisel-like mandibles; (f) X. propinquus (Tschek) antennal hammers (peglike setae) (Photos by
Jacek Hilszczanski)

Some species have a strongly dorsoventrally depressed body, such as Aplomerus
sp., Xorides gracilicornis (Gravenhorst), X. depressus (Holmgren) (Xoridinae) and
Chartobracon (Braconinae) (Fig. 6.5f). This is most probably an adaptation to move
in host galleries or under the loose bark of infested trees.

An exceptional group of saproxylic parasitoids are species attacking adult beetles
living under bark. Those species have special adaptations to handle the host, for
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example, strong mandibles with which they can grasp the host while ovipositing, as
in the case of Cosmophorus regius Niezabitowski (Euphorinae) (Fig. 6.2b).

6.5 Saproxylic Parasitoids Have to Be Patient and Precise:
The Case of Doryctes leucogaster (Nees) (Doryctinae,
Braconidae)

Doryctes leucogaster is a common idiobiont, ectoparasitoid of larvae of wood-
boring beetles. It is recorded to parasitise numerous species of families
Cerambycidae, Buprestidae and Anobiidae in both coniferous and deciduous
woody species. Records of the species from lepidopterans or phytophagous beetles
are most probably mistakes (Yu et al. 2012). The larva of House borer Hylotrupes
bajulus (L.) (Cerambycidae) is a typical host of the parasitoid. During summer 1995,
I made careful observations of the behaviour of several female D. leucogaster
individuals staying on common fir beams heavily infested by house borer larvae
on the roof construction of a barn.

The first specimens of D. leucogaster on roof beams were observed on the 25th of
June, but I was able to make observation of searching and ovipositing behaviour
only between the 5th and 11th of August of the same year. Individuals of the
parasitoid were concentrated on a single beam about 2 m in length and about
18 cm in diameter. There were permanently 3—8 specimens (max. 599 and 333)
of D. leucogaster around the beam. During that time no courtship or any signs of
feeding was observed. Adults are very slow and especially females stay motionless
sometimes for many hours. Searching for host larvae takes the female a very long
time, and they move slowly for 2-3 cm and then stand still. They could move from
time to time practically 24 hours a day but the highest activity takes place in the
evening (17:00-19:00). There is no doubt that the females are able to feel vibrations
made by house borer larvae during feeding. The sound made by these larvae is very
well audible even for humans. Those vibrations most probably provide great infor-
mation for the parasitoid female on the size of the host, its location and its viability
(Quicke 2015). Females move with widely splayed antennae and hind legs, which
takes them sometimes hours. In this species no vibrational sounding (drumming by
antennae) was observed. After finding the appropriate place, the female starts to turn
in a circle. It looks as though the female searches for the best place (coordinates)
indicated by vibrational information and received by the tips of antennae and hind
legs. Dry beams have plenty of pores, so there is no problem for the female to
position her ovipositor in an appropriate place and launch the process of “drilling”.
While drilling, female moves her abdomen on her sides which makes the stabilised
ovipositor by enlarged hypopygium turn. At the same time the female moves her
ovipositor upwards and downwards. The whole process of drilling takes the female
from 1 to 2.5 h, probably depending on the depth at which the host larva is located
(usually 0.5-1.0 cm). After finishing drilling, but with the ovipositor still in the
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wood, the female stands still and looks as though it is waiting for something. Most
probably the host larva defends itself by assaulting the emerging ovipositor. This
kind of behaviour was observed in the case of Diprion larva attacked by parasitoid
A. adustus (see section on oviposition). A host larva could also escape along the
galleries, so the female parasitoid has to wait patiently for the right moment to sting
and paralyse the passing larva. Indeed after some time, the female executes a fast
movement with her abdomen (stinging) and after a while start to “pump” with her
abdomen (egg laying). It takes 7 min from stinging to extraction of the ovipositor.
Extraction of the ovipositor lasts just a few seconds. Not all attacks are successful:
after opening a gallery in the place of oviposition in three cases, I did not find any
larvae. Only once was I able to find a motionless paralysed larva. Females oviposit
more or less in the same place several times, which means that the same female, or
perhaps another one, tries to parasitise the same unparasitised host larva a few times.
The first naturally dying female was observed on the 11th of August. On the barn
beam D. leucogaster had competition from other species of parasitoids such as
Rhoptrocentrus piceus Marshall, Spathius curvicaudus Ratz., S. rubidus (Rossi)
and Helcon redactor Thunberg (Braconidae), but those species were much more
actively moving and flying around and were difficult to observe for a long period.

6.6 Diversity of Saproxylic Parasitoids, with a Brief
Overview of Major Families

Although many hymenopteran families are likely to include saproxylic members, the
ecology of this fauna remains poorly characterised outside Europe and other well-
studied temperate zones. In the following sections, I review families known to
contain saproxylic species in Holarctic forests. These taxa were targeted specifically
because of their known importance as parasitoids of typically wood-living insects
including certain forest pests such as woodborers. Although not specifically
addressed below, it should be noted that many other families of hymenoptera include
saproxylic members in forests throughout the world, including the extremely diverse
superfamily Chalcidoidea.

6.6.1 Ichneumonidae
6.6.1.1 Acaenitinae

Members of this subfamily are typically large koinobiont endoparasitoids, often rare
in collections. Their biology is poorly known except for the Palaearctic
non-saproxylic Acaenitus dubitator (Panzer) (Shaw and Wahl 1989) and
Coleocentrus excitator (Poda) which was investigated by Kinelski (1964).
C. excitator is an endoparasitoid of cerambycid larvae, mainly Corymbia rubra L.,
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living in the dead wood of pine and very often in pine stumps infested by the
cerambycid where Kinelski found many of them parasitised by C. excitator. Most
acaenitines have a long ovipositor which they stabilise during oviposition using the
enlarged hypopygium (Fig. 6.1d).

6.6.1.2 Xoridinae

This is a subfamily of idiobiont ectoparasitoids of larvae and pupae of wood-boring
beetles (Fig. 6.3f). Species of Xorides (Fig. 6.4a, c), Odontocolon (Fig. 6.4f),
Ischnoceros and Aplomerus are recorded in woody substrates infested by
cerambycids, buprestids or anobiids (Hilszczanski 2002). It is often possible to
recognise these species by the shape and colour of their characteristic cocoons
(Fig. 6.3a—e). Most species are usually solitary, but Ischnoceros rusticus (Geoffroy)
have been found to be normally gregarious (Fig. 6.3b). Records of xoridines from
wood wasps are doubtful and require confirmation. Xoridines use vibrational sound-
ing when searching for host larvae. Females possess peg-like setae on subterminal
segments of the antenna (Fig. 6.2f) which are cuticular structures used to transmit
vibrations to the substrate (Quicke 2015). The swollen front tibia (Fig. 6.2d) of
females contains a vibration-detecting subgenual organ. Egression out of the wood is
made easier by having chisel-like mandibles (Fig. 6.2¢).

6.6.1.3 Rhyssinae

This is one of the best known groups of parasitoids, represented by large (often
reaching 5 cm in length with ovipositors up to 10 cm) easily noticeable species with
striking coloration as in Rhyssa and Megarhyssa. Rhyssines are idiobiont
ectoparasitoids of wood wasps (Siricidae and Xiphydriidae). They are able to detect
the presence of infested trees through volatiles from the fungal symbiont of the host
larvae (Madden 1968). Rhyssines are used as control agents of invasive siricids in
coniferous plantations in Australia and New Zealand (Heatwole et al. 1962). On the
same host siricid, Tremex columba (L.), three species of rhyssines exhibit niche
partitioning driven by ovipositor length (Gibbons 1979). Males of rhyssines
often aggregate in the place where a female is about to emerge. In Megarhyssa,
males have long, slender abdomens which enable them to reach the female and
copulate prior to her complete emergence. Rhyssines have developed various adap-
tations for ovipositing in and emerging from woody substrates, such as ridges on the
mesosoma and grooves for stabilising the ovipositor on sternites and hind coxae
(Fig. 6.1e, g, h).
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Fig. 6.3 Various cocoons of Xoridinae (Ichneumonidae). (a) Xorides indicatorius (Latreille); (b)
Ischnoceros rusticus (Geoffroy); (¢) X. fuligator (F.); (d) I. caligatus (Gravenhorst); (e) X. filiformis
(Gravenhorst); (f) X. praecatorius (F.) larvae near host remains before spinning up cocoon (Photos
by Jacek Hilszczanski)

6.6.1.4 Labeninae

This is a small subfamily comprising parasitoids of wood-boring Coleoptera and
siricid wood wasps. Similarly to rhyssines some species of labenines, such as
Apechoneura sp., have adaptations for parasitising hosts concealed in the wood,
such as ridges on the mesosoma and grooves on the hind coxae for stabilising the
ovipositor (Gauld and Wahl 2000).
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Fig. 6.4 Examples of Ichneumonidae. (a) Xorides hedwigi Clement; (b) Rhyssella sp. ovipositing;
(¢) Xorides csikii Clement; (d) Pimplinae ovipositing in bracket fungi; (e) Dolichomitus sp.
ovipositing keeping and stabilising ovipositor with the help of grooves on the base of hind coxae;
(f) Odontocolon dentipes (Gmelin) ovipositing; (g) Dolichomitus sp. ovipositing (Photos by Jacek
Hilszczanski)
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6.6.1.5 Poemeniinae

These are idiobiont ectoparasitoids of insects living in concealed places, such as
beetle larvae (Deuteroxorides, Neoxorides, Cnastis, Podoschistus) or solitary wasps
(Poemenia). Some species have evolved adaptations for emerging from the sub-
strate, such as ridges on the head (Fig. 6.1b). The sister group for other poemeniines,
Pseudorhyssa spp., are kleptoparasitoids of Rhyssa and Rhyssella (Rhyssinae)
(Fig. 6.4b).

6.6.1.6 Pimplinae

Some genera of this large subfamily, such as Dolichomitus and Ephialtes, utilise
saproxylic hosts (Fitton et al. 1988). All species are idiobiont ectoparasitoids of
larvae and sometimes pupae of insects living in wood, mainly beetles but sometimes
also wasps nesting in wood, as in the case of Ephialtes sp., or in bracket fungi
(Fig. 6.4d). These species typically have very long ovipositors reaching sometimes
six to eight times the length of the body as in the case of the Holarctic Dolichomitus
cephalotes (Holmgren) or Peruvian D. hypermeces Townes. Some of these parasit-
oids are able to stabilise the ovipositor by locating it in the base of hind coxae
(Fig. 6.4e, g).

6.6.1.7 Cryptinae

This is a large subfamily of mostly idiobiont ectoparasitoids. Some species, such as
Echthrus sp., Helcostizus or Stenarella, are related to hosts living in wood. Cryptus
genalis Tschek is known to parasitise pupal chambers of cetonid beetles living in tree
cavities (Schwarz et al. 2013).

6.6.1.8 Campopleginae

This large subfamily is related mostly to lepidopterans and sawflies; however,
species of Pyracmon and especially Rhimphoctona are important parasitoids of
wood-boring beetle larvae (Luo and Sheng 2010). Campoplegines are koinobiont
endoparasitoids.



6 Ecology, Diversity and Conservation of Saproxylic Hymenopteran Parasitoids 207

6.6.2 Braconidae
6.6.2.1 Braconinae

This is one of the biggest subfamilies of braconids. All the saproxylic braconine
species are idiobiont ectoparasitoids. Many species are effective enemies of eco-
nomically important pests, such as Coeloides sp. (Fig. 6.5a), Atanycolus sp. and
some Bracon sp. (Fig. 6.5¢) parasitoids of bark beetles and other phloem feeders.
Some species are very flat and produce flat cocoons as adaptations to the restricted
space under loose bark (Fig. 6.5d, f).

6.6.2.2 Doryctinae

This is a very large cosmopolitan subfamily with many genera and species that
utilise saproxylic hosts. Doryctines are idiobiont ectoparasitoids that are usually
solitary but sometimes gregarious [e.g. Doryctes, Spathius, Heterospilus, Jarra and
Gildoria (Fig. 6.5b)] (Shaw and Huddleston 1991). Some target important pests such
as Spathius agrili Yang, a parasitoid of emerald ash borer (Agrilus planipennis
Fairmaire); Ontsira mellipes (Ashmead), a parasitoid of the Asian longhorned beetle
(Anoplophora glabripennis Motschulsky) (Golec et al. 2017); or Syngaster lepidus
Brullé and Jarra sp., parasitoids of eucalypt borers Phoracantha sp. The last two
species partition the larval resource based, in part, on bark thickness and size of the
host; solitary Syngaster prefers smaller larvae located deeper in the substrate,
whereas gregarious Jarra targets bigger larvae closer to the surface (Paine et al.
2000). The gregarious S. agrili have been found to rely on host vibration during host
location, and immobile hosts, including already parasitised ones, are not attacked.
Females of this species lay about 23 eggs, and there are 5 larval instars (Wang et al.
2010). Males of some species, such as Dendrosoter sp., aggregate in places where
they are able to locate a female before she emerges from the substrate (Fig. 6.5¢).

6.6.2.3 Rhyssalinae

The biology and host associations of this subfamily remain poorly known.
Histeromerus mystacinus Wesmael is an interesting gregarious ectoparasitoid
(up to 47 larvae on 1 host larva) which parasitises larvae, pupae or prepupae of
wood-boring beetles (mainly cerambycids and burpestids). Females reach the host
by digging through the substrate with the help of strong mandibles and spinose front
tibiae. After paralysing the host, the female exhibits a form of parental care,
remaining close to its developing brood (Shaw 1995). Species of Dolopsidea are
also associated with dead trees although the hosts targeted by this genus remain
unclear (Shaw 1993).
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Fig. 6.5 Examples of Braconidae. (a) Coeloides sp.; (b) Gildoria sp. females gathering in a good
place for ovipositing; (¢) Dendrosoter sp. aggregation of males where a female is about to emerge;
(d) Coeloides sp. flat cocoon under the bark; (e) Bracon sp. gregarious brood with remains of the
host; (f) Chartobracon huggerti van Achterberg strongly depressed body (Photos by Jacek
Hilszczanski)

6.6.2.4 Helconinae

Koinobiont endoparasitoids comprising relatively big parasitoids of larvae of wood-
boring beetles (Cerambycidae, Buprestidae). Some species are important enemies of
common woodborers such as Helconidea dentator, a parasitoid of larvae of
Tetropium sp. (Kenis and Hilszczanski 2004).
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6.6.2.5 Cenocoeliinae

This is a small mainly tropical subfamily of koinobiont endoparasitoids.
Cenocoeliines parasitise larvae of wood-boring beetles living usually in thin twigs,
and probably because of that these parasitoids have the metasoma inserted high on
the propodeum as in Lestricus secalis (L.) common parasitoid of Pogonocherus
sp. (Cerambycidae) larvae in Central European pine forests (Hilszczanski 1998). The
species very often exhibit a special groove for stabilising the ovipositor on the inner
side of the hind coxae, similar to aulacids.

6.6.2.6 Euphorinae

This subfamily of parasitoids develops as koinobiont endoparasitoids of adult
insects, in the case of saproxylic ones (Cosmophorus, Cryptoxilos, Ropalophorus),
mainly on adults of bark beetles. Cosmophorus females grasp the host beetle with
their enlarged mandibles (Fig. 6.2b) while temporarily paralysing it and ovipositing.
Some species of the genus Meteorus are recorded from larvae of saproxylic beetles
belonging to the families Melandryidae, Erotylidae, Biphyllidae, Cerambycidae,
Ciidae and Scolytinae (Huddleston 1980; Tobias 1986). Meteorus corax Marshall
has been often collected in traps mounted on dead spruce trees (Hilszczanski, pers.
obs.) and recorded presumably as parasitoid of cerambycids larvae or more probably
of Pytho depressus L. (Coleoptera: Pythidae) (Martikainen and Koponen 2001).

6.6.3 Aulacidae

Found worldwide, this small family of koinobiont endoparasitoids mostly parasitises
the larvae of wood-boring Coleoptera. A single species of Aulacus is known to
parasitise wood wasp larvae of the family Xiphydriidae. Two worldwide genera are
known: Aulacus and Pristaulacus (Fig. 6.6f). Females are able to lay eggs in hard
wood using their long ovipositor which is stabilised by locating it in special grooves
on the hind coxae (Fig. 6.1f). In the case of Aulacus parasitising Xiphydria, the
female threads her ovipositor down the drill shaft made by the female Xiphydria and
oviposits into the group of host eggs.

6.6.4 Ibaliidae

This small family of koinobiont endoparasitoids represents an exceptional group
within Cynipoidea parasitising larvae of siricids in coniferous and deciduous trees.
Ibalia (Fig. 6.6e) has been introduced to South America, Australia and New Zealand
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Fig. 6.6 Examples of various families. (a) Stephanus serrator (F.) (Stephanidae) cleaning ovipos-
itor; (b) Orussus moroi Guiglia (Orussidae); (c) Foenatopus turcomanorum (Semenov)
(Stephanidae); (d) Orussus abietinus (Scopoli) (Orussidae); (e) Ibalia sp. (Ibaliidae) ovipositing;
(f) Aulacus striatus Jurine (Aulacidae) (Photos a—d, f by Jacek Hilszczanski, e by Jacek Nowak)

to control introduced Siricidae infesting pine wood (Cameron 2011). The most
distinct features of ibaliids are their strongly laterally compressed gaster and a series
of transverse ridges on the mesosoma. Females possess a hypopygium used to
stabilise the ovipositor during wood penetration (Fig. 6.6e).
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6.6.5 Stephanidae

Stephanids (Fig. 6.6a, ¢) comprise a small cosmopolitan family occurring mostly in
tropical and subtropical forest ecosystems where these idiobiont parasitoids are
associated with wood-boring beetles. Schlettererius cinctipes (Cresson) is known
to parasitise Sirex noctilio F. (Siricidae) and was introduced as a control agent to
Australia and Tasmania (Hong et al. 2011; Collett and Elms 2009). Stephanids have
characteristic ocellar coronae which helps them to emerge from wood (Fig. 6.1c¢).
They also bear modified hind legs with subgenual organs which in some species play
an important role in host vibration detection (Vilhelmsen et al. 2008). Hind legs have
a swollen femur that has large teeth on the underside. The role of the teeth is
unknown although it could also be related to emergence from the wood.

6.6.6 Orussidae

This is a basal group of saproxylic parasitoids, the sister group of Apocrita,
(Vilhelmsen 1997, 2003) (Fig. 6.6b, d). Utilising hosts living deep in wood,
e.g. buprestid larvae, orussids possess ovipositors that are several times the length
of the body. The ovipositors extend all the way into the prothorax, where they are
coiled before extending posteriorly to lie between the third valvulae distally. The
ovipositors lie in a membranous sac attached posteriorly to the proximal parts of the
ovipositor apparatus and the posterior margin of sternum 7 (Vilhelmsen et al. 2001).
Orussids search for host larvae by using vibrational sounding. To make vibrations
they use special antennal hammers (Fig. 6.2¢). Emergence from wood is facilitated
by special spines located around the ocelli on the head, called the ocellar corona
(Fig. 6.1a). Adult orussids are able to jump, which is probably an effective method to
escape from predators.

6.7 Habitat Requirements

Habitat requirements of saproxylic parasitoids have been investigated only sporad-
ically, except for some particular species which are considered to be important
enemies of saproxylic pests, especially bark beetles (Kruger and Mills 1990).
Recently some research has been done on that issue, especially in the boreal forests
of the Northern Hemisphere (Gibb et al. 2008; Hilszczanski et al. 2005; Jonsell et al.
1999; Komonen et al. 2000; Stenbacka et al. 2010) and temperate forests of North
America (Ulyshen et al. 2011). Most saproxylic parasitoids are completely unknown
concerning their host associations, which is especially typical for tropical species.
Even for well-studied Holarctic species, host records are often of unknown reliability



212 J. Hilszczariski

or based on mass rearing efforts that provide no insight into habitat associations
(Kenis and Hilszczanski 2004).

Being at a high trophic level, parasitoids often depend on unreliable resources.
Many species of saproxylic parasitoids are specialised, which is especially the case
in koinobiotic endoparasitoids (see koinobionts vs. idiobionts), and in general more
specialised species are more sensitive to changes in the trophic level on which they
depend (Shaw and Hochberg 2001). Parasitoids appear to be more affected by
landscape structure than their hosts, probably because of poor dispersal capacity
(Weslien and Schroeder 1999; Jonsell et al. 1999). This diverse group of highly
specialised insects may act as much better indicators of quality and continuity of
woody resources than their hosts. Despite their potential to inform conservation
efforts, parasitoids have been mostly neglected due to their largely unknown ecology
(Shaw and Hochberg 2001).

Studies in boreal forests (Hilszczariski et al. 2005; Hedgren 2007; Gibb et al.
2008; Stenbacka et al. 2010) clearly showed that forest management history (man-
aged vs. reserve) and substrate posture have a distinct impact on the species
assemblage of saproxylic parasitoids. Snags or standing dead trees host a distinctive
assemblage of parasitoids and usually support higher numbers than prostrate logs
(Ulyshen et al. 2011). Snags are preferred and exclusively inhabited by many species
associated with common cerambycids and other wood borers. Also communities
associated with the upper parts of standing trees and crowns of snags are different in
this respect from those in lower parts of snags (Ulyshen et al. 2011). These results
indicate the importance of creating a diversity of potential dead wood habitats in
managed forests, including retaining entire snags during harvest operations. It is
known that the location of the appropriate habitat usually occurs first in the sequence
of host searching behaviour in parasitoids (Quicke 1997) which implies that the type
of substrate (standing vs. on the ground) may be especially important for highly
selective species.

Saproxylic parasitoids clearly differ in their ability to utilise particular wood
substrates as determined by the presence and accessibility of suitable hosts. For
example, cenocoelines such as Cenocoelius analis (Nees) or Lestricus secalis (L.)
are exclusively associated with specific cerambycid hosts within the thin twigs of
coniferous and deciduous trees, respectively. On the other hand, parasitoids such as
Ischnoceros caligatus (Gravenhorst) (Xoridinae) attack many species of cerambycid
larvae, regardless of the size and kind of host tree (Hilszczarski, pers. obs., 1998; Yu
et al. 2012). Histeromerus mystacinus Wesmael is adapted to search for cerambycid
larvae digging through their galleries and has been known to attack several species,
mostly larvae of big lepturines like Leptura scutellata F., L. aurulenta F. and
L. thoracica Creutzer (Shaw 1995; Yu et al. 2012; Hilszczarnski, pers. obs.). Because
of this, H. mystacinus is looking for big woody substrates preferred by its hosts.
Many parasitoids are restricted by the length of the ovipositors, being unable to reach
larvae deep within wood or beneath thick bark. Mancini et al. (2003), for example,
found Caenopachys hartigii (Ratzeburg) (Braconidae, Doryctinae) to be restricted to
twigs less than 7 cm in diameter as bark was otherwise too thick for the wasps to
reach the bark beetle larvae concealed underneath.
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Some parasitoids are also well adapted to clear-cuts, while others are associated
only with older successional stages of forest. Koinobionts appear to be generally
more abundant in forests than on clear-cuts, while the opposite pattern was found for
idiobionts (Hilszczarski et al. 2005). Idiobionts are not so closely restricted to
particular hosts and thus usually have more potential hosts and at the same time
tend to be less restricted in habitat selection. Saproxylic koinobionts, being
endoparasitoids, are usually more specialised than idiobionts and are adapted to
stable habitats where the hosts are not as affected by disturbances of the kind often
seen in late succession habitats. In some forest habitats such as tree plantations,
where hosts are especially abundant, koinobionts can become more common
(e.g. Ibalia in Australian pine plantations, Carnegie et al. 2005).

Some parasitoids might be more substrate-specific than their hosts, as has been
shown for some species in boreal forests. For example, Helcon dentator
F. (Braconidae, Helconinae), a parasitoid of Tetropium sp. (Cerambycidae), was
absent at experimental sites lacking snags, even though its host was present in other
substrate types (Hilszczanski et al. 2005). Saproxylic parasitoids may act as impor-
tant early indicators of changes in woody resource availability, which could affect
saproxylic biodiversity. One can conclude that the different tree species, stand types
and types of dead wood are complementary in the composition of saproxylic
parasitoid assemblages but that none hold a complete diversity of them. Thus, the
full range of successional stages has to be retained to help conserve the entire
saproxylic parasitoid community.

6.8 Conclusions

Saproxylic parasitoids are well recognised taxonomically, especially in temperate
and boreal zones. Also the host associations of many species are known, even
though a considerable part of that is still based on mass rearings and incorrect
conclusions as to the correct host identity are quite common. There is still a big
need to improve our knowledge on the habitat requirements of many saproxylic
parasitoids. The tropical fauna in this respect is almost completely unknown. At the
same time, many behavioural adaptations, and the role of physiological and mor-
phological features of saproxylic parasitoids, remain unstudied.

There is no doubt that if we know so little about host relationships and habitat
requirements of most of the saproxylic parasitoid fauna, it is impossible to anticipate
what effects the loss of habitats would bring, especially in tropical forests for certain
groups or species of parasitoids. It follows that, until much more knowledge is
obtained, it is very difficult to imagine any system of nature protection which would
take the requirements of these remarkable insects properly into consideration