

education Department: Education PROVINCE OF KWAZULU-NATAL

STEP AHEAD SOLUTIONS

LIFE SCIENCES

GRADE 11

JANUARY

2021

NO.	TOPIC	PAGE
1.	Classification of Micro-organisms	36
2.	Plant Diversity	610
3.	Animal Diversity	1115
4.	Photosynthesis	1623
5.	Animal nutrition	2328
6.	Cellular respiration	2934
7	Gas exchange	3540
8.	Excretion in man	4157
9.	Population ecology	5861
10.	Human impact on environment	6267

Topic: Diversity and classification of Micro-organisms

Activity 1

1.1				
	1.1.1	A. Protein coat / Capsid ✓		
		B. Tail. ✓		
		C. Neck ✓		
		D. Tail fibres√	4	
	1.1.2	They do not have a cell structure√	1	
	1.1.3	(i) Reproduce/ die ✓		
		 (ii) Do not fear/ do not respire ✓ 	2	
	1.1.4	Will not be able to reproduce/multiply, \checkmark because they are		
		obligate parasites/ can only reproduce inside a host cell.	2	
		\checkmark		9

2.1				
	2.1.1	Acquired Immuno Deficiency Syndrome. 🗸	1	
	2.1.2	HIV (Human Immune Virus) 🗸	1	
	2.1.3	Can only reproduce inside a host cell/ living cell \checkmark	1	
2.2	2.1.4	 People may engage in unprotected sex√ when intoxicated √ High rate of prostitution√ to get money for drugs√ 	4	
		-The virus attaches itself onto the host cell \checkmark -Virus injects its genetic material/ DNA/RNA into the cell \checkmark		
		 -Viral genetic material combines with DNA/ genetic material of host cell√ -Viral DNA multiplies/ replicates as host DNA multiplies/ replicates√ - Viral DNA makes protein coats for itself √ - New viral particles split open the host cell and attack more host cells.√ 	6	13

-		· · · · · · · · · · · · · · · · · · ·		
3.1				
	3.1.1	Able to make/ manufacture their own food \checkmark		
	3.1.2	Unable to make or manufacture their own food/ feed on		
		other organisms√		
	3.1.3	No true / definite nucleus/ no nuclear membrane √	3	
3.2	3.2.1	A only √√		
	3.2.2	Both A and B √√		
	3.2.3	Both A and B √√		
	3.2.4	A only √√		
	3.2.5	B only √√	10	
		(2x5)		
				13

Activity 4: Protists (Malaria)

4.1	4.1.1	Protista√	1	
	4.1.2	Take anti-malarial drugs√ Use insect repellents on exposed skin√ Sleep under bed-nets√ Empty areas of standing water to prevent breeding of mosquitoes√		
		any	2	
4.2	4.2.1	A female Anopheles mosquito ✓ bites an infected person, the parasite is sucked in ✓ and develops further in the vector and the mosquito bites another person ✓ transferring the parasite. any		
	4.2.2	Antibiotics can only be used to treat diseases caused by bacteria \checkmark and the malaria is transmitted by a protist. \checkmark	2	
	4.2.3	The economy will be negatively affected ✓ as the cost of malarial treatment is high ✓/decreased work production	2	
	424	From hospital records√	2	
	12.4	Not all people affected go to hospital√ in some areas	1	
	4.2.3		1	
				11

Home work (Bacteria and Viruses)

Viruses	Bacteria
Have characteristics of both living and non-living things	They are living cel
Acellular	unicellular
Do not respire/ feed	They respire/ feed
Only reproduce in a host cell	Can reproduce on their own/ outside host cell
No cell wall	Cell wall present
No cell membrane	Cell membrane present
No cell organelles, only genetic material	Cell organelles present
Ru 1 mark fc	b ric: br table (with headir

Activity 5 (Classwork): Summary of Micro-organisms

				14
	5.14	Asexual and sexual√	14	
	5.13	Heterotrophic√		
	5.12	Eukaryote 🗸		
	5.11	Fungi 🗸		
	5.10	Sexual and asexual ✓		
	5.9	Autotrophic and heterotrophic ✓		
	5.8	Eukaryote 🗸		
	5.7	Protista ✓		
	5.6	Asexual (Binary fission)/ vegetative and sexual \checkmark		
	5.5	Autotrophic and heterotrophic√		
	5.4	Prokaryote ✓		
	5.3	Monera ✓		
	5.2	Absent ✓		
	5.1	Acellular 🗸		
5		The table below summarises the diversity of micro-organisms. Complete the table under each appropriate column		
-	<u> </u>			

Activity 6: (immunity)

6.1	6.1.1	Antibodies	1	
	6.1.2	Antibodies remain in the body/ are not weakened/last for a long time OR are not destroyed/ body continues to make antibodies/ cause an increase in the number of antibodies/ person as made own antibodies. (any 1x1)	1	
	6.1.3	Antibodies are weakened after a short time/ antibodies are made in an animal body/ they are not human antibodies/ person has not made own antibodies. (any 1x1)	1	
	6.1.4	So that more antibodies are made/ to keep antibody count high/ so body keeps making antibodies for a long time. (Any 1x1)	1	
	6.1.5	Injection of ready-made antibodies/ does not have to wait for antibody formation/ has large amount of antibody quickly available/ antibody start working straight away. (Any 1x1)	1	
				5

Topic: PLANT DIVERSITY

1.1			
1.1.	(a) -Sporangium□	(1)	
1	(b) -Calyptra□	(1)	
	(c) -Stalk□	(1)	
1.1.	(a) -Sporophyte□	(1)	
2	(b) -Gametophyte□	(1)	
1.1.	-B , Gametophyte□	(1)	
3			
		[6]	

1.2			
1.2.1	(a) -Gametophyte□	(4)	
	(b) -Zygote		
	(c) -Sporophyte		
1.2.2	(a) -fertilisation	(1)	
	(b) -meiosis□	(1)	
		[6]	

2.1				
	2.1.1	A- Bryophyte ✓	(2)	
		B- Pteridophyte√		I
	2.1.2	-Spores√	(1)	
	2.1.3	-Haploid√	(1)	
	2.1.4	-A√	(1)	
	2.1.5	- it does not have true roots, stems and leaves \checkmark	(1)	
			[6]	

Activity 3

3.1			
3.1.1	I-Pteridophytes√	(2)	
	II-Bryophytes√		
3.1.2	-plant I produce spores whilst plant IV produces cones	(4)	
	-plant i depends on water for reproduction and plant iv does		
3.1.3	- √	(1)	
3.1.4	- II , I, IV ,III 🗸 🗸	(2)	
		[9]	

4.1			
4.1.	-Algae√	(1)	
1			
4.1.	-Angiosperms√	(1)	
2			
4.1.	-Gymnosperms and Angiosperms√	(2)	
3			
		[4]	

4.2			
4.2.1	A-Bryophytes√		
	B-Pteridophytes√		
	C-Gymnosperms√		
	D-Angiosperms√	(4)	
4.2.2	(a) Presence of vascular tissue√	(1)	
	(b) Ability to produce flowers ✓/Seed enclosed by fruit ✓	(1)	
4.2.3	-Spermatophytes√ /Spermatophyta√	(1)	
		[7]	

_				
	5.1			
	5.1.1	- Wind	(1)	
	5.1.2	 Produces large amount of pollen to √increase the chances of pollination. Pollen grains are light, smooth √ and dry to allow them to float. Anthers are attached to their filaments in such a way that they are easily moveable with wind. √ Stigma is large, feathery and sticky to trap as much pollen as possible. √ Large anther Small flowers without colourful petals. Absence of petals / calyx for better exposure of pollen to wind. Reduced scent and nectar. □ √ (Any 3 x 1) 	(3)	
			[4]	
			[4]	

5.2			
5.2.1	1√	(1)	
5.2.2	7√	(1)	
5.2.3	-the stamens are shorter than the pistil /the gynoecium is longer than the androecium \checkmark	(1)	
5.2.4	 -Angiosperm have a cuticle whilst Bryophytes do not -this cuticle protects the angiosperm from excessive water loss√ Or -Angiosperm have true roots whilst bryophytes have rhizoids -true roots allow angiosperms to better obtain water from the ground√ Or -Angiosperms produce seeds that are better protected from land elements than spores√ 	(2)	
		[5]	

6.1			
6.1.1	A- style√		
	B- anther√		
	C- ovule√		
	D- petal√/corolla√	(4)	
6.1.2	-C√	(1)	
6.1.3	 -petals are small, green and not showy√ -long filaments and anthers (stamens) that hang outside the flower√ -large amount of pollen produced√ -small, light pollen granules√ -stigma may be large and feathery√ -does not have a scent or nectar √ (mark first TWO only) 	(2)	
6.1.4	 Offspring are genetically different from one another and their parents which gives them a better chance to survive/be adapted to new environments√ -it is a way to leave behind parasites or diseases that parents might have√ -the zygote is protected by a thick protective coat which increases the chances of survival.√√ -genetic variation may lead to new species developing√ -it allows for selection of favourable characteristics√ (mark first TWO only) 	(2)	
6.1.5	 -they have vascular tissue/xylem and phloem√ -they have a cuticle√ -they do not rely on water for reproduction√ -they produce seeds instead of spores which are resistant to desiccation √ (mark first TWO only) 	(2)	
		[11]	

6.2			
6.2.1	Insect pollination√	(1)	
6.2.2	1-Stigma√	(2)	
	2-Anther√		
6.2.3	Perianth ✓	(1)	
6.2.4	(a) 5√	(1)	
	(b) 4√	(1)	
		[6]	

7.1			
7.1.1	-a oxygen deficient environment/minimal oxygen \checkmark	(1)	
	 -very cold temperature/a temperature of -18^oC 		
7.1.2	-global warming√	(1)	
7.1.3	-provides staple foods√	(3)	
	-it is used to make beverages√		
	-it is used to make spices√		
7.1.4	-Seed banks may store variations of crops that may be hardier to the disease and can replace those wiped out. $\checkmark \checkmark$	(2)	
	-a seed bank stores unusual or rare varieties of crops that are not commercially farmed to maintain biodiversity \checkmark -A seed bank keeps cultures of plants that are not usually grown from seed in case they are needed to replace plants that go extinct in the wild $\checkmark \checkmark$ -Endemic species need to be preserved as they do not occur elsewhere in the world $\checkmark \checkmark$ -Endangered species may be preserved in case they go extinct in the wild $\checkmark \checkmark$ -Species may have the potential to provide us with substance of medicinal value $\checkmark \checkmark$ -they must be preserved so that they can be studied before they go extinct. \checkmark (Any 2 x 1)		
		[7]	

7.2			
7.2.1	 -they would sow/plant a predetermined number of seeds ✓ of each variety under the same conditions ✓ -they would then count the number of seedlings produced ✓ by each batch of seeds planted ✓ 	(2)	
7.2.2	-C√	(1)	
7.2.3	-72,5%√	(2)	
7.2.4	No of seedlings = 80√/100 X 2100√ = 1680 √	(3)	
7.2.5	-the % germination of seeds decreases ✓ as time increases ✓/ the percentage germination of seeds increases ✓ as time increases/the amount of time that passes has no influence ✓ on the germination of seeds ✓	(2)	
7.2.6	 (a) seed age√ (b) number of seeds that germinate√ 	(1) (1)	
		[12]	

Topic: Animal Diversity

Teaching tool 4

Descriptions	Terminology
1. Body wall consisting of two germ layers	Diploblastic
2. A gut with only one opening, used for both ingestion	Blind gut
 The concentration of sense organs into the anterior part of an organism to form a 'head' region 	Cephalisation
4. The arrangement of body parts such that an organism can be divided into identical parts vertically along any radius	Radial symmetry
 A gut having two openings, one for ingestion and one for egestion 	Through gut
6. Body wall consisting of three germ layers	Triploblastic
 The arrangement of body parts such that an organism can be divided into identical parts in only one way through the mid-longitudinal line 	Bilateral symmetry
 Blood system in which blood flows from the blood vessels into open spaces 	Open blood system
 The germ layer giving rise to cells form the muscles and other internal organs in the body 	Mesoderm
10. Type of symmetry relating to organisms that have an irregular shape and can thus not be divided into two identical parts	Asymmetry
11. A true body cavity that is lined on both sides by mesoderm	Coelomate
12. Blood system in which the blood is always confined to the blood vessels	Closed blood system
13. The germ layer that gives rise to cells that line the gut	Endoderm
14. A body cavity that is line by mesoderm on one side only	Psuedocoelom

ACTIVITY 1

1.1.	Porifera√	(1)
1.2.	Radially ✓	(1)

- 1.3. Organism A lacks true embryonic layer and organism B is diploblastic \checkmark (2)
- 1.4. (i) organism A has no true embryonic tissue layer
 - as a result these organisms cannot move, they remain sessile in the aquatic environment for rest of their live time \checkmark

- the lacking of the ectoderm imposes limitation in the organism ability to respond to changes in the environment \checkmark (3)

- (ii) organism B has a radially symmetry and is diploblastic√
 - Sense organ are distributed along the central axis which enables the organism to respond to changes in the environment ✓
- Presence of an ectoderm enable organism B to move to search for food and defend themselves against predators√

(3)

ACTIVITY 2

2.1.

- (a) $A \checkmark$ (b) $B \checkmark$ (2)
- 2.2.
 - Annelida√
 - Arthropoda√
 - Chordata√
- Any two (2) 2.3. mesoderm√ (1)
- 2.4. bilateral symmetry \checkmark (1)
- 2.5 it protects the animal against mechanical injury√
 -it provides the points of attachment for muscle√ (2)

· · · · · · · · · · · · · · · · · · ·	
3.1. cnidarian√	(1)
3.2. blind gut√	(1)
3.3it has one opening so ingestion and egestion cannot happen ```````````simultaneously \checkmark	
-since food move in one direction, therefore the gut cannot become specialize \checkmark	(2)
3.4.	
- serve as a hydrostatic skeleton√	
- against which muscle act√	
OR	
 It contains caulomic fluid√ Which spread over the body surface to prevent desiccation√ Any two 	
	(6)
Activity 4	
4.1 X - Gut√ Y - Coelom√	
4.2 A√	
4.3 Triploblastic√	

(2)

(2)

(1)

(1)

4.4 B shows three germ layers/ectoderm, mesoderm and endoderm \checkmark

4.5 Annelida \checkmark , Arthropoda \checkmark and Chordata \checkmark (2)

(Mark first TWO only)

4.6

-Provides space

-for development of organs□

OR

-Contains fluid -which acts as hydrostatic skeleton□ (Mark first ONE only)

(2)

(9)

(1)

Activity 5

5.1 Through gut□

5.2. -The food enters the gut through one opening and leaves through `the other opening√

- thus preventing digested food to mix with undigested food \checkmark

OR

-Each part of the gut becomes differentiated√ -for effective digestion and absorption√ (2)

Mark the first ONE only

5.3 Arthropoda√ Annelida√ Chordata√

(2) Mark the first TWO

5.4

-The concentration of sense organs √/nerves at the anterior end of the body $\sqrt{}$ /to form a head region (2)

(7)

6.4

	6.1 Arthropoda√	(1)
	6.2 Triploblastic√	(1)
	6.3 Exoskeleton√	(1)
- It is	 impermeable, gas exchange can no longer occur throughout the body surface.√ -It has specialised gas exchange openings.√√ -It cannot stretch to accommodate growth of the body.√√ - This is avoided by moulting at regular intervals.√ 	
		(4)
- The	body wall of the animals are separated from the gut wall $$ /there is	

6.5 - The body wall of the animals are separated from the gut wall √/there is increased distance between the gut and other parts of the body making diffusion inadequate for transport of food, gases and excretory wastes. √ (2)

(9)

Topic: photosynthesis

B. TERMINOLOGY

.

Complete the following table by filling in the correct biological terms.

NO.	Description	Term
	A process whereby green plants manufacture their own food using radiant energy	Photosynthesis
	Organelle in a plant cell where photosynthesis occur	Chloroplast
	Green pigment that trap light for photosynthesis	Chlorophyll
	Occurs in the grana of the chloroplast	Light phase
	Occurs in the stroma of the chloroplast	Dark phase
	Energy carrier in the living things used for various activities	ATP
	Used to test for the presence of starch	lodine solution
	Organisms that use light energy to manufacture its own food	Autotrophs
	A scientific procedure undertaken to make a discovery, test a hypothesis or demonstrate a known fact.	Experiment
	Sugar that is the product of photosynthesis	Glucose
	Leaf that has more than one colour	Variegated
	Special building that is used for growing plants in an area where they would not normally grow that well.	Greenhouse
	Process of eliminating starch reserves in a plant for experiments concerning photosynthesis	Destarch
	A variable that is not changed throughout an experiment	Control
	Organisms that are unable to manufacture their own food (consumers &decomposers)	Heterotrophs
	A carbohydrate that store energy in plants	Starch
	Factor that limits the rate at which photosynthesis takes place	Limiting factor

1.1

- 1.1.1 C 🗸 (2)
- 1.1.2 B 🗸
- 1.2
- 1.2.1 (a) Stroma ✓ (1)
 - (b) Ribosome ✓ (1)

Activity 2

2.1

2.1.1	Glucose 🗸	(1)
2.1.2	Chloroplast 🗸	(1)
2.1.3	Photolysis 🗸	(1)
2.1.4	Stroma 🗸	(1)
2.1.5	Starch 🗸	(1)
2.1.6	Chlorophyll 🗸	(1)
2.1.7	Radiant energy 🗸	(1)
2.1.8	A only 🗸 🗸	(2)
2.1.9	B only 🗸 🗸	(2)
2.2		
2.2.1	(a) C ✓	(1)
	(b) A ✓	(1)
	(c) B ✓	(1)
2.2.2	-B ✓	(1)
2.2.3	-A and C 🗸 🗸	(2)

3.1

3.1.1	Adenosine diphosphate		(1)
3.1.2	ATP or adenosine triphosphate		(1)
3.1.3	It is the energy carrier in living systems/cells		(1)
	Or it provides energy for all cellular activities✓	(ANY ONE)	(1)

Activity 4

4.1

4.1		
4.1.1	Sodium hydroxide/Soda lime/Potassium hydroxide 🗸	(1)
4.1.2	Removes carbon hydroxide from the air in the jar \checkmark	(1)
4.1.3	The leaf turns blue-black ✓	(1)
4.1.4	-as the leaf was outside the jar, it was exposed to carbon dioxide \checkmark	(1)
	-and could undergo photosynthesis/produce starch 🗸	(1)
4.1.5	Dark phase /light independent phase 🗸	(1)
4.1.6	Stroma 🗸	(1)
4.1.7	To ensure that the starch at end of the investigation was produced during the experiment <	(2)
4.2		
4.2.1	Graph C 🗸	(1)
4.2.2	Due to carbon dioxide concentration 🗸	(1)
4.2.3	Temperature 🗸	(1)
4.2.4	The graph will show a steady increase in the rate up to 40° C and a further increase in temperature will let it fall dramatically \checkmark	(2)
4.2.5		
	 At higher temperatures the enzymes become completely denatured/functionless 	(1)
	-When the temperature is incfeased to 40 ⁰ C the temperature is optinum for maximun photosynthesis ✓	(1)

5.1

	5.1.1	Destarch the plant ✓	(1)
	5.1.2	(a) Leaf A ✓ (b)Leaf B ✓	(1) (1)
	5.1.3	Absorbs carbon dioxide 🗸	(1)
	5.1.4	Iodine solution 🗸	(1)
5.2			
	5.2.1	Blue-black 🗸	(1)

5.2.2	(a) colour of light ✓	(1)
	(b) rate of photosynthesis 🗸	(1)
	(c) the light intensity/the pondweed/the time exposed	(1)
5.2.3	490/5 ✓ = 98s ✓	(1)

Mark allocation for the graph

Bar graph drawn (T)	1
Title of graph (both variables included)	1
Correct scale for X-axis (equal width and spacing of the bars) and Y-axis (S)	1
Correct label and unit for X-axis and Y-axis (L)	1
Plotting of bars (P)	0: No bars plotted correctly 1: 1 to 4 bars plotted correctly 2: all 5 bars plotted correctly

NOTE: If a line graph is drawn – marks will be lost for the 'type and scale'. If a histogram is drawn – marks will be lost for 'type of graph and correct scale'.

(6)

5.3

5.3.1	(a)	Waterplants are structurally adapted to perform photosynthesis under water. ✓	(1)
	(b)	Addition of small amounts of sodium bicarbonate increases the concentration CO ₂ ✓ to bring about a steady rate of photosynthesis.	(1)
5.3.2	By c	counting the number of bubbles released in a minute (unit time) \checkmark	(1)
5.3.3	- / - ti - / - /	As the intensity of light increases ✓ he rate of photosynthesis increases proportionately up to a certain point. ✓ A further increase in light intensity ✓ vill cause no further increase in the rate of photosynthesis. ✓ (Any 3 x 1)	(3)
5.3.4	- V - t - li - h	When the light intensity increases ✓ he temperature increases proportionately ✓ which imits the performance of various enzymes ✓ and hence limit the rate of photosynthesis. ✓	(4)

Activity 6

6.1

6.1.1	Increases 🗸		(1)
6.1.2	Greenhouse✓		(1)
6.1.3	Adenosine Triphosphate	✓	(1)
6.1.4	Chemical 🗸		(1)

(1	1)	
	(1	(1)

7.1

	Oxygen 🗸	(1)
7.1.1	- Take a glowing wooden splint ✓ and insert it in the mouth of the test	
7.1.2	 If it ignites, ✓ the gas is oxygen 	(2)
- 4 0	 To release carbon dioxide ✓ into the water for photosynthesis to take place. ✓ 	(2)
7.1.3	- To see the oxygen which is a colourless gas \checkmark	(1)
7.1.4	 Increase the light intensity ✓ so that the plant absorbs more light energy ✓ to increase the rate of photosynthesis Increase the temperature to optimum ✓ 	
7.1.5	 will increase the rate of photosynthesis ✓ and therefore the rate of this experiment 	(4) (10)
7.2	B∢√	(2)

8.1 8.1.1 D 🗸 🗸 (2) 8.2 8.2.1 Rate of photosynthesis ✓ (1) 8.2.2 0,14% ✓ (1) Amount of water ✓ 8.2.3 Temperature ✓ - Light ✓ (Mark the first TWO only) (Any 2) (2) 8.2.4 Rate of photosynthesis under different CO₂ concentrations at low light intensity Rate of photosynthesis (arbiary 50 45 40 35 (s) 30 25 n 20 15 10 5 0 0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 0,18 Carbon dioxide concentration (%) Mark allocation for the graph: Line graph is drawn 1 Title of the graph (includes both variables) 1 Correct scale for x-axis and y-axis 1 Correct labels and units for the x-axis and the y-axis 1 0 points correct 0 Plotting of the points 1-5 points correct 1 2 All points correct 1 Only low light intensity graph is drawn (7)

8.3.1	To o pho	lemonstrate that light energy ✓ is necessary for tosynthesis. ✓	(2)
832	The	presence/absence of starch ✓	(1)
8.3.3	(Dilu	ute) iodine solution 🗸	(1)
8.3.4	(a)	No colour change / remain reddish brown \checkmark	(1)
	(b)	Turns blue-black 🗸	(1)
8.3.5	(a)	Carbohydrases ✓	(1)
	(b)	Salivary glands ✓	(1)
8.3.6	(a)	Oxygen √/ O ₂	(1)
	(b)	Oxygen ✓ / O₂	(1)

9.1

9.1.1 A 🗸 🗸 (2)

ANIMAL NUTRITION

Activity 1

1.1

1.1.1 Egestion√	(1)
1.1.2 Digestion√	(1)
1.1.3 Assimilation√	(1)
1.1.4 Absorption√	(1)

(4)

2.1

2.1.1	a)	Stomach √		(1)
	b)	Colon \checkmark / Large intestine		(1)
	c) d)	Anus √ Small intestine √ / Duodenum	(1) (1)	(4)
2.2.2 a)	B√			(1)
b)	A√			(1)
c)	C√			(1)
			(3)	
b) c)	A √ C √		(3)	(1) (1)

2.2.3 – Storage \checkmark

Deamination \checkmark Detoxification \checkmark (Any 2) (2) (2)

Activity 3

3.1

3.1.4 Stomach√	(1) (5)
3.1.3 P- Liver/ Pancreas \checkmark (Any order) (1) Q- Pancreas/ Liver \checkmark (Any order)	(1)
3.1.2 Peristalsis√	(1)
3.1.1 Oesophagus√	(1)

4.1

4.1.1 Villus √	(1)
4.1.2 Small intestines√	(1)
4.1.3 Epithelium cells √	(1)
4.1.4 connective \checkmark	(1)
4.1.5 Blood capillaries√	(1)
4.1.6 Glucose √	(1)
4.1.7 Amino acids√	(1)
4.1.8 Lacteal √	(1)
4.1.9 Fatty acids √	(1)
4.1.10 Glycerol √	(1)
	(10)

Activity 5

5.1

5.1.1 A v	<i>i</i> illus √	(1)
5.1.2	Columnar epithelium √ Lacteal vessel √	(1) (1)
5.1.3 Sm	nall intestine \checkmark	(1)
5.1.4	 It is long, ✓ which means it has a very large surface absorption ✓ 	ace area for
	 It has many folds √which enlarges the surface a maximum absorption of nutrients √ 	area for
	• Has millions of villi and micro-villi √which enlarg	e the surface
	area even further√	
	• Has circular and longitudinal muscles \checkmark response	sible for the
	movement of food by peristalsis. \checkmark	

- Is a coiled tube which slows down the movement of food√ (increases transit time) to ensure maximum absorption of nutrients. √
- The thin-walled ✓ villi (outer walls of villi are lined by a single layer of columnar epithelium) facilitate easy absorption√
- Absorptive surface is kept moist√ by digestive juices and mucus to facilitate diffusion of nutrients. √
- Villi are well supplied with blood capillaries and lacteals √ to ensure that absorbed nutrients are quickly transported away √

(Mark the first TWO only) (Any 2 X2)

5.1.5 **C**
$$\checkmark$$
 (1)

- 5.1.6 The capillary flows in at ${\rm D}~\checkmark$
 - Then absorption of nutrients will take place \checkmark
 - From the small intestine into the capillaries in the villus \checkmark
 - When the blood leaves at ${\bf C},$ it will be rich with nutrients $~\checkmark~$
 - (4) **(13)**

Activity 6

6.1

6.1.1	To create a similar condition to that of the body \checkmark	
	It is the optimum body temperature \checkmark	(2)
6.1.2	(i) mass/amount of sample√	(1)
	(ii) amount of gastric juice released in the stomach \checkmark	(1)
6.1.3	(i) fried eggs \checkmark	(1)
		(4)

(ii) scrambled eggs \checkmark (1)

6.1.4

Abso	orption		
—	Glucose ✓ in small intestine ✓ moves		
-	and by active transport ✓ which requires energy ✓		
-	and by diffusion \checkmark passive/ no energy required \checkmark		
_	through the columnar epithelial cells √		
-	into the blood capillaries ✓		
_	of the villus. ✓	(Max 4)	Max. 4
Tran	sportation		
-	The blood capillaries in the villi join together \checkmark		
_	and eventually form the hepatic portal vein \checkmark		
-	This blood vessel carries the product to the liver \checkmark		
_	Processed nutrients, ✓ leave the liver in the hepatic v	eins √	
-	The hepatic veins join up with the inferior vena cava	/	
	that takes the blood to the heart ✓		
-	The heart then will pump the nutrient-rich blood to the body/cells/tissues ✓	whole	
_	via the aorta ✓	(Max 4)	(8)/1ax(14)

Activity 7

7.1

7.1.1	(a) Pancreas√	(1)
	(b) Insulin √	(1)
	(c) Glucagon √	(1)
7.1.2 Di	iabetes Mellitus √	(1)
7.1.3 Neg	gative Feedback Mechanism √	(1) (5)

Activity 8

8.1

8.1.1 It is the cellular imbalance between the sup	ply of nu	itrients and
energy√√and the body's demand for	them to	ensure growth,
maintenance, and specific functions.	\checkmark	(2)

8.1.2 Kwashiorkor \checkmark

(1)

8.1.3 - Gastric glands \Box in the stomach \checkmark

- secretes gastric juices√ which
- contain the enzyme proteases. \checkmark
- that hydrolyse/digest proteins√
- into polypeptides/peptones \checkmark
- and eventually into amino acids. \checkmark
- Protease only function best in an acidic medium. \checkmark (5) (8)

Activity 9

9.1

9.1. Pure vegetarian \checkmark

- Every level per unit volume in the diet is lowest√, hence requiring intake of large amounts o√f food. √
- -digestion is generally incomplete \checkmark , therefore less absorption of food is absorbed \checkmark
- (Mark the first ONE only) $(Any 1 \times 2) \square (2)$

9.1.2 -very young children grow rapidly \checkmark and

-is difficult for them to consume enough vegetarian/ bulk food√
-insufficient nutrients/ proteins/carbohydrates/vitamins/mineral√
- causes malnutrition/kwashiorkor√ / marasmus √

Any 2) (2)

(1)

9.1.3 Plants/ part of plants/ \checkmark specific name of plants/ supplements/ tablets \checkmark (1)

9.1.4 10 000/40 000√ X100√

_

=25%√ (3)

(9)

Topic : CELLULAR RESPIRATION

CLASSWORK/HOMEWORK ACTIVITY 1

1.

- 1.1 Cellular respiration is the breaking down of glucose (organic compounds) \checkmark so as to gradually release energy to all cells \checkmark
- 1.2 Aerobic respiration is the process of cellular respiration that takes place in the presence of $O_2 \checkmark$
- 1.3 Anaerobic respiration is the process of cellular respiration that takes

place in the absence of $O_2\,\checkmark$

OR

Anaerobic respiration – is the biochemical pathway taken by the process of cellular respiration in the absence $O_2 \checkmark$

1.4 Co-enzymes - are the non-protein partner that are carriers of high energy

Hydrogen atoms in the oxidative phosphorylation stage of respiration \checkmark

OR

Co-enzymes - are organic compounds that act as Hydrogen acceptors / carriers during cellular respiration \checkmark

- 1.5 ATP is an energy carrier \checkmark
- 1.6 Oxygen (O₂) is the gas needed /required for the process of cellular

 $respiration \checkmark$

OR

Oxygen (O₂) - is the final acceptor of Hydrogen atoms \checkmark

1.7 Glycolysis - is a stage of cellular respiration that takes place in the

cytoplasm / cytosol √

OR

Glycolysis – is anaerobic phase of respiration that occurs in the cytosol \checkmark

1.8 Mitochondrion - is the organelle in a cell at which Kreb's cycle occurs \checkmark

1.9 Kreb's Cycle - is a cyclic series of reactions that takes place in the mitochondrion√

OR

Kreb's Cycle - is a phase of cellular respiration in which CO₂ is evolved \checkmark OR

Kreb's Cycle - is a phase of respiration which releases a large amount of energized hydrogen atoms \checkmark

1.10 Ethanol – is a product, other than CO_2 of alcoholic fermentation in plants \checkmark OR

Ethanol – is an organic product of anaerobic respiration in plants \checkmark

1.11 Lactic acid – is an organic acid builds up in the muscle cells due to anaerobic respiration \checkmark

1.12 Carbon dioxide(CO₂) - is a gas given off as a by-product during the process \cdots of cellular respiration \checkmark

OR Carbon dioxide(CO₂) - is a Gas evolved during process of cellular respiration√ (12)

ACTIVITY 2

- 2.1 Cellular respiration is the process at which glucose (organic compound) is broken down \checkmark
 - So as to gradually release energy√
 - In a controlled way√
 - Oxygen(O₂) is required (needed) \checkmark
 - Carbon dioxide (CO₂) is released as a by-product \checkmark
 - The released energy \checkmark
 - Is stored in ATP (energy carrier) molecules \checkmark (7)

(2)

- 2.2 In the cytoplasm√ Mitochondrion √
- 2.3 Aerobic \checkmark cellular respiration takes place in presence $O_2\checkmark$ Anaerobic \checkmark cellular respiration takes place in absence $O_2\checkmark$ (4)
- 2.4 (a) Glucose \checkmark Oxygen \checkmark Enzymes \checkmark (3)
 - (b) Carbon dioxide \checkmark (CO₂) Water \checkmark (H₂O) ATP \checkmark (3)

2.5 Glucose \checkmark + Oxygen \checkmark ----- Carbon dioxide \checkmark + Water \checkmark + ATP \checkmark Enzymes \checkmark OR

 $\begin{array}{ccc} C_6 \ H_{12}O_6 \checkmark \ + \ O_2 \checkmark & + \ O_2 \checkmark & + \ H_2O \checkmark \Box & + \ ATP \checkmark \\ & Enzymes \checkmark \end{array} \tag{6}$

2.6 - To constantly supply cells with of energy √ in the form of ATP
 To perform the following processes: √

- Synthesis of organic molecules / within cells
- Growth√
- Cell division \checkmark
- Contraction of muscle fibres√
- Movement √
- Transport of substances√ within the body
- Active transport of substances √(movement of substances against the concentration gradient).

(33)

(8)

(3)

ACTIVITY 3

- 3.1 Aerobic respiration is a process of cellular respiration that takes place in the presence of O₂√ (2)
- 3.2 Glucose√ Oxygen√ Enzymes√

3.3

Structure of the Mitochondrion√

Mark allocation

Caption	1	
Representative of mitochondrion	1	
Any 4 correct labels	4	(6)

- 3.4 Inner membrane is folded \checkmark
 - to increase surface area \checkmark in which chemical reaction occur.
 - Presence of ribosomes √ to make enzymes√ needed/ required to catalyse the reactions
 - Permeable membranes \checkmark to allow the easy entry and exit of various substances \checkmark

- Presence of enzymes \checkmark in the matrix to facilitate the Kreb's cycle $\checkmark/$ the part of cellular respiration that occurs within the mitochondrion

(8)

3.5 Occurs in the cytoplasm√ of the cell requires oxygen√ to take place glucose (6 Carbon compound) is split into √ two (3 Carbon) compounds√ called pyruvic acids√ small amount of energy is released√ that is used to form ATP√ high energy H-atoms are also released√ and are transported to the third phase√ of aerobic cellular respiration

(10)

3.6 ATP \checkmark /Energy CO₂ \checkmark H₂O \checkmark (3)

ACTIVITY 4

4.1

- 4.2 4.2.1 To investigate whether carbon dioxide is released during respiration $\sqrt{\sqrt{2}}$
- 4.2.2 A Germinating seeds \checkmark
 - B Damp cotton wood/ porous stopper \checkmark

(2)

4.2.3 - The cotton must not touch the lime water \checkmark

since the lime water will affect the germinating seeds. \checkmark

- The cotton wool/ porous stopper must be kept moist√ to allow the seeds to germinate√
- The test tube must be tightly sealed \checkmark to prevent CO₂ from the atmosphere entering \checkmark / or
- CO₂ released by the germinating seeds escaping.
 - (Any 2 x 2)
- 4.2.4 It is used to indicate whether CO_2 is produced or not \checkmark
 - If it is produced the lime water will turn milky \!\!\checkmark
 - --If it not, it will remain clear \checkmark
- 4.2.5 Set up an identical apparatus but use boiled seeds which have been sterilized instead of germinating seeds which are rapidly respiring

(2)

(4)

(3)

(13)

ACTIVITY 5

5.1 Anaerobic respiration Process of cellular respiration that takes place in the absence of $O_2 \checkmark \checkmark$

OR

Biochemical pathway taken by the process of cellular respiration in the absence $O_2 \sqrt{\sqrt{2}}$ (2)

- 5.2 It occurs in the absence of oxygen√ Glucose is partially broken down√
 - much less energy is released \checkmark in the form of ATP and
 - in animal cells, lactic acid is formed \checkmark and it is
 - called lactic acid it is usually fermentation
 - in yeast cells, alcohol is produced \checkmark and it is
 - called alcoholic fermentation (5)
- 5.3 Making wine \checkmark
 - In baking√
 - Beer making√

- To produce daily products for example yoghurt, cheese, sour milk \checkmark Mark the first THREE only

(Any 3)

5.4

Aerobic Respiration	Anaerobic Respiration
 Large amount of energy is released	 Small amount of energy released√ - due to the incomplete breakdown of glucose.
 End products are carbon dioxide and water√ 	 End products are carbon dioxide and ethanol in fungi / plants or lactic in animals√

(1 for table + 4	.) (5)) (15)
------------------	------	----	-----	----	---

ANNEXURE

Solutions for Teaching Tool 3

(4)

Topic: GASEOUS EXCHANGE

A. TERMINOLOGY

diffusion	the movement of molecules from a region of high concentration to a region of low concentration until equilibrium is reached
catabolism	the breaking down of complex molecules into simple molecules to release energy
aerobic	occurring in the presence of oxygen
anaerobic	occurring in the absence of oxygen
cellular respiration	the breakdown of organic compounds (glucose / sugar) in the mitochondria of cells into inorganic products (CO ₂ and H ₂ O) with the release of cellular energy (ATP); either aerobic or anaerobic

gaseous exchange	 the exchange of O₂ and CO₂ at a respiratory surface occurs at two places in mammals: at a gaseous exchange surface (lungs) and the blood between the blood and the body cells at the tissue level
breathing	mechanical process of inhalation and exhalation through which air moves in and out of the respiratory organs enabling the uptake of oxygen and the removal of carbon dioxide.

1.1				
	1.1.1	A - Trachea ✓ / cartilage ring		
		D – Intercostal muscles√	(2)	
	1.1.2	 Has (C-shaped) cartilaginous rings ✓ which keep the trachea open ✓ at all times to allow free flow of air Has cilia ✓ which constantly move to push out dust particles and germs Contains mucus ✓ which traps dust particles and germs ✓ (Mark first ONE only) (Any 1 x 2) 	(2)	
	1.1.3	(a) B - lung√ C - diaphragm√	(2)	
		 (b) - Lung inflates ✓ / enlarges/ volume increases/ pressure decreases -Diaphragm flattens ✓ becomes less convex/ contracts 	(2)	

(8)			(8)

1. 1				
	1.1.1	A – larynx \checkmark B – trachea \checkmark C – bronchioles \checkmark	(3)	
	1.1.2	Process 1	(1)	
	1.1.3	 Ribs are lifted/ chest expands/ moves outwards√ Thoracic cavity enlarges/ lungs are larger √ Diaphragm contracts/ flattens/moves downwards√ (Mark first TWO only) (Any 2 x 1) 	(2)	
	1.1.4	$D \checkmark$ - intercostal muscle \checkmark		-
		$E \checkmark - diaphragm \checkmark$	(4)	
	1.1.5			
		Diagram showing gaseous exchange across		
		CO ₂ diffusing into alveolus		
		Marks:Diagram1Oxygen diffusion into blood1Carbon dioxide diffusion out of blood1Any other 2 labels2	(5)	
	1.1.6	 Increases the amount of moisture in the air ✓ because water evaporates ✓ prevents drying out of inner surface of the lung ✓ which would prevent gaseous exchange ✓ / gases can only diffuse in a solution 	(4)	
	1.1.7	 Cannot breathe/ inhale/exhale/lungs collapse ✓ No pressure difference between exterior and thoracic cavity ✓ 	(2)	
			[21]	

1.1				
	1.1.1	Inhalation ✓	(1)	
	1.1.2	-The diaphragm relaxes√		
		-The external intercostal muscles relax✓		
		 Internal intercostal muscles contract 		
		-Rib-cage moves inward√		
		 Volume of thoracic cavity decreases ✓ 		
		 Pressure on the lungs increases ✓ 		
		-Air is forced out of the lungs√	(5)	
		(Any 5)		
	1.1.3	-As bicarbonate ions√		
		-As carbhaemoglobin√	(2)	
		-Dissolved in the plasma√		
		(Any 2)		
				(8)

Activity 4

1.1			(1)	
	1.1.1	A – Bronchus/ bronchioles ✓		
	1.1.2	Gaseous Exchange/diffusion√	(1)	
	1.1.3	(a) Carbon dioxide✓		
		(b) Oxygen√	(2)	
	1.1.4	-numerous alveoli/ large surface area√ for exchange of		
		gases -thin epithelium made of single layer of cells ✓ for rapid diffusion -presence of blood capillaries ✓ for transport of gases. (Any 2)	(2)	
				(6)

1.1				
	1.1.1	Squamous√ epithelium	(1)	
	1.1.2	 Epithelium is thin ✓ / flat/ has a single layer of cells to enable gases to diffuse through it quickly ✓ Epithelium is moist ✓ to enable gases to diffuse through it quickly ✓ 	(2)	
	1.1.3	Red blood corpuscle✓ / Red blood cell/ Erythrocyte	(1)	
	1.1.4	 (a) Deoxygenated ✓ blood (b) Oxygenated ✓ blood 	(1) (1)	
	1.1.5	High√	(1)	
	1.1.6	Gaseous Exchange√ / diffusion	(1)	
	1.1.7	 As bicarbonate ions ✓ / carbonic acid In solution in blood plasma ✓ 		

	- As carbaminohaemoglobin√/ carbhaemoglobin	(3)	
			(11)

1.1				
	1.1.1	To determine the effect of different concentrations of carbon dioxide ✓ on the rate and depth of breathing ✓ on volume of air	(2)	
	4.4.0	breathed in		
	1.1.2	 (a) With a low carbon dioxide concentration there is a gradual increase of the rate ✓ then it becomes constant ✓ With a further increase in the carbon dioxide concentration it increases abaratus/ 	(3)	
		(b)		
		- Initially there is a gradual increase in volume ✓ and as the concentration of carbon dioxide increases, the volume increases ✓ sharply	(2)	
	1.1.3	Less carbon dioxide is being removed \checkmark since the depth of breathing is not increasing \checkmark	(2)	
	1.1.4	-During the strenuous exercise the carbon dioxide level		
		in the -blood increases ✓ sensory cells in the carotid arteries and aortic -arches ✓ in the medulla oblongata ✓ are stimulated ✓ causing it to -stimulate the heart to beat faster ✓ thus carbon dioxide is -transported faster ✓ to the lungs from the tissues -The medulla also sends impulses to intercostal muscles, -diaphragm and abdominal muscles ✓ -Contraction of the abdominal muscles pushes the diaphragm with - more force ✓ causing the breathing movements to speed up ✓ -Carbon dioxide is thus removed quickly and oxygen is taken up -more rapidly ✓ (Any 5)	(5)	
				(14)

	14	1
		1
	<u>`</u> .	1
	5)	ł.
	-/	1

1.1				
	1.1.1	Mycobacterium tuberculosis√		
			(1)	
	1.1.2	Antibiotics 🗸		
			(1)	
	1.1.3	 Excessive coughing ✓ Tiredness ✓ Weakness ✓ Loss of appetite and weight ✓ (Mark first THREE) (Any 3 x 1) 	(3)	
	1.1.4	AIDS ✓	(1)	
			[6]	

Topic: Human excretion

ORGAN	WASTE	ORIGIN	PRODUCT
	PRODUCT/S		EXCRETED
1. Lungs	CO ₂ and water	Cellular	CO ₂ and water in
		Respiration	exhaled air
2. Skin (sweat	Mineral salts,	Extracted from	Perspiration
glands)	traces of urea and	blood	(sweat)
	water		
3. Liver	Urea	Deamination of	faeces
		excess amino	
		acids	
	Bile pigments	Breakdown of	faeces
		Haemoglobin	
4. Colon	Bile pigments	Breakdown of	faeces
	Excess mineral	Haemoglobin in	
	salts	the liver	
5. kidney	Urea	Deamination of	Urine
		excess amino	
		acids	
	Mineral salts	Excess taken in	Urine
		with food	
	Water	Excess water	Urine
		consumed and	
		taken in with food	

2.			
	2.1	A - renal artery✓	
		B - renal vein✓	
		G - urinary bladder√	
		I – Adrenal gland✓	(4)
	2.2	C - cortex✓	
		D - medulla√	(2)
	2.3	E - protects the internal parts of the kidney \checkmark	
		F - carries urine from the kidney to the urinary bladder \checkmark	
		H – carries urine from the urinary bladder to the exterior \checkmark	(3)
	2.4	 By blood as bicarbonate ions 	
		- In solution by blood plasma and erythrocytes \checkmark	
		- By erythrocytes in the form of	(3)
	2.5	carb(amino)haemoglobin✓	
			(4)
	2.6	(a) A✓ - renal artery✓	
		(b) D✓ - medulla✓	
		The kidney	
		- Excretes waste products e.g. urea, uric acid,	(4)
		creatinine and drugs√	
		 Osmoregulation – regulates the water content of 	
		body fluids√	
		 Maintains osmotic ptessure of body fluids – by 	
		excreting	
		excess salts and retaining water and glucose \checkmark	
		 Regulates the pH of blood plasma – controls the 	
		acid-base balance in the blood \checkmark	
			(20)

Activity 3

3.			
	3.1	A: Renal capsule✓	
		E - Pelvis✓	
		F: Renal calyx✓	(3)
	3.2	E✓ - Renal Artery ✓	(2)
	3.3	B – contains the Malphigian bodies \checkmark (blood vessels - red)	
		while region C has the renal tubules \checkmark	(2)
	3.4	- Protects the internal parts of the kidney \checkmark	
		 Prevents friction as the kidney swells and rubs 	(2)
		against the ribs√	
	3.5		
		(a) B✓	
		(b) C✓	(3)
	3.6	(c) H✓	
		When the body loses too much water \checkmark	
		- the hypothalamus is stimulated \checkmark	
		 It secretes more ADH✓ 	
		 which makes the kidney tubules more 	
		permeable✓	(5)
	3.7	 allowing for more water to be re-absorbed into 	
		the blood√	
		- thus causing less water to be lost in the urine \checkmark	
		(Any 5)	
		- the flow of urine into the bladder will be blocked \checkmark	(3)
		- results in an accumulation of urine in the kidney \checkmark	

REGION	STRUCTURE	FUNCTION
1. Malpighian body	1.1 Bowman's capsule	To house the glomerulus
	1.2 Glomerulus	To allow for filtration to occur
		and prevent large molecules
		e.g. proteins from passing
2. Blood vessels	2.1 Renal artery	Carries oxygenated blood with
		lots of nitrogenous wastes
	2.2 Afferent arteriole	Carries blood at a higher
		pressure into the glomerulus
	2.3 Efferent arteriole	Carries blood at a lower
		pressure out of the glomerulus
	2.4 Second capillary	To absorb useful substances
	network	from the renal tubule and to
		remove waste substances from
		the blood into the renal tubule
	2.5 Renal vein	Carries deoxygenated blood
		with no nitrogenous wastes
3 Kidney tubule	3.4 Proximal convoluted	To actively re-absorb all
	tubule	glucose molecules from the
		filtrate in the renal tubule
	3.5 Loop of Henle	Is the Sodium Pump
		mechanism to regulate the salt
		concentration in the blood
	3.6 Distal convoluted	Regulates salt and water in the
	tubule	blood
	3.7 Collecting duct	Urine containing all
		nitrogenous wastes e.g. urea,
		uric acid, creatinine, salts and

	water, is passed into the duct
	of Bellini and then into the
	bladder

5.1			
	5.1.1	A - Afferent arteriole ✓	
		B - Bowman's capsule✓	
		C – collecting tubule✓	(3)
	5.1.2	1 - Glomerular filtration 🗸 / ultra-filtration/ filtration	
		2 - Re-absorption \checkmark / tubular reabsorption	
		3 - (tubular) excretion \checkmark / secretion	(3)
	5.1.3	 increases cell respiration ✓ / to release more 	
		energy/ ATP	
		 for the tubule to absorb substances by active 	(2)
	5.1.4	absorption \checkmark / against the concentration gradient	
		 It allows a high pressure ✓ 	(2)
	5.1.5	- in the glomerulus	
		- allowing filtration Any 2	
		 Under the influence of ADH ✓ / Vasopressin 	
		- produced in the pituitary gland \checkmark	
		- when the hypothalamus is stimulated \checkmark	
		 part C becomes more permeable to water 	
		 More water is thus re-absorbed ✓ / moves by 	(6)
		osmosis / leaves the collecting tubules	
		 back into the medulla√ 	
		- and into the capillary network \checkmark / blood	
		- The water content of the urine is thus low \checkmark / urine	
		is concentrated	

	- Part G is, therefore, responsible for		
	osmoregulation Any	/ 6	
			(16)

5.2			
	5.2.1	Podocytes√	(1)
	5.2.2	(a) Protein✓	(1)
		(b) Glucose√	(1)
	5.2.3	1,50 – 0,72√	(3)
		$= 0.78 \checkmark \text{ g/100 cm}^3 \checkmark$	
	5.2.4		
		- Large amount of water ✓	
		- is reabsorbed from the tubule into the medulla \checkmark	
		OR	(2)
		- Some urea is added✓	
		- into the distal convoluted tubule √/part 5	
			(8)

6.1	6.1.1	(a) $D\checkmark$ - contains proteins/highest flow rate \checkmark	(2)
		(b) $B\checkmark$ - High concentration of glucose, but no proteins \checkmark	(2)
		(c) $C\checkmark$ - No glucose, and sodium ion and urea lower in	(2)
		concentration than D✓	
		(d) $A\checkmark$ - has the highest concentration of urea \checkmark	(2)
	6.1.2	- High flow rate in D because of heart beat/ arterial blood \checkmark	
		- flow rate decreased in glomerulus \checkmark	
		- because of smaller diameter of capillaries \checkmark / flow divided	
		into many capillaries	
		- also flow rate is decreased as the fluid passes through	
		membranes 🗸	

	- hence low flow rate when fluid enters capsule√	
	- where pressure of heart beat is absent \checkmark	
	- also large volume comes in and has to squeeze out	
	through smaller volume allowed by efferent	
	arteriole√therefore slows it down. (Any 5)	(5)
6.1.3	- Cells of the glomerular membrane are damaged \checkmark	
	- proteins can be forced through and will then appear in	
	urine√	(2)
6.1.4	- Excretion \checkmark of urea, sodium ions and ammonium ions	
	- Re-absorption/regulation of glucose√	
	- Osmoregulation✓	
	(Mark first TWO only) (Any 2)	(2)
6.1.5	No 🗸	
	- all amino acids are re absorbed into the blood \checkmark	(2)
	(a) Sodium/Na✓	(1)
6.1.6	(b) - to create a hypertonic tissue fluid \checkmark	
	- so that water can be reabsorbed by osmosis from the	(2)
	collecting ducts✓	
6.1.7	- Cup shaped ✓	
	 to allow a large surface area ✓ available for filtration 	
	- podocytes ✓ with slits	
	- to filter \checkmark the tissue fluid	(4)
6.1.8	- when the sodium ions in the blood increases \checkmark	
•••••	 less aldosterone is secreted√ 	
	- from the adrenal gland into the blood \checkmark	
	- more sodium ions are actively pumped from the blood	
	into the medulla√	
	- to be excreted into the duct of Bellini \checkmark / passed out as	
	Urine	
	- Hence, the increase in Sodium ions between part	
	C (Loop of Henle) and part A (Duct of Bellini)	
	(Any 4)	

		(4)
		(30)

6.2			
	6.2.1	Protein \checkmark - they are too large to pass through the pores \checkmark	 (2)
		- into the nephron \checkmark / no protein present in the filtrate	
	6.2.2	(a) glucose is a useful substance√	
		 and is thus completely re-absorbed√ 	
		 from the tubule ✓ / the capillary network/ blood 	(3)
		(b) More calta are added. to the tubule (non-bren	
		(b) More sails are added to the tubule/ hephion	
		- from the second capillary network / blood	
	0.0.0	- during tubular excretion ✓	
	6.2.3	- when they are in excess in the body	
		- Some water from the filtrate is re-absorbed	$\langle \mathbf{O} \rangle$
		- Increasing the concentration of salts ✓ Any 3	(3)
	6.2.4	 A shortage ✓ of insulin ✓ in he body 	
		OR	
		 Person suffers from diabetes mellitus ✓ ✓ 	
		OR	
		- Re-absorption of glucose does not take place	
		completely√ (Any 1 x 2))	(2)
		No√	
		Large percentage of water√	
		 Was allowed to pass out as urine 	
		OR	
		A small percentage of water ✓	
		- Was re-absorbed√	
		OR	

	Urine produced√	
	- Is very dilute✓	
	(1 + Any 1 x 2)	(3)
		(13)

7.			
	7.1	A - Bowman's capsule√	
		B - Proximal convoluted tubule ✓	(2)
	7.2	Glucose ✓	(1)
	7.3	Urea ✓	(1)
	7.4	When it enters it has a high concentration \checkmark	
		- when it leaves it has a low concentration \checkmark	
		- Active reabsorption took place \checkmark	
		- against the concentration gradient \checkmark	
		- That is from a low to a high concentration \checkmark	
		 This chemical transport mechanism requires 	
		energy ✓	
		- This is provided by the epithelial cells \checkmark	(5)
		 Some of the glucose is used along the nephron 	
		to provide energy ✓ (any 5)	
	7.5	The volume of water in the blood decreases \checkmark	
		 osmoreceptors in the hypothalamus ✓ are stimulated 	
		- and messages sent to the pituitary gland \checkmark	
		 which secretes more ADH ✓ into the blood 	
		 ADH increases the permeability ✓ 	
		 of the walls of the distal convoluted tubules and the 	(6)
		collecting ducts ✓	
		- This causes more water to leave the tubules by osmosis \checkmark	
		- The amount of water in the blood increases \checkmark and	

	concentrated urine is formed		
	- and less water is excreted from the body \checkmark	(any 6)	
			(15)

			(10)
			 (2)
		affects the patient's life style ✓ (any 2)	
		If kidney machine is used continuously \checkmark it will negatively	
	8.1.4	The kidney machine can only be used from time to time \checkmark	
		Blood needs to be filtered continuously	(4)
		creatine, uric acid etc√	
		It should not contain any \checkmark excretory wastes such as urea,	
		of the patient✓	
		like mineral salts, glucose, amino acids etc than the blood	
	8.1.3	It should contain the same amount \checkmark of useful substances	
			(2)
	8.1.2	It must be selectively permeable/nave small holes	(0)
		substances into the dialysis fluid✓	(2)
	8.1.1	To create a greater surface area \checkmark for the movement of	
8.1			

8.2				
	8.2.1	- It allows certain substance	s (excretory substances) to	
		pass through✓		
		 And prevents other 	substances (useful) and	
		blood components	from passing through \checkmark	(2)
		Same amount of useful subst	ances√ e.g. salt, amino	
		acids, glucose etc.✓ - useful	substances will not diffuse	
	8.2.2	out of the blood \checkmark		
		 No excretory waste 	es√- Allows excretory wastes	(4)
		to diffuse out of the	blood into the dialysis fluid \checkmark	(2)
	8.2.3	37^{0} C✓ - the same as body te	mperature√	
	8.2.4	Air bubbles could create a blo	ockage in the blood vessels	(2)
		of the patient \checkmark and lead to th	e death of the patient \checkmark	
		- Treatments occur t	wo to three times a week \checkmark	
	8.2.5	- Each treatment las	ts many hours√	(2)
		- Affects the quality of	of life of the patient√	
		- Kidney machines a	re expensive to run and	(3)
		maintain√		
		(Mark first TWO only)	(Any 2)	
		$R\checkmark$ - it's the blood vessel entry	ering the dialysis machine√,	
		so has the higher concentrati	on of nitrogenous wastes \checkmark	
	8.2.6	✓ - for t	he table	
		Point A	Point B	
		More urea, uric acid	Less urea, uric acid	(5)
	8.2.7	More water	 Less water 	
		More salt	Less salt	
		(Mark first TWO only)	Any 2 x 2	(2)
	8.2.8	Both have the same amount	of::	

 Glucose, amino acids, fat 	
 Oxygen and carbon dioxide✓ 	
	(22)

 Definition of Excretion Elimination of metabolic waste such as urea, uric acid and carbon dioxide from the body. A. Nephron : 3 processes 	2. Excretory Organs Organ Product 2.1.skin - sweat (urea, uric acid, salts, water) 2.2.hungs - water and CO ₂ 2.3.kidneys - urine (urea, uric acid, ammonia water salts drugs ions)	 3. Four functions of the kidney 3.1 - osmoregulation - keeping constant water level 3.2 - excretion - eliminating nitrogenous waste eg. urea, uric acid 3.3 - salt level - keeping it constant
 3.1 Bowmans capsule glomerular fitration 3.2 Proximal tubule tubular re-absorption 3.3 Distal tubule tubular excretion 7. WHY? 7.1 Glucose in urine Excess glucose in blood 	 5. Composition 5.1 of blood - blood cells, blood proteins, hormones, glucose, water, salts, amino acids, urea, uric acid, drugs, ions 5.2 of glomerular filtrate - water, glucose, amino acids, salts, urea, uric acid 5.3 of urine - water, urea, uric acid, ammonia, salts, drugs, ions 	3.4 - pH regulation 6. Differences between afferent and efferent arteriole Afferent-arteriole - wide diameter - more urea, uric acid - more glucose and oxygen - less glucose and oxygen - less carbon dioxide
 due to shortage of insulin <u>7.2 No proteins in urine</u> Proteins are large molecules that cannot filter through slit pores of Bowman's capsule and hence do not appear in the urine <u>7.3 More urea in urine than in</u> <u>glomerular filtrate</u> Urea in urine obtained from two sources first : filtration from blood into glomerular filtrate second : from tubular excretion hence urea in urine is more than urea from glomerular filtrate 	 8. Adaptations of Malpighian Body 8.1 Diameter of afferent vessel greater than efferent vessel creating pressure for filtration 8.2 Pores on endothelium of glomerular capillaries - filtration 8.3 Large surface area of capillary network of glomerulus - increased filtration 8.4 Cup-shaped Bowmans capsule - allows greater contact with glomerulus for filtration 8.5 Slit-pore - of podocytes of Bowmans capsule - act as a selective filter 	 9. Adaptations of renal tubule 9.1 Long renal tubule - allows more time for excretion/re-absorption 9.2 Convoluted tubules - slows down fluid more thorough process of excretion and re-absorption 9.3 Second capillary network - around renal tubule allows for excretion and re-absorption 9.4 Sodium pump of Loop of Henle creates a gradient for water absorption 9.5 Microvilli of cuboidal cells of tubule - provide large surface area for re-absorption 9.6 Mitochondria of cuboidal cells - provide energy for re-absorption

10.1			
	10.1.1	The efferent vessel is narrower than the afferent vessel	
		\checkmark	
		 Allowing a pressure system to develop which 	
		is essential for filtration. ✓	
		The contents of the Glomerulus are separated from the	
		capsular space by a thin barrier \checkmark	
		- made up of a single layer of endothelial cells	
		of the capillary wall ✓	
		 and a single layer of podocytes 	
		 which act as an ultra-fine filter 	
		The Bowman's capsule is cup shaped \checkmark	
		 allowing the blood capillaries of the 	
		glomerulus to fit closely into it \checkmark	
		Podocvtes in the inner wall of the Bowman's capsule√	
		- have many small size slit pores ✓	
		- ensures that the blood corpuscles and large	
		plasma proteins \checkmark do not pass through the	
		cansular space	
		- and acts as a selective filter \checkmark	
		The Glomerulus is convoluted√	
			(6)

	- to increase surface area for maximum	
	filtration to occur√	
	- slows down the movement of the blood \checkmark	
	 to allow maximum filtration to occur 	
	(Mark first THREE only) (Any 3 x	
	2)	
10.1.2		
	The renal tubules is long and convoluted \checkmark	
	 to increase surface area for maximum 	
	absorption✓	
	- and slows down the movement of the	
	filtrate✓	
	- allowing sufficient time for reabsorption of the	
	useful substances√	
	Cuboidal cells lining the tubules have microvilli✓	
	- to increase the surface area for maximum	
	absorption√	
	The cells of the tubule contain numerous microvilliv	
	 to increase surface area for absorption 	(6)
	-	
	The secondary capillary network are in close contact	
	with the tubules	
	- reduces the distance for reabsorption of	
	useful substances	
	- and excretion of waste substances	
	- Into the tubules*	
	The "codium nump" in the Loop of Honloy	
	ensures that the module has a high	
	- concentration of solter	
	onsuring that large amounts of water can be	
	- ensuring that large amounts of water Gan be	

	reabsorbed ✓	
	 from the distal tubule and the collecting 	
	tubule✓	
	(Mark first THREE only) (Any 3 x 2)	
		(12)

10.2	10.2.1	No✓	
		- because animal is mostly immersed in water	
		hence no water loss through sweating \checkmark	
		 less need for water conservation/ 	
		reabsorption✓	
		 by long tubule of Henlé ✓ /water is not a 	
		limiting factor	
		 therefore not as much need to conserve 	(3)
		water as can drink more \checkmark (1	
	10.2.2	+ Any 2)	
		Increase✓	
		 because a high ADH concentration increases 	
		water permeabilityof collecting ducts \checkmark	
		 more water reabsorbed√ 	
		- and ends up in the blood \checkmark	(3)
		- thereby increasing blood volume \checkmark	
		- and thus the blood pressure ✓ (1 + Any	
		2)	
			(6)

10.3	When the blood is too acidic / pH is too low	
	 then more hydrogen ions 	
	- are passed from the blood \checkmark	
	 into the renal tubule 	
	 and more bicarbonate ion 	
	 are passed from the renal tubule to the blood 	
	\checkmark	
	 thus increasing the pH of the blood to 	
	normal✓	(3)
	(Any	
	3)	
	When the blood is too basic /alkaline / pH is too high	
	- less hydrogen ions✓	
	 are passed from the blood into the renal 	
	tubule√	
	- and less bicarbonate ions \checkmark	
	 are passed from the renal tubule into the 	
	blood 🗸	
	 thus decreasing the pH of the blood to 	(3)
	normal✓ / more acidic	
	(Any 3)	

B. Population Ecology

Activity 1

1.1				
	1.1.1	Social organisation√	1	
	1.1.2	Simple sampling√	1	
	1.1.3	Intra-specific√	1	
	1.1.4	Resource partitioning √	1	
	1.1.5	Commensalism√	1	
	1.1.6	Mortality√	1	
	1.1.7	Developing√	1	
	1.1.8	Population √	1	
	1.1.9	Natality√	1	
	1.1.10	Territoriality√	1	
	1.1.11	Culling 🗸	1	
				11

Activity 2

1.1				
	2.1.1	B√√	2	
	2.1.2	C√√	2	
	2.1.3	C√√	2	6

3.1				
	3.1.1	 Growth is rapid√ 	2	
		 Due to the absence of limiting factors √/presence of sufficient resources/absence of predators. 		
	3.1.2	 Growth is slow√ 	2	

	 Because the bacteria are still acclimatizing ✓ to the new environment 		
3.1.3	Growth starts slowly and then increases rapidly \checkmark	1	
3.1.4	Humans are able to increase food production√ using modern technology√ OR Humans continue to clear natural vegetation√ to create space for more homes√	2	
3.1.5	 Regulation of population growth by proper family planning√ Allocation of subsidies/incentives to people that have small families√ Educate the population on the need to limit family size√ any 2 	2	
			9

	Criterion	Mark	6	
	Correct type of the graph	1		
	Caption – includes both variables	1		
	Correct label and unit for X- and	1		
	Y- axis			
	Correct scale for X- axis and Y -	1		
	axis			
	Plotting of points	 1: 1 – 9 points plotted correctly 2: All 10 points plotted 		
		correctly		
4.1.2	Geometric growth curve 🗸		1	
4.1.3	1850 – 1650 = 200 ✓ million years		1	
				8

4.1				
	5.1.1	 A series of progressive changes ✓ In the composition of ecological community over time ✓ 	2	
	5.1.2	Primary 🗸	1	
	5.1.3	 There is no soil √/ only exposed rocks found The habitat is colonized by living organisms for the first time √ 	2	
	5.1.4	- Lichens ✓ - Mosses ✓	2	
	5.1.5	 They break down rock into soil √/ they help to form soil thereby making it possible for other species to grow √ 	2	
				9

6.1				
	6.1.1	$P = M \times C \checkmark$	3	
		R		
		P = 500 X 450 √		
		5		

	P = 45 000 ✓		
6.1.2	(a) Overestimate ✓	1	
	(b) Underestimate ✓	1	
			5

7.1				
	7.1.1	73%√	1	
	7.1.2	- Planning for education√	2	
		- Planning for health-care		
		- Planning for housing√		
		(Mark first TWO only)		
	7.1.3	- There's been a decrease in income tax revenue \checkmark	2	
		- Unemployment has increased√		
		(Mark first TWO only)		
	7.1.4	- Since we would run out of resources \checkmark	2	
		- future generations may have to pay more \checkmark		
		- as we would be more dependent on imported products		
		(Mark first ONE only)		
				7

8. 1					
	8.1.1	Hummingbird	Mutualism 🗸	Bird receives nectar from the flower and pollinates the flower at the same time√	
		Fleabite on human	Parasitism√	Fleas bite the human and feed, and human is harmed in the process√	
		Egret on rhino	Commensalism √	Egret benefits as it waits for the rhino to disturb insects in the grass as it moves along feeding. The	

	bird catches the insects as they fly up. The rhino is not harmed and does not bonofit from the		
	relationship√	6	
		0	6

HUMAN IMPACT ON ENVIRONMENT

Terminology

1.	A process by which nutrients become highly concentrated in a body of water, leading to increased growth of organisms such as algae.	Eutophication
2.	Measurement of the total amount of carbon dioxide emissions of an individual, a defined population or a company per year.	Carbon footprint
3.	The type of pollution caused when water is released into a river after being heated in power stations or industries.	Thermal pollution
4.	A layer in the atmosphere that is damaged by chlorofluorocarbons (CFCs).	Ozone layer
5.	Measurement of the total amount of carbon dioxide emissions of an individual per year.	Carbon footprint
6.	Having access to enough food on a daily basis to ensure healthy living.	Food security
7.	The illegal removal of organisms from their habitat	Poaching
8.	The variety of plant and animal species on Earth	Biodiversity

 1.1 Respiration ✓ - Decomposition ✓ - Forest ✓ /Veld fires (Mark first TWO only) 	Ar	ny 2 (2)
 1.2 - Transport ✓/diesel/coal/wood/liquid gas/paraffin - Use of electrical appliances ✓/refrigerators, stoves (Mark first TWO only) 	Any 2	(2)
 1.3 -Trees/plants absorb CO₂ ✓ - during photosynthesis ✓ 		(2)
 1.4 - More heat of sun is trapped ✓/lesser heat escapes form earth surface - consequently gradual rise in temperature ✓ - causes the enhanced ✓ greenhouse effect (Mark first TWO only) 		(2) (8)
Activity 2		
2.1 Global warming potential \checkmark 25 x more than that of CO ₂		(1)
 2.2 . decrease in mass ✓ of organic waste through decomposition - generate electricity ✓ from methane formed 		(2)

Activity 3

3.1 (a) $4 + 6 + 11 + 20 + 9 = 50\sqrt[3]{(100 - 50)} = 50\sqrt[3]{(2)}$

(b) Estimated % Global Methane Emissions by different sources

14

CALCULATIONS:

Agriculture	$4/100 \times 360 = 14.4^{\circ}$
Coal Mining	$6/100 \times 360 = 21.6^{\circ}$
Landfills	11/100 x 360 = 39.6°
Oil & Gas	20/100 x 360 = 72°
Water Water	$9/100 \times 360 = 32.4^{\circ}$
Other	50/100 x 360 = 180°

MARK ALLOCATION FOR THE PIE CHART	
Title of graph – both variables included	1
Draw the correct type of graph	1
1 – 5 Sectors correctly indicated/labelled	1
6 Sectors correctly indicated/labelled	2
1 – 5 sectors correctly calculated	1
6 Sectors correctly calculated	2

(6)

Activity 4

4.1.1	By implementing better farming techniques√ irrigation√ the application of fertiliser.√	(Any2)
4.1.2	Drought √/ Erratic weather patterns	(Any 1)
4.1.3	Irrigation is costly√/irrigation is not practised there is a lack of large river systems√ (Mark first ONE only)	(Any 1)
4.1.4	 Fertilisers may be washed √into streams/rivers etc. resulting in excess nitrates √/phosphates /eutrophication. causing an algal bloom √ which prevents light √ from reaching the deeper layers of th This causes the plants to die √due to decreased photosynt An increase in decomposition √ results in less oxygen √ in t As a result the animals die as well √. (Any 4) 	ie river. hesis√. he water.

5.1	As the temperature of the water increases/decreases \checkmark the concentration the dissolved oxygen decreases/increases \checkmark	of (2)
5.2	 The higher temperature, results in water organisms and Bacteria becoming more active and using more oxygen√ resulting in an increase in the biological oxygen demand√/ Less oxygen available can lead to organisms dying√ 	(2)
5.3	To increase \checkmark the validity \checkmark of the investigation.	(2)
5.4	 A number of samples per site ✓ should have been taken. The average should have been calculated. 	(1) (7)
Activi	ity 6	
6.1	a. Mayfly nymph√ b. Sludge worms√	(2)
6.2	The size/ volume of the water samples√ Samples taken at the same depth√ Samples taken at the same time Use sterile containers Max 2	(2)
6.3	Oxygen // waste/ amount of substance Mark first ONE only	(1)
6.4	The oxygen decreases ✓ proportionally to the decrease in the waste ✓ until the amount of waste reaches 'normal' levels ✓ when the amount of oxygen begins to increase ✓ and stabilise and become constant. ✓ Max 3	(3)
6.5	Unpolluted water/ less waste at X√ therefore more plants will be present√producing more oxygen through photosynthesis (√) Max 2	
	Unpolluted water/ less waste at X√ therefore fewer bacteria present√ hence using less oxygen (√) Max 2	(2)
6.6	Typhoid√/ Cholera/ gastroenteritis	(1)
		[11]

 7.1 <u>Advantages:</u> Easy to deal with only requires land and transport√ It is the best way of disposing of toxic and dangerous waste√ Methane produced from landfills can be used as a source of energy√ (3) 	
 Disadvantages: Landfills cannot be situated too close to cities√ Land is expensive and fumes can affect people near by√ Cost of transporting waste to landfills√ Methane can be a fire hazard√ Methane contributes to global warming Run-off from rain can cause poisonous substances to seep into the soil 	
Activity 8	
8.1 Accept any answer between 29 - 31arbitrary units√	(1)
8.2 (a) The sulphur dioxide level was higher in 2000 compared to 1995 in all countries ✓ OR	
The sulphur dioxide level was lower in 2005 compared to 2000 in most countries OF	2
The sulphur dioxide level was the same in most countries in 2000	(1)
(b) In France there was an increase in the level of sulphur dioxide from 2000 to 2005√ whereas in all of the other countries there was a decrease from 2000 to 2005√	<mark>(</mark> 2)
8.3 Japan√	(1)
 8.4 Using renewable sources of energy such as wind and solar energy√/reducing use of fossil fuels Implementing programmes/strategies to save energy√ Improved/alternative technology to reduce pollution√ Improved legislation for air quality√ Effective monitoring√ Imposing heavy fines√ Make use of public transport/bicycles/hybrid cars√ Increased environmental awareness/education√ (It only has 50 arbitrary units of sulphur dioxide) √ (Mark first TWO only) 	(2)
Activity 9	(7)
9.1 Low number of species/low biodiversity√	(1)
 9.2 - Addition of phosphates caused eutrophication - which led to an increase in algal growth / algal bloom√ - which depleted the oxygen in the water √ - thus reducing its ability to support a variety of life-forms√ Any (3) 	(3)

9.3	 The length of food chains will be reduced √/complexity of food webs will be reduced resulting in organisms feeding on the remaining species ✓ having excess food ✓- leading to their overpopulation ✓ while organisms depending on the species that were lost ✓ will 		
	 have less ✓ /no food available leading to their death/migration Any (4) 	(4)	
9.4 -	The use of living organisms√ - to control the numbers of other organisms√ (2)	(10)	
Activi	ity 10		
10.1	420kg – 280√ =140 √kg more√	(1)	
10.2	Variety of cotton planted/ boll resistant and original cotton types \checkmark	(1)	
10.3	To ensure that the increase in yield \checkmark was due to the cotton being resistant to boll weevil and not because of another factor (read sense of answer) \checkmark	(2)	
10.4	A larger sample size \checkmark would have resulted in more reliable results \checkmark	(2)	
10.5	Boll weevil resistant cotton \checkmark will have a higher yield \checkmark in comparison to original variety when planted in the same conditions.	(3)	
10.6	The results show that the (percentage) yield \checkmark of boll weevil resistant \checkmark cotton is 10% \checkmark or more than the original variety when grown in the same conditions.		
10.7	Boll weevils do not feed on boll weevil resistant/R cotton \checkmark therefore less pesticide is needed than when using V cotton which they do eat \checkmark	(2)	
10.8	Both (artificial and natural selection) ✓– farmers would choose to grow R cotton as it has a higher yield/ they use less pesticide, this is artificial selection ✓ and because R cotton is less likely to be eaten therefore more will reproduce/ because there is a higher yield ✓ more will be able to reproduce and over time there will be more R than V cotton ✓– natural selection	(4)	