EKURHULENI NORTH DITRICT JUNE EXAM

2023

LIFE SCIENCES GRADE 10 MARKING GUIDELINE

TIME: 2 ½ HOURS MARKS: 150 09 pages

PRINCIPLES RELATED TO MARKING LIFE SCIENCES 2020

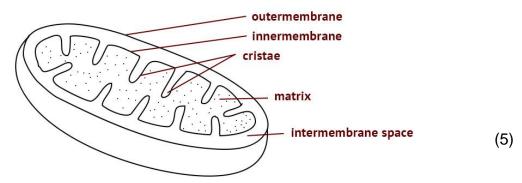
- 1. **If more information than marks allocated is given** Stop marking when maximum marks is reached and put a wavy line and 'max' in the right-hand margin.
- 2. **If, for example, three reasons are required and five are given** Mark the first three irrespective of whether all or some are correct/incorrect.
- 3. If whole process is given when only part of it is required Read all and credit relevant part.
- 4. **If comparisons are asked for and descriptions are given** Accept if differences / similarities are clear.
- 5. **If tabulation is required but paragraphs are given** Candidates will lose marks for not tabulating.
- 6. **If diagrams are given with annotations when descriptions are required** Candidates will lose marks.
- 7. **If flow charts are given instead of descriptions** Candidates will lose marks.
- 8. If sequence is muddled and links do not make sense Where sequence and links are correct, credit. Where sequence and links is incorrect, do not credit. If sequence and links becomes correct again, resume credit.
- 9. **Non-recognised abbreviations** Accept if first defined in answer. If not defined, do not credit the unrecognized abbreviation but credit the rest of answer if correct.
- 10. Wrong numbering If answer fits into the correct sequence of questions but the wrong number is given, it is acceptable.
- 11. **If language used changes the intended meaning** Do not accept.
- 12. Spelling errors If recognizable accept provided it does not mean something else in Life Sciences or if it is out of context.
- 14. If only letter is asked for and only name is given (and vice versa) No credit
- 15. **If units are not given in measurements** Candidates will lose marks. Memorandum will allocate marks for units separately
- 16. Be sensitive to the **sense of an answer, which may be stated in a different way**.

17. Caption

All illustrations (diagrams, graphs, tables, etc.) must have a caption

Question 1

- 1.1.1 A √√
- 1.1.2 D √√
- 1.1.3 B √√
- 1.1.4 B √ √
- 1.1.5 D √ √
- 1.1.6 B √√
 1.1.7 A √√
- 1.1.7 A V V 1.1.8 B √ √
- 1.1.9 A √√
- 1.1.10 C√√


(20)

(5)

- 1.2.1 Continental Drift ✓
- 1.2.2 Chlorophyll \checkmark
- 1.2.3 Diaphragm√/mirror
- 1.2.4 Dinosaurs √
- 1.2.5 Forest ✓
- 1.3.1 B only √√
- 1.3.2 A only 🗸
- 1.3.3 B only **v v**
- 1.3.4 B only VV

(8)

- 1.4.1 A. Mitochondrion ✓
 - B. Nucleoplasm ✓ Chromatin network
 - C. Vacuole√
 - D. Cell wall \checkmark (4)
- 1.4.2 It protect the cell $\sqrt{}$ give the cell its shape (1)
- 1.4.3 Cell $2\checkmark$ it has a chloroplast/ it has a cell wall \checkmark (2)
- 1.4.4 The mitochondrion \checkmark

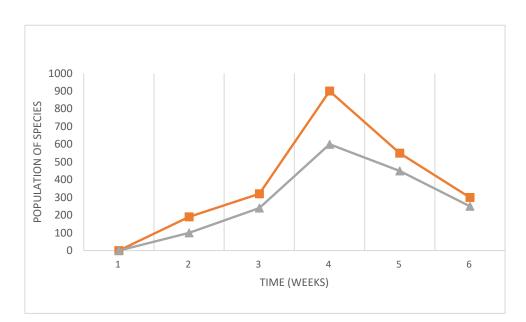
CRITERIA	MARK	
Heading (H)	1	
Correct drawing (D)	1	
Any 3 correct labels (L)	3	
		[12]

1.5.1 Osmosis√ (1)
1.5.2 Potato ✓ Part C (1)
1.5.3 B√ (1)
1.5.4 A will increase ✓. A has lower water potential than B. Water molecules will move from compartment B, through the selectively permeable cell membranes of the potato cells, to compartment A. ✓ Therefore, water molecules moved from a high water potential to a low water potential. The amount of fluid in A will increase until equilibrium is reached. ✓ (any 2)

[10]

SECTION B

QUESTION 2


2.1.1 Carbohydrates √	(1)			
2 Monosaccharides √/glucose				
2.1.3 Building blocks of all organic material in cells/ growth and development of the				
body/ a component in repairing worn out tissue \checkmark				
Enzymes are proteins which control many reactions \checkmark				
Hormones are proteins which control metabolic activities \checkmark /processes				
reserve source of energy ✓	(2)			
ANY 2				
2.1.4 0.35g/30g√*100√ = 1.17%√	(3)			
2.1.5 Sodium√/Salt/calcium (Any one)	(1)			
2.1.6 Calcium ✓	(1)			
	[9]			
2.2.1 To determine the effect of temperature \checkmark on the activity of an enzyme \checkmark	(2)			
2.2.2 Enzyme activity ✓	(1)			
2.2.3 35 ⁰ C ✓	(1)			
2.2.4 Enzymes denatured $\checkmark\checkmark$	(1)			
2.2.5 Any range between 34 to 36 degrees Celsius \checkmark	(2)			
2.2.6 To digest protein stains $\checkmark\checkmark$ (2				
2.2.7 Enzymes have an optimum temperature $\checkmark\checkmark$				
Enzymes denature at high temperatures $\checkmark\checkmark$				
Temperature has an effect on enzymes $\sqrt{}$ (Any 1x2)	(2)			
	[11]			
2.3.1 Radiometric dating \checkmark and Relative dating \checkmark	(2)			
2.3.2 a) X = 28 650 ✓ mya ✓				
b) Z = 3. 125 ✓ % ✓	(4)			
2.3.3 After 60 million years \checkmark there is no more carbon-14 remaining \checkmark				
in the fossil.	(2)			
2.3.4 Not all organisms become fossilised \checkmark				
Some fossils might not have been found \checkmark	(2)			
	[10]			

2.4.1	a) Archaeopteryx ✓ b) Coelacanth fish ✓		(2)		
0.4.0			(2)		
2.4.2	A skull with teeth and jaws \checkmark - mo	bre similar to dinosaurs V			
	Or				
		nes of each wing \checkmark more similar to			
	dinosaurs√	(1 x 2)	(2)		
	And				
	Has feathers \checkmark more similar to birds. \checkmark				
	Or				
		one backward and pointing \checkmark toe mo	ore		
	similar to birds. ✓	(1 x 2)	(2)		
2.4.3	The organisms had died next to th Sediments ✓ piled up over the or Soft part decaying ✓ occurred.	•			
	Overtime mineral seeped \checkmark into t	he bones \checkmark replacing the organic \checkmark	part.		
		(Any 4)	(4)		
2.4.4	It was thought to be extinct \checkmark a lo Organism has not changed \checkmark ove	ng time ago but it was recently found r a long ✓ period of time. (Any 1 x 2)	(2)		
			[12]		
	 a) Homo √√ b) sapiens √√ Common names vary √ from place Scientific names/Latin names dor change √ from place to place 	ce to place n't cause confusion as the name doe	(4) es not (2)		
			[6]		
3.1.1	a) Nitrate ✓ b) Ammonia ✓		(2)		
3.1.2	a) Nitrification /	litrogen fixation	(1)		
313	3.1.3 Lightning ✓				
5.1.5	Nitrogen fixing bacteria \checkmark		(2) [5]		
3.2.1					

3.2.2 Burning leaves√		
Changing pH of the soil \checkmark	(2)	
3.2.3 Reduce emissions√		
Use alternative energy sources√		
Decrease population growth✓		
Change people's attitudes / Reduce wants to needs only \checkmark (any 2	2) (2)	
	[5]	
3.3.1 Pangaea	(1)	
3.3.2 X − (a) ✓		
Y − (c) ✓	(2)	
3.3.3 North America√, Europe√, Asia√	(3)	
3.3.4 Continental drift √Continental drift refers to the movement of con	tinental	
plates apart or together over a period of time. \checkmark	(2)	
	[8]	
 3.4.1 a) B ✓ - Fungi ✓ b) E ✓ - Plantae ✓ 	(4)	
 3.4.2 a) Loxodonta √√ b) Animalia √ 	(3)	
3.4.3 Common characteristics \checkmark / features (1)		
3.4.4 Mammalia ✓ / mammals (1) [9]		
3.5.1 Organisms/ plants that make their own food \checkmark using the sun's end	ergy ✓ /	
photosynthesis.	(2)	
3.5.2 Energy flow \checkmark from one organism to the other.	(1)	
$3.5.3 \text{ Grass} \rightarrow \text{Grasshopper} \rightarrow \text{Bird} \rightarrow \text{Foxes} \checkmark \checkmark \qquad (2)$		
3.5.4 Grass ✓ /Lettuce/Grain (1)		
3.5.5 Hawk ✓ and Owl ✓	(2)	
3.5.6 a) the foxes will slightly decrease since they will now only depend of rabbits for food. ✓	d	
b) the rabbits will decrease since they will be the only source of		
food for the foxes√		
	[10]	

[10]

3.6.1 Line graph showing the estimated population size of species A and B over 8 weeks

Criteria for Marking	Marks
Caption (C)	1
Correct type of graph (T)	1
Scale on X and Y axis (S)	1
Labelling + Units (X and Y axis) (L)	1
2 Graphs drawn on same set of axes (G)	2
Plotting (P)	1-2 points correct 1 Mark
	1-5 points correct 2 Marks

(8)

3.6.2 a) Time √ / weeks b) Population size ✓ (2) 3.6.3 The species A numbers will increase ✓ because there will be no predators to (2)

kill √ them

3.6.4 Repeat the investigation ✓ OR Increase the sample size ✓ (1) [13]

TOTAL MARKS QUESTION 3: 50

Grand Total: 150 Marks