Plant tissues & organs Extractly Enriching minds

Topic	Breakdown of topic		
Plant	Introduce concept of a tissue as a group of similar cells adapted for a		
tissues	particular function:		
	cell differentiation		
	Plant tissues:		
	Emphasis on the relationship between basic structure and function .		
	Differentiate between:		
	- meristematic and		
	- permanent tissue		
	Permanent tissue:		
	- epidermis (root hair, guard cells)		
	- parenchyma		
	- collenchyma - sclerenchyma		
	- vascular tissue: xylem & phloem		
	russatan tissasinytein a pinasin		
	Anatomy of dicotyledonous plants:		
	- root and		
	- stem:		
	Distribution of different tissues		
	Structures of cells in different tissues (link to plant tissues)		
Plant	Definition of an organ		
organs	<u>Definition</u> of an organ		
o.guiio	Location of the different plant organs i.e. roots, stems and leaves		
	<u>Anatomy</u> of dicotyledonous plants		
	Transverse section of:		
	- Root		
	- Stem		
	- Leaf		
	<u>Functions of dicotyledonous leaves</u> in the following processes:		
	- Photosynthesis		
	- Gaseous exchange		
	- Transpiration - Transport by diffusion and osmosis		
	- Transport by diffusion and osmosis		

Plant tissues

Tissues: a group of similar cells adapted for a particular function through cell differentiation.

Note: Cell differentiation means to take on a particular function

Plant tissues

Plant tissues can be categorised as follows:

- · Meristematic tissues: Actively dividing
- · Permanent tissues: not dividing

Meristematic tissues

These are undifferentiated tissues and are actively dividing.

Two types:

- Apical meristem (found at the tip of roots & stems, results in growth in length or height)
- Lateral meristem (found on the sides of a plant, results in growth in thickness or width)

Apical meristem Intercalary meristem Lateral meristem

Cells divide in order to grow

Permanent tissues

These are already differentiated tissues and are not dividing.

Examples:

- Epidermis
- · Parenchyma
- · Collenchyma
- · Sclerenchyma
- Vascular tissues

PERMANENT TISSUES

Permanent tissues

Epidermal tissues

- · Made up of a single layer of cells
- Cells are thin walled and brick shaped.
- There are 2 types of specialized epidermal cells:
- 1. The epidermis of leaves and stems have a specialised epidermal cell called the guard cell (with an opening called the stomata)
- 2. The epidermis of the root has a specialised cell called the root hair.

Functions:

- They provide the inner tissues with **protection**.
- They control the opening and closing of the stomata.
- The stomata allows for the entry and exit of gases.
- The root hair absorbs water and mineral salts.

Permanent tissues

Parenchyma

Location:

- · Found in roots and stems.
- It is found between all the other tissues in these organs.

<u>Appearance</u>:

- It is made up of thin walled, irregularly shaped cells.
- The irregular shape allows for the formation of many air spaces between the cells.
- They are called chlorenchyma when they have chloroplast.

- Acts as packing tissue
- Acts as a storage organ, when it stores food in the form of starch and other sugars.
- The air spaces between the cells allows for the movement of water and gases.

Collenchyma

Location:

• This tissue is found in stems and leaves.

Appearance:

• This tissue is made up of thick walled, closely packed cells.

Functions:

- Provides strength and support to the aerial parts of the plant.
- It is closely packed making it strong to offer strength and support.
- It has thick cell walls to offer strength and support.

Scierenchyma

- There are 2 types of sclerenchyma cells.
- the sclerenchyma fibres and stone cells (sclereid)

Location:

- · found in roots, stems, leaves, flowers and fruit of plants.
- · Stone cells are also found in the flesh of some fruits.

Appearance:

- It is made up of thick walled cells.
- The cell walls are thickened with lignin.
- These cells are closely packed.
- The cells are dead, there are no cell contents.

Functions:

- They provide strength and support to the plant.
- They have cell walls that are thickened with lignin that enable them to provide support and strength to the plant organ.

Study Smartly

Vascular tissues

Xylem

Location:

- This tissue is found in the roots, stems and leaves Appearance:
- · 2 different types of cells that make up the xylem tissue.
- They are the xylem vessels and xylem tracheids.

The vessels are cylindrical.

- · They have cell walls that are thickened by lignin.
- The cross walls are perforated, meaning that they have tiny pores in them.
- They are dead cells with no cell content. The vessels lie end to end, forming a continuous tube.

The tracheids are elongated cells with tapered ends

· Their cell walls are also thickened with lignin.

Functions:

- transport water and mineral salts from the roots to the stems of plants.
- · Provide the plant with strength and support.
- · Xylem vessels (dead cells with no cells contents to allow for the easy movement of water)
- · cross walls are absent or perforated to allow for easy movement of water.
- The vessels are round in cross section to prevent distortion when water moves through it.
- The vessels are able to form continuous tubes because they are dead cells with no cell contents and have no cross walls.

Phloem

Location:

It is found in roots, stems and leaves.

Appearance:

· This tissue is made up 2 different types of cells.

Sieve Tubes:

- These are elongated cells.
- They have thin cell walls that are unthickened.
- The cross walls are perforated.
- They are living cells with cell content.
- The cytoplasm occurs as strands.
- · Sieve tubes have no nuclei.

Companion Cells:

- These cells are attached to the sieve tubes.
- · They have nuclei.
- They control the function of the sieve tubes.

Functions:

- provide strength and support to the plant.
- have cell walls that are thickened with lignin that enable them to provide support and strength to the plant organ.

Ground Tissue Cell

Nucleus

Tracheid

Elements

Anatomy of a dicot plant

THE LOCATION OF TRANSPORT (VASCULAR) TISSUES IN NON-WOODY DICOTYLEDONOUS PLANTS

Plant organs

Organ: a group of similar tissues performing for a common function.

Anatomy of a dicot plant Sten

The main functions of the stem is to:

- Transport of water and mineral salts from the root to the leaf
- Transport organic substances from the leaf to the rest of the plant

Anatomy of a dicot plant

The main functions of the root is to:

- · Anchor the plant into the ground
- · Absorb water and mineral salts from the soil

Anatomy of a dicot plant CUTICLE **UPPER EPIDERMIS PALISADE MESOPHYLL** •XYLEM **PHLOEM** SPONGY **MESOPHYLL** LOWER **EPIDERMIS** • CUTICLE STOMA ALLOWS GUARD CELL AIR TO ENTER UPPER EPIDERMIS® LOWER EPIDERMIS MIDRIB 4 UPPER **EPIDERMIS** PALISADE CHLOROPLAST of MESOPHYLL TISSUE VASCULAR BUNDLE SPONGY (XYLEM MESOPHYLL TISSUE + PHLOEM) LOWER **EPIDERMIS** AIR SPACE® GUARD CELL

The main functions of the leaf is to:

- allow for photosynthesis to take place
- · allow for gaseous exchange to take place
- Transport (diffusion & osmosis)
- Transpiration

WITH CHLOROPLASTS

Plant tissues

4	0
PNMin	wlogy

Biological term	Description
Apical meristem	Type of tissue located at the tip of a root or shoot
Chlorenchyma	Collenchyma tissue with chloroplast
Cambium	Actively dividing tissue responsible for secondary growth
Differentiate	Take on a particular function
Guard cell	Specialised epidermal cells that control stomata size
Lateral meristem	Type of tissue located on the side of a root or shoot
Meristematic tissue	Actively dividing tissues
Perforated	To have tiny pores
Pericycle	Layer surrounding vascular bundle, plays a role in transporting substances
Permanent tissue	Already differentiated tissue
Stomata	Opening in a leaf
Tissue	a specific region within the enzyme where the substrate binds
Vascular bundle	Collective name for xylem and phloem

