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Abstract

We present a full, self-contained formulation of Fonooni Temporal Field Theory (FTFT),
a minimal, portal-free effective theory in which time is promoted to a dynamical scalar degree
of freedom ϕT . The model is UV-completable in heterotic string constructions and designed
to be phenomenologically safe in the infrared. We display the final minimal Lagrangian used
in all phenomenological studies, derive the equations of motion and the modified Einstein
equations including a controlled nonlocal kernel, and collect observational and experimental
constraints. We update the temporal scalar mass to mϕT

= 152 GeV to reflect emerging
collider hints, and we show compatibility with GW170817, electroweak precision tests, and
fifth-force bounds. We summarize predictions for colliders (narrow diphoton resonance),
gravitational-wave observables (near-horizon echoes), and quantum experiments (attosec-
ond entanglement delays), and provide appendices with detailed derivations and numerical
recipes.
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1 Introduction

Reconciling the quantum description of microscopic systems with the dynamical spacetime of
general relativity remains a central open problem. Fonooni Temporal Field Theory (FTFT)
approaches this by promoting time to a dynamical scalar field ϕT (x) that couples to matter and
curvature, thereby introducing controlled temporal quantization effects. FTFT is constructed
to be compatible with existing experimental tests of gravity and particle physics while making
concrete, falsifiable predictions in high-energy and strong-gravity regimes.

This manuscript collects the minimal FTFT action adopted in phenomenological work (Nov
2025), derives the equations of motion used in simulations, summarizes constraints (especially
from GW170817), and updates the temporal scalar mass to mϕT

= 152 GeV based on recent
collider hints. The presentation is self-contained and intended to serve as the definitive reference
for the FTFT program.

2 Minimal FTFT Lagrangian

Our working, minimal FTFT Lagrangian is:

LFTFT =
M2

Pl

2
R− 1

2
∂µϕT∂

µϕT − 1

2
m2

ϕT
ϕ2T − ξ ϕ2TR− gT ϕT T

µ
µ

+ λNL ϕT (x)

∫
d4y Kℓ(x− y)ϕT (y)T

µ
µ(y) + LSM[gµν , ψ],

(1)

with a normalized Gaussian kernel

Kℓ(x− y) =
1

π2ℓ4
exp

[
− (x− y)2/ℓ2

]
,

∫
d4zKℓ(z) = 1. (2)

Key parameter benchmarks used throughout:

mϕT
= 152 GeV, gT ≲ 10−6, ξ ∼ 10−2, λNL ∼ 10−3, ℓ ∼ 10−18 m.

This Lagrangian is intentionally portal-free (no direct ϕ2TH
†H term): that choice keeps

electroweak parameters safe and concentrates FTFT effects into trace- and curvature-mediated
channels and nonlocal temporal correlations.

3 Equations of motion

Varying the total action S =
∫
d4x

√
−gLFTFT yields the scalar and gravitational equations

used in phenomenology.

3.1 Temporal scalar EOM

(□+m2
ϕT

)ϕT (x) + 2ξ R(x)ϕT (x) = gT T
µ
µ(x)− λNL

∫
d4yKℓ(x− y)ϕT (y)T

µ
µ(y). (3)
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3.2 Modified Einstein equations

The metric variation produces:

M2
PlGµν = T SM

µν + T ϕT
µν +∆µν [ξ, ϕT ]− λNLNµν , (4)

with

T ϕT
µν = ∂µϕT∂νϕT − 1

2
gµν

[
(∂ϕT )

2 +m2
ϕT
ϕ2T

]
, (5)

and the nonminimal-coupling geometric terms

∆µν [ξ, ϕT ] = ξ
[
2ϕ2TGµν + (gµν□−∇µ∇ν)ϕ

2
T

]
, (6)

and Nµν the metric variation of the nonlocal integral (explicit form given in Appendix A). The
trace of (4) together with (3) is convenient for screening analyses.

4 Momentum-space representation and form factors

For analytic estimates, transform (3) to momentum space (flat background approximation):

K̃(k) = e−k2ℓ2 ,
(
−k2+m2

ϕT

)
ϕ̃T (k)+2ξ (̃RϕT )(k) = gT T̃ (k)−λNL

∫
d4q

(2π)4
K̃(k−q) ϕ̃T (q) T̃ (k−q).

When sources vary slowly on scale ℓ and ϕT is small this simplifies to a Yukawa-like propagator
with momentum-dependent self-energy from the nonlocal term.

5 Observational constraints

5.1 GW170817 and gravitational-wave speed

The near-coincident arrival of GWs and photons from GW170817 constrains modifications of
GW propagation: |cg − c|/c ≲ 10−15. In FTFT tensor modes remain minimally coupled in
the infrared; with mϕT

≳ 100 GeV and gT ≲ 10−6 the scalar cannot significantly modify the
GW dispersion relation in the LIGO/Virgo frequency band. Thus FTFT is consistent with
multimessenger bounds.

5.2 Electroweak precision and Higgs-portal absence

Because the minimal Lagrangian contains no direct Higgs portal, tree-level shifts of the Higgs
vev are absent. The leading universal effect comes from nonminimal coupling and scales as

δv

v
∼ −ξ ⟨ϕT ⟩

2

M2
Pl

,

which for ⟨ϕT ⟩ ∼ O(102 GeV) and ξ ∼ 10−2 is O(10−35) — entirely negligible. Precision
electroweak bounds are therefore satisfied.

5.3 Fifth-force and equivalence-principle tests

The scalar mediates an attractive Yukawa-like potential with an additional Gaussian smearing.
The effective coupling at macroscopic distances behaves as

geffT (r) ≃ gT e
−mϕT

r e−r2/ℓ2 ,

so for mϕT
≳ 100 GeV and ℓ ∼ 10−18 m, macroscopic fifth forces are exponentially suppressed.

Combined with gT ≲ 10−6 this is consistent with Eöt-Wash and MICROSCOPE constraints.
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6 Updated mass: mϕT = 152 GeV

Motivated by accumulating collider hints (narrow excesses in diphoton and related channels
around 150–155 GeV), FTFT adopts

mϕT
= 152 GeV

as the updated benchmark. This mass sits naturally in the allowed window, remains heavy
enough to decouple astrophysically, and can produce a narrow collider resonance through loop-
and trace-induced couplings.

7 Phenomenological predictions

7.1 Collider signatures

Primary collider signatures for the minimal FTFT setup are:

• A narrow diphoton resonance near 152 GeV, with small cross-section proportional to
g2T and SM loop factors.

• Suppressed Zγ and gg channels; small enhancements in trace-dominated associated chan-
nels (e.g., tt̄γγ).

• Small deviations in rare decays at branching ratios close to experimental thresholds if loop
or radiative effects enhance the rates.

Discovery prospects at HL-LHC require integrated luminosity and optimized searches for nar-
row, low-rate resonances.

7.2 Gravitational-wave observables

FTFT predicts phenomena localized to strong-curvature regions:

• Near-horizon temporal boundary layers can trap ϕT modes and produce delayed
reflections (GW echoes) in the ringdown stage. Echo timescales and amplitudes are model-
dependent and require full numerical relativity + FTFT simulations.

• FTFT does not change GW propagation speed in vacuum at observable levels due to the
heavy, weakly-coupled scalar.

7.3 Quantum experiments and entanglement delays

FTFT provides a natural mechanism for finite entanglement-formation times: the ϕT field
requires a microscopic response time τ0 ∼ ℏ/(mϕT

c2), which is amplified in many-body/atomic
systems by factor A. WithmϕT

≃ 152 GeV and A ∼ 50–100, FTFT reproduces attosecond-scale
entanglement delays (e.g., 232 as observed at TU Wien) as emergent ϕT relaxation times.

8 Cosmological implications

FTFT effects are significant at high energy/early times where ϕT dynamics can:

• Support nonsingular bouncing cosmologies via ξϕ2TR and nonlocal smoothing.

• Modulate primordial power at large scales and potentially contribute to low-ℓ CMB
anomalies. These effects freeze out when the temperature drops below O(100 GeV).

Because mϕT
is heavy and the coupling weak, late-time cosmology and GW propagation remain

standard to observational precision.
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9 Discussion and outlook

We have presented the minimal FTFT Lagrangian and its working EOMs, demonstrated con-
sistency with strict observational constraints (GW170817, EW precision, fifth-force tests), and
updated the temporal scalar mass to 152 GeV to match emerging collider hints. FTFT re-
mains predictive and falsifiable: the key experimental avenues are (i) targeted HL-LHC narrow-
resonance searches near 152 GeV, (ii) refined GW ringdown analyses searching for echoes, and
(iii) precision attosecond/entanglement experiments that can test the predicted formation de-
lays.

Future work includes embedding this minimal model in explicit heterotic compactifications
with controlled moduli stabilization, running full numerical-relativity simulations of black-hole
mergers with FTFT boundary layers, and preparing HL-LHC search strategies tailored to the
predicted signature set.
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A Variation of the nonlocal term and expression for Nµν

The nonlocal contribution to the action is

SNL = λNL

∫
d4x

√
−g ϕT (x)

∫
d4yKℓ(x− y)ϕT (y)T

µ
µ(y).

Metric variation yields several pieces: explicit
√
−g variation, implicit metric dependence of

Tµ
µ, and the dependence of Kℓ if written covariantly. For practical phenomenology we treat

the kernel as short-range and approximate:

Nµν(x) ≃ ϕT (x)

∫
d4yKℓ(x− y)ϕT (y)Tµν(y) + (symmetric counterterms),

with the counterterms constructed to ensure ∇µ(M2
PlGµν − T tot

µν ) = 0 when combined with the
scalar EOM. Full expressions and expanded derivations are provided in extended technical notes
accompanying this manuscript.

B Linearized screening: analytic estimate

In the static limit, linearizing the scalar EOM for a point source of mass M and trace Tµ
µ ≃

−Mδ(3)(x) yields in 3D Fourier space:

ϕ̃T (k) ≃
gT T̃ (k)

k2 +m2
ϕT

+ΣNL(k)
, K̃(k) = e−k2ℓ2 ,

so that in configuration space the Green’s function is approximately the convolution of a
Yukawa kernel and a Gaussian smearing. This yields the quoted screened coupling geffT (r) ≃
gT e

−mϕT
re−r2/ℓ2 .
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