

The most common geological structures in the terrestrial universe = impact craters

What Are the Abundances of Large Impact Basins in Our Universe?

What Do They Look Like?

Simple crater, Earth, 1200 meter diameter

Raditladi peak-ring basin, Mercury. Mercury dual imaging system (MDIS) Crater diameter is 258 km. NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washingston, 4/16/2015.

Complex peak ring or multi-ringed crater, Mars, 50 km diameter

20

30

40

0 5 10

Mare Orientale multi-ringed crater basin. Innermost ring is 340 km diameter, outer rim is 962 km diameter.

Shattercones: Mesoscopic Proof of Impact, Diagnostic

CT-Scans of Shatter Cones

Evolution of a Shatter Cone: CT-Scans

Breccias Diagnostic

Top row: UL: Ordovician polymict breccia, Glover Bluff, WI; Bee Bluff breccia, TX; Crooked Creek, MO; and Glover Bluff. Then left: Devonian breccia, Decaturville Crater, MO.

Metallic Spherules

Mt. Wick, Alaska, black micro-spherules in dirty marble. Spherules are 350 microns (0.35 mm) diameter. These rocks are caught up in soft-sediment gravity folding down the transient crater walls

Origins of microspherules from the Permian-Triassic boundary event layers in South China (Zhang, et. al., 2014). Scale bars 10-40 microns.

Metallic spherule measures 0.25 mm diameter. Upper Beluga Formation, 5.7 Ma, from test well near Anchor Point.

Metallic spherule measures 0.5 mm diameter. Oneonta Formation clay-rich shales. Panther Mountain crater, west of Shandaken, New York.

Virtually all arcuate mountain ranges in our terrestrial Solar System are rims of large impact basins.

Prince William Sound (PWS): 750 km diameter. Late Miocene, 5.7 Ma.

Avak Astrobleme: 12 km diameter. Cretaceous Turonian (91-94 Ma) age (Banet & Buthman, 2006).

Brooks Range Asteroid Impact: 2550 km diameter. Lower Cretaceous Crater structure formed 120 Ma, during the Lower Cretaceous.

Anadyr-Aleutian: 3190 km diameter. Upper Triassic

<u>Council Structure</u>: 97 km diameter. Structure formed during the Ordovician.

Geologic Time Scale & Impact Craters on Earth

1,040

Diagnostic: multiple sets of PDF's in quartz, & shatter cones.

NURE Fe-Ni Concentrations at Avak, AK

Buthman & Banet, AGS-AAPG Conference, 2006

Avak Astrobleme 2D Seismic

B11-78HR

Flow Structures Meteor Crater (L) and Avak (R)

Avak "proven" category because of multiple sets of PDFs in quartz, & shatter cones.

Ordovician COUNCIL, NOME

Council Alaska Field Topographic Map

With High-Resolution Magnetics

					Kilometers
0	5	10	20	30	40

Council Alaska Gravity & Magnetics

Sandwell 23 free air gravity

RMI magnetics, UC 4 km, E-mag 2

Central Dome Field Stops

0 0.5 2 3

East-Pointing Un-striated and Striated Cones,

Glover Bluff in situ shatter cones

0 5 10 20 30 40 Kilomete

Council Findings

Mt. Wick and Fish River North = demonstrate central dome.

Radial fold axes of recumbent folds at Mt. Wick and the North Fish River.

Mt. Dixon *Schliff-flache* (crenulated grooves and scratches on bedrock radiating from an impact).

Mt. Dixon Devonian limestone deposition post-dates central dome.

Microscopic spherules common at recumbent folds on either side of the central dome

Metamorphic breccia sampled.

No shatter cones, no PDF's.

Alaska Range and Prince William Sound Late Miocene 5.7 Ma

Mt Dickey

Topography & Bathymetry: Alaska Range to PWS

- Interrupted
 Volcano Chains
- Curvilinear surface geology
- Curvilinear
 mountain ranges
- Seismic Mapped
- Surface Lineations

Seismic: Encircling Arcuate Anticline and Center

Yellow time horizon structure

Shattercones, Chugach Range, Eklutna, Alaska

Breccias Diagnostic

Top Row Left to Right: Oligocene breccia, Bee Bluff crater, TX; metamorphic breccia Valley Springs Gneiss, 1.120 Ga, Llano Uplift, TX; breccia at Decaturville Crater, MO; Ordovician polymict breccia, Glover Bluff, WI

Left: metamorphic breccia; layered olivine, *clasts >3 G/CC*, Eklutna, AK.

Theories for Mantle Rock (>3.0 G/CC) at Surface

Seismic-Gravity-Magnetics Model PWS W-E Transect

PWS Diameter Predictions

calculated, compared to measured 760 km diameter.

Metallic Spherules 5.7 Ma Hypothesis

Commercial Impact: Hydrocarbon Fields

Prediction of Gold Deposits on Rings

Lower Cretaceous, ~120 Ma Brooks Range, North Slope

Thermal History of the North Arctic

Onset of rapid burial and thrusting during Lower Cretaceous ~ 120 Ma.

Canadian Arctic: Innuition Orogeny, From Embry, 1991

Rapid burial / thrusting onset ~ 120 Ma Pebble Shale ~99.6-136.4 Ma (USGS)

Pebble Shale Stratigraphic Cross Section

Fish Creek slide lies atop the Pebble Shale, and the Pebble Shale lies atop the Lower Cretaceous Unconformity

Relationship of Pebble Shale Thickness and Potential Fields Data

In our area of good control for wells, seismic, and potential fields data, thick Lower Cretaceous Pebble Shale correlates with gravity minima, and vice versa. Given this observation, the correlation is extended across the arctic regions.

Modified from Exploration Geosciences, 1999.

Where we have subsurface control, the gravity highs have thin Pebble Shale, and that the gravity lows have thick Pebble Shale.

Brooks Range ICS Interpretation on Emag-3. Pebble Shale Isopach, extrapolating circum-polarly.

450 B

2550 km

Alkali basalt LIP 120-90 Ma

Rapid burial / thrusting onset ~ 120 Ma Pebble Shale ~99.6-136.4 Ma (USGS) Alpha Mendeleev LIP: 90-120 Ma (Grantz)

Chukchi Borderlands / Northwind Basin 2D Seismic

Center Wormhole Geometries

Rembrandt impact basin

Joule crater, farside of Moon

Hovnatanian crater, Mercury.

Chukchi Borderland Emag

Possible Shatter Cones@ Brooks Range

North Slope, Early Cretaceous "Nanushuk" Group

Analogue: Mistastin Lake crater shattercones.

- Rapid burial / thrusting onset ~ 120 Ma
- Pebble Shale ~99.6-136.4 Ma (USGS)
- Alpha Mendeleev LIP: 90-120 Ma (Grantz)
- Nanushuk SC (?): Early Cretaceous

Chukchi Borderlands Diameter Predictions

Crater Program, Copyright© 2002 Ross A. Beyer & H. Jay Melosh These results come with ABSOLUTELY NO WARRANTY.

Chukchi Borderland, Emag-2 Rim to rim: 2550 km measured; 2600 km predicted.

Center Magnetics "Wormhole"

Akna Montes, Arcuate Range, 2000 km Diameter

Lavas generated from fractures in thin crust spill beyond crater wall deltafashion; aalogue fror Alpha Mendeleev LIP: 90-120 Ma (Grantz) **Akna Montes** Prime Meridian Arctic Circle Akna Montes

The most speculative, yet largest economic potential for oil and gas

Upper Triassic

ANADYR-ALEUTIAN & REGIONAL INTEGRATION

Aleutian Crater, Earth: 3190 km diameter

North Slope, 18 BBbl Oil cumulative Kingak-Shublik, Otuk source rocks

Yukon Flats Glenn Shale

Cook Inlet 1.8 BBbl Oil + 7.0 TCFG cumulative Tuxedni-Kamishak source rocks

Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image Landsat / Copernicus US Dept of State Geographer © 2018/Good/M

Cook Inlet Base Tertiary Subcrop: Anadyr-Aleutian Moat

240

Kilometers

Anadyr-Aleutian Moat

Legend

NAMSS_2D

srtmPlus_v7_topography_bathymetry_geodetic.tif

RGB Red: Band_1 Green: Band_2 Blue: Band 3

Anadyr-Aleutian Magnetics & Earthquake Epicenters

Anadyr-Aleutian Chain, Alaska, Bering Sea, to East Siberia. Emag2 colorfill contours, multi-ringed crater analyses, and bubble symbols representing earthquake epicenters. The deeper the earthquakes, the larger the bubble. The earthquakes show a bowlshaped depression deepening toward the center of the basin, at Anadyr. Note characteristic wheel and spoke symmetry.

Anadyr 2D Seismic Data, Southwest to Northeast Profile

Anadyr-Aleutian Structure 2D Seismic

North Slope Exploration Model Venus

Earth's Cratons: Continental Accretion by Impact

Canadian Shield

OIL & GAS FIELDS PROVEN FROM IMPACT CRATERS

IMPACT CRATER FIELD	LOCATION	DIAMETER, KM	AGE	FIELD SIZE
Ames	Major Co., OK	14	E. Ordovician 470 Ma	18 MMBO + 20 BCFG
Avak	Point Barrow, AK	12	Cetaceous-Tertiary	37 BCFG
Boltysh Depression	Ukraine	24	65.8 Ma	"several billion barrels"
Calvin	Cass County, MI	7.24	Lower Ordovician	600 MBO CUM
Cantarel (Chicxulub)	Yucatan Peninsula, Mexico	300	Cretaceous-Tertiary	Reserves: 45,000 MMBO
Hartney	Manitoba, Canada	11.2	190 Ma	
Haswell Hole	Colorado	35	1400 Ma	Morrow production
Lyles Ranch	Zavala Co., TX	4	Lower Tertiary	2 BCFG
Marquez	Leon Co., TX	12.7	Early Tertiary	54 BCFG
Newporte	Renville Co, N.D.	3.2	Cambrian-Ordovician	15 MMBO
Red Wing Creek	McKenzie Co., N.D.	9	Jurassic-Triassic; 190 Ma	10 MMBO
Sheeva Crater	Surat Basin, India (Bombay)		65 Ma	8.4 BBbls oil + 24.2 TCFG
Sierra Madera	Pecos Co, tX	13	Lower Cretaceous	270 BCFG
Steen River	NW Alta., Canada	25	Middle Cretaceous	50 MMBO
Viewfield	SE Sask., Canada	3.2	Early Jurassic	Cumulative 20 MMBO

Questions? ImpactCraterStudies.org

