Survey Report
 of the

City \& County of San Francisco 2013 High Precision Network Survey

Prepared by
McGee Surveying Consulting and F3 \& Associates, Inc.
February 28, 2014
INDEX

Subject
PROJECT OVERVIEW
PROJECT DATUMS, REFERENCE SYSTEM
GEOMETRIC COORDINATES OF CONTROLLING STATIONS (CORS \& CGPS)
NETWORK DESCRIPTION
ADJUSTMENTS \& ANALYSIS: IGS08(2005) Epoch 2013.54, NAD83(2011) Epoch 2013.54, NAD83(2011) Epoch 2010.00 and Geoid Model Analysis

DATA COLLECTION, PROCESSING and EQUIPMENT
ACCURACY: LOCAL \& NETWORK
TRANSFORMATIONS: 1999 NAD83 (1991) SPCS to NAD83 (2011) 2010.00 SPC
1999 NAD83 (1991) SPCS to NAD83 (2011) 2010.00 CCSF-CS
RECOMMENDATIONS

APPENDIX

15 Glossary

16 Geodetic Coordinate List: NAD83(2011) and IGS08(2005)
17 Plane Coordinate List: NAD83 SPCS \& CCSF Coordinate System (Low Distortion Projection)
18 Map: CCSF 2013 Regional GNSS Network
19 Map: CCSF 2013 HPN GNSS Network
20 CORS Reference Data: Coordinates, HTDP Solutions, NGS Data Sheets and Short-Term Time Series

Survey Report

of the

City \& County of San Francisco 2013 High Precision Network Survey

Prepared by
McGee Surveying Consulting and F3 \& Associates, Inc.

February 28, 2014

OVERVIEW

Project: City and County of San Francisco High Precision Network Survey (CCSF-HPN)
Surveyed by: City and County of San Francisco supported by McGee Surveying Consulting, F3 \& Associates, Inc. and Frederick T. Seher \& Associates, Inc.

This document serves as a summary report of the City and County of San Francisco (CCSF) 2013 "B" Order Control Survey. A Record of Survey will follow incorporating the content of this Report and containing detailed descriptions of the points. This survey established 20 permanent high precision control points in July 2013 referred to as the CCSF-2013 HPN. This network provides the framework for establishing a densification network to support general survey activities, GIS, and for measuring annual and episodic earth movements. The field surveys were planned and coordinated in a joint effort by CCSF, Michael McGee, PLS3945 and F3 \& Associates, Inc. Michael McGee, PLS was responsible for the final processing of the observations, network adjustments, analysis and reports. The Global Navigation Satellite System (GNSS) was used to determine positions based on the North American Datum of 1983 (NAD83) and International GNSS Service 2008 Reference Frame (IGS08). The survey is referenced to four National Geodetic Survey (NGS) Continuously Operated Reference Stations (CORS) in the region.

CCSF Regional \& High Precision Network

PROJECT DATUMS, REFERENCE SYSTEM

Geometric Datums: North American Datum of 1983 - NAD83(2011) Epoch 2010.00 realization and IGS08(2005) Epoch 2013.54 (July 17, 2013 average date of field survey)
Reference Network: The survey is referenced to four NGS CORS stations (see NGS Data Sheets in Appendix)
Vertical Datum: CCSF 2013 NAVD88 Vertical Datum. Note, this survey evaluated the use of GNSS technology for establishing accurate orthometric heights and modeled the orthometric height of UCSF. Reference Network: CCSF 2013 Second Order Leveling Network

Projections: The plane coordinates published in the survey are in units of meters and feet, and in two projections. Coordinates are provided in the California State Plane Coordinate System (SPCS) Zone III and in a local custom coordinate system created by this survey and referred to as the City \& County of San Francisco Coordinate System (CCSF-CS).

The CCSF-CS is a low distortion grid projection designed for CCSF to be a ground coordinate system. CCSF varies from sea level to approximately 1000 feet in elevation. To minimize the differences in ground and grid distances, the projection surface was positioned at the most common ground height in the County taken at an ellipsoid height of 44.50 meters (146.0 feet). The average geoid height is -32.6 meters (-107 feet) and the NAVD88 height of the projection surface is 77 meters (253 feet). At this height the combined scale factor is 1.0 and the distortion is zero. Changes in height will increase or decrease the scale 4.8 ppm for every 30.5 meters (100 foot). This coordinate system provides a grid scale distortion of less than 1:100,000 (10 ppm) in most parts of CCSF except for the higher elevations. At the Central Meridian, North coincides with Geodetic North referenced to the GRS80 ellipsoid, centered in the NAD83(2011) 2010.00 Epoch reference frame. The Convergence Angle varies +/- two minutes as shown in the Appendix in the Plane Coordinate List. The projection specifications (similar to an SPCS projection) for input in user's software follow.

Projection: Transverse Mercator, Ellipsoid: GRS-80, Scale: 1.000007, Latitude of Origin: 3745'00",
Central Meridian: -122²7'00", False Northing: 24000.0 meters, False Easting: 48000.0 meters.
The average Scale Factor, Height Reduction Factor and Convergence Angles listed below for the 20 HPN points provide a general comparison of the two projections.

State Plane Coordinates Zone 3: Combined Factor $=0.99992496$
Convergence Angle= -1-11-34
San Francisco Coordinate System:
Combined Factor= 1.00000275
Convergence Angle $=+0-00-04$
The specific values for each point are listed in the Appendix. Applying the average combined factors to a ground distance of 1000 foot equals 1000.003 feet in the CCSF-CS whereas in the SPCS it is 999.925 feet.

Historical CCSF Control Network:

A map on file with the CCSF titled "City and County of San Francisco Precise Horizontal Survey Control" dated May 2001 depicts a GPS Survey based on NAD83 (1991) 1991.35 Epoch with State Plane Coordinates published in 1991, 1998

Figure 1: 1999 Network Points and 2013 HPN Points and 1999. The 1999 Network (red) and 2013 HPN (green) are shown in Figure 1. This 2013 survey supersedes the 1991-1998-1999 surveys.

Reference Network Velocity: The North American Datum of 1983 is referenced to the North American Plate. CCSF sits on the Pacific Plate and is situated between the San Andreas Fault approximately 2 kilometers west of the southwest corner of CCSF and the Hayward Fault approximately 15 kilometers east of the northeast corner of CCSF. CCSF is moving 3.1 centimeters (0.10 feet) north and 2.1 centimeters (0.07 feet) west ($\mathrm{N} 34^{\circ} \mathrm{W} 0.12$ feet) per year relative to the North American Plate at the CGPS station UCSF as predicted by the NGS Horizontal Time Dependent Positioning (HTDP) model. Continued monitoring of the 2013 CCSF-HPN over time will develop a model of differential movements across the County.

GEOMETRIC COORDINATES OF THE CONTROLLING CORS \& CGPS STATIONS

The following positions were constrained or derived in the Adjustments discussed hereafter.
NAD83(2011) Epoch 2010.00 Positions per NGS Data Sheets (see Appendix)

| ID | Latitude(dms) | W.Longitude(dms) | EH(mtrs) | NGS PID | NAME |
| :---: | ---: | :--- | :--- | :--- | :--- | :--- |
| P176 | $37-28-18.36834$ | $122-21-25.65069$ | 434.339 | DN7544 | MILLSCREEKCN2007 GRP |
| P224 | $37-51-50.01427$ | $122-13-08.56363$ | 407.873 | DH3881 | SIBLEYVOLCCN2005 GRP |
| TIBB | $37-53-27.13938$ | $122-26-51.31741$ | -20.565 | AI4507 | TIBURON PENINSUL GRP |
| WINT | $37-39-09.50579$ | $122-08-25.99416$ | -28.259 | AI4510 | WINT_BARD_CN1991 GRP |

NAD83(2011) Epoch 2013.54** per NAD83 velocities applied to Epoch 2010.00 Positions

ID)	W	EH(mtrs)	Velocities (mm)				
P176	37-28-18.37230	122-21-25.65398	434.334	N	34.5	E-22.9	Up	-1.
4	50.01654	-08.56563	407.869	N	19	13.	Up	-1
B	37-53-27.14260	122-26-51.3199	-20.570	N	28	-1	Up	-1
WINT	37-39-09.5087	122-08-25.996	-28.2		25	E-17	Up	

NAD83(2011) Epoch 2013.54 Results of the Constrained Adjustment to the CORS positions listed above (see
Adjustments \& Analysis)

CCSF	$37-44-55.64324$	$122-24-01.58597$	-15.950
EBMD	$37-48-54.01939$	$122-17-01.65016$	-15.403
MHDL	$37-50-32.35159$	$122-29-39.55028$	66.403
P178	$37-32-04.25894$	$122-19-56.46131$	129.572
UCSF	$37-45-46.67553$	$122-27-29.29178$	155.123

IGS08(2005) Epoch 2013.54 per IGS08 velocities applied to Epoch 2005 Positions

ID	S)	W. Longitude (dms	EH(mtrs)		Velocities (mm)			
P176	37-28-18.38315	122-21-25.71047	433.810	N	21.3	E-36.2	Up	0.0 *
P224	37-51-50.02759	122-13-08.62234	407.349	N	6.8	E-27.5	Up	0.1
TIBB	37-53-27.15354	122-26-51.37682	-21.084	N	14.8	E-31.4	Up	0.0 *
WINT	37-39-09.51974	122-08-26.05320	-28.790	N	12.5	E-31.0	Up	0.0

*HTDP v3.2.3 velocities applied to CORS with less than 2.5 years of data
**Epoch of Survey

NETWORK DESCRIPTION

The CCSF GNSS Survey is comprised of a bay area Regional Network shown in Figure 2 and the CCSF High Precision Network shown in Figure 3. The Regional Network utilized four of the nearest operating NGS CORS stations (TIBB, P224, WINT and P176) as a basis for recovering IGS08(2005) Epoch 2013.54 and NAD83(2011) Epoch 2010.00 reference frames. Four CGPS stations (EBMD, MHDL, P178 and UCSF) were included to add strength and redundancy to the Regional Network. A private RTN station (CCSF) was included
to establish a position relative to the CCSF-HPN. Three vectors or baselines were computed for each connection shown in Figure 2 using 24 hour observations staggered every other day during the field campaign.

The 2013 CCSF-HPN (shown in Figure 3 and the Appendix) consists of 20 primary high precision points distributed across CCSF. The field campaign took place during the week of July 15-19, 2013 (average epoch 2013.54). Four crews operated four Leica GS15 GNSS receivers mounted on fixedheight poles. The receivers and fixed height poles were calibrated, and a validation survey of equipment and procedures took place prior to the field campaign.

The field campaign began on July 15 (Day1) with a base receiver occupying Point \#101 (Corona Heights) for the day while the three crews occupied all points for 45 minutes each developing a radial network. On Day 2, a second radial network was developed with a base receiver occupying Point \#102 (Marrietta Drive) as a base station while three crews occupied points for 45 minutes completing a second independent occupation of all points. On Day 3 and 4, a tandem operation was conducted with four crews working in unison collecting 45

Figure 2: Regional Network minutes in common at their assigned points to complete the inner network connections between all adjacent points. At the end of the field campaign, all HPN points were occupied three to four times on different days and under different constellations.

In addition to the 20 primary HPN control points, three secondary points 201 (Tidal), 202 (Sloat) and 203 (Army) shown on the map of the 1999 GPS Survey on file with the CCSF Public Works referred to above were occupied twice with a fifth receiver for 15-30 minutes. These points are not part of the HPN. These points were included to determine the relationship between the 1999 CCSF reference frame and the 2013 NAD83(2011) 2010.00 Epoch reference frame established by this survey. Transformations from the 1999 reference frame to this 2013 survey are provided hereafter.

Figure 3: City \& County 2013 High Precision Network

ADJUSTMENTS \& ANALYSIS

Non-trivial vectors were processed from the observations and evaluated in the network adjustments listed below. The Regional Network connected nine stations including four CORS, four CGPS stations and one private continuously operated RTN station. The Regional Network contains 57 vectors averaging 20 kilometers in length with a maximum of 38 kilometers. The two-dimensional residuals averaged 0.002 meters with a standard deviation of 0.002 meters and a maximum of 0.010 meters. The absolute value of the vertical residuals averaged 0.002 meters with a standard deviation of 0.002 meters and a range of -0.007 to +0.008 meters. The 2013 CCSFHPN connected 20 points, three secondary points, two CGPS stations and the private RTN station. The network contains 83 vectors averaging 4.3 kilometers in length with a maximum of 8.3 kilometers. The two-dimensional residuals averaged 0.003 meters with a standard deviation of 0.002 meters and a maximum of 0.010 meters. The absolute value of the vertical residuals averaged 0.003 meters with a standard deviation of 0.003 meters and a range of -0.009 to +0.016 meters.

Six network adjustments were processed to develop the geodetic and plane coordinates in two reference frames at different epochs. An overview of the adjustments follows with details thereafter.

Adjustment \#1 and \#2: Developed IGS08(2005) Epoch 2013.54 positions for referencing future secular and episodic movements of the region and CCSF. The IGS08(2005) positions of the four CORS were obtained from the NGS and moved to Epoch 2013.54 (epoch of this survey) using the NGS HTDP v3.2.3 velocity model. Adjustment \#1 fixed WINT to evaluate the vector residuals and closures on the remaining three CORS. Adjustment \#2 constrained the network to all four CORS to develop IGS08(2005) Epoch 2013.54 positions.

Adjustment \#3 and \#4: Developed NAD83(2011) Epoch 2013.54 positions for referencing the Regional Network. The NAD83(2011) Epoch 2010.00 positions of the four CORS were obtained from the NGS and moved to Epoch 2013.54 (epoch of this survey) using the HTDP v3.2.3 velocity model.
Adjustment \#3 fixed WINT to evaluate the closures on the remaining three CORS.
Adjustment \#4 constrained the network to all four CORS to develop NAD83(2011) Epoch 2013.54 positions on the four CGPS stations.

Adjustment \#5: Developed NAD83(2011) Epoch2010.00 positions for CCSF-HPN. The NAD83(2011) Epoch 2013.54 positions of stations UCSF, MHDL and CCSF, determined in Adjustment \#4, were moved to Epoch 2010.00 using the HTDP v3.2.3 velocity model.

Adjustment \#5 fixed the CGPS station UCSF at the Epoch 2010.00 position to evaluate the closures on MHDL and CCSF, and to develop positions on the 2013 CCSF-HPN.

Adjustment \#6: Analyzed the Geoid 2012A Model utilizing a seven parameter conformal transformation with the scale parameter fixed at 1.0 to best fit the GNSS measurements to the NAVD88 Heights of the HPN points determined in the CCSF 2013 Second Order Leveling Network Survey (Report on file with CCSF). The adjustment demonstrates the application and expected results of using GNSS survey technology to develop orthometric heights in CCSF.

IGS08(2005) Epoch 2013.54 Adjustments

Adjustment 1: 3D Minimally Constrained Adjustment

The four nearest operating CORS form the basis for recovery of the IGS08 reference frame for this survey. IGS08(2005) Epoch positions and velocities were obtained from the NGS website for the CORS. The HTDP v3.2.3 model was used to update the CORS positions to the 2013.54 Epoch of this survey. Four CGPS stations and a private RTN station CCSF were included in the adjustments.

Station WINT was fixed in a Minimally Constrained Adjustment to determine preliminary latitude, longitude, ellipsoid heights at other stations and compute closures. The results follow with the coordinate differences (closures) from the IGS08 positions to the computed positions listed in meters below. The position for UCSF
was determined from the mean of three 24 hours observations submitted to OPUS and used as a check on the results of this adjustment as shown.

Coordinate Differences: IGS08 to Computed

Station	dN	dE	dZ	
P176	0.007	-0.004	0.006	
P224	0.012	0.003	0.002	
TIBB	0.003	-0.001	-0.015	
WINT	0.000	0.000	0.000	Fixed
UCSF	0.004	0.000	-0.018	OPUS IGS08 position to computed position

Note: The differences between the published and computed positions range 0.000 to 0.012 meters in north, -0.001 to +0.003 meters in east and -0.015 to +0.006 meters in the up direction. Network loop closures were less than a centimeter. The horizontal check on the OPUS position of UCSF is 0.004 meters.

Adjustment 2A: 3D Adjustment Solving for Transformation Parameters from WGS84 to IGS08

 WGS84 is based on the IGS08 reference frame. In this adjustment the rotations and scale were solved to verify the consistency of the measured network in WGS84 and the IGS08 reference frame as represented by the positions of the CORS. The expectation are zero and the negligible results confirm the consistency of the two frames.```
 WGS84 to IGS08(2005) Datum Transformation
Scale Factor 1.000000068467 = -0.068 PPM (1:14,700,000)
Rotation Around North Axis = -0.071 Sec
Rotation Around East Axis = -0.055 Sec
Rotation Around Vert. Axis = -0.015 Sec
```


## Adjustment 2B: 3D Constrained Adjustment

All four CORS were constrained for latitude, longitude and ellipsoid heights to develop IGS08(2005) 2013.54 Epoch positions on the network. The horizontal difference of 0.001 meters with the UCSF position obtained from the CORS Network utilizing the NGS OPUS Tool confirms the processes used in this survey.

Coordinate Differences: IGS08(2005) 2013.54 Epoch to Computed
$\begin{array}{llll}\text { Station } & d N & d E & d Z \\ \text { UCSF } & -0.001 & 0.001 & -0.014 \\ \text { OPUS IGS08 position }\end{array}$
Note: This Adjustment includes the CCSF-HPN. The results are listed in the Appendix Coordinate List.

## NAD83(2011) Epoch 2013.54 Adjustments

## Adjustment 3: 3D Minimally Constrained Adjustment

The four nearest operating CORS form the basis for recovery of the NAD83 reference frame for this survey. NAD83(2011) 2010.00 Epoch positions and velocities were obtained from the NGS website for the CORS. The HTDP v3.2.3 model was used to update the CORS to 2013.54 Epoch of this survey for this adjustment. Four CGPS stations and a private RTN station CCSF were included in the adjustment.

CORS station WINT was fixed in a Minimally Constrained Adjustment to determine preliminary latitude, longitude, ellipsoid heights at the three other CORS and compute closures. The results follow with the coordinate differences (closures) in meters from the NAD83(2011) 2013.54 Epoch to the computed positions listed below. The position for UCSF was determined by the SOPAC SECTOR utility and used as a check on the results of this adjustment as shown below.


Note: The differences between the published and computed positions range 0.000 to 0.012 meters in north, -0.001 to +0.004 meters in east and -0.010 to +0.006 meters up direction. The position of UCSF as determined by SECTOR is referenced to the NAD83(2007) Adjustment Epoch 2013.54 whereas this adjustment is referenced to NAD83(2011) Adjustment Epoch 2013.54. The horizontal difference of 0.009 meters is indicative of the similarities of the two national adjustments.

## Adjustment 4: 3D/Ellipsoid Heights - Constrained Adjustment

All four CORS were constrained for latitude, longitude and ellipsoid heights to develop NAD83(2011) Epoch 2013.54 positions. Notwithstanding the 2007 verses the 2011 Adjustments, the horizontal difference of 0.004 meters at UCSF indicates the compatibility of these results with those obtained from the SECTOR utility.


## NAD83(2011) Epoch 2010.00 Adjustments

## Adjustment 5: 3D Minimally Constrained Adjustment of the CCSF-HPN

The NAD83(2011) 2010.00 Epoch positions at CCSF, MHDL and UCSF were derived by applying HTDP v3.2.3 velocities to the 2013.54 Epoch positions resulting from Adjustment \#4. UCSF was fixed in a minimally constrained adjustment to determine latitude, longitude, ellipsoid heights at other stations and compute closures. The results follow with the coordinate differences (closures) in meters from the record positions to the computed positions listed below. The source for the record positions of 107, 201 and 202 are the NGS Data Sheets for the listed PID's.
Coordinate Differences: Record to Computed

| Station | dN | dE | dZ | NAD83 Epoch | Source |
| :--- | ---: | ---: | ---: | ---: | :--- |
| 107 | -0.034 | 0.007 | -0.040 | 2010.00 | NGS PID AB7679 = HPGND CA04GF |
| 201 | -0.029 | 0.002 | -0.045 | 2010.00 | NGS PID AE5209 = N TIDAL |
| 202 | -0.053 | 0.017 | -0.031 | 2010.00 | NGS PID AB7677 = HPGND CA04GE |
| 203 | 0.537 | -0.362 | - | 1991.35 | 1999 CCSF Control Survey-NAD83(1991) |
| CCSF | -0.005 | 0.002 | 0.007 | 2010.00 | HTDP Applied to Adj\#4 Position |
| MHDL | -0.003 | 0.003 | -0.006 | 2010.00 | HTDP Applied to Adj\#4 Position |
| UCSF | -0.000 | -0.000 | -0.000 | 2010.00 | HTDP Applied to Adj\#4 Position, Fixed |

Note: The differences at 203 reflect the difference between the 1991.35 and 2010.00 Epochs. The closures on the HTDP derived positions for CCSF and MHDL range 0.000 to -0.005 meters north, +0.002 to +0.003 meters east and -0.006 to +0.007 up direction and are at the noise level of the HTDP model; therefore, rather than distort the measured vectors in a constrained adjustment, the results of this adjustment were accepted to establish NAD83(2011) 2010.00 Epoch for the CCSF-HPN. Note: The Adjustment results are listed in the Appendix Coordinate List.

## Geoid Model Analysis: Adjustment of Ellipsoid Heights incorporating Geoid Heights to Determine NAVD88 Orthometric Heights:

Two methods for determining NAVD88 Heights in a GPS/GNSS survey are discussed here. The first method approximates NAVD88 Heights by applying geoid heights to the measured ellipsoid heights using the equation $\mathrm{H}=\mathrm{h}-\mathrm{N}$ (Orthometric Height = Ellipsoid Height - Geoid Height). The accuracy of this method when applying the NGS Geoid 2012A to NAD83(2011) 2010.00 Epoch ellipsoid heights in San Francisco is approximately 0.06 meters as demonstrated below.

The second method takes advantage of the relative precision of modeled geoid heights. The Geoid 2012A Model was incorporated in a seven-parameter conformal transformation with the scale parameter fixed at 1.0 to best fit the NAVD88 Heights established on 20 HPN points determined by precise differential leveling (see the "Report on the City \& County of San Francisco 2013 Second Order Leveling Network Survey and the 2013 NAVD88 Vertical Datum" on file with the County surveyor).

The NAD83(2011) 2010.00 Epoch Ellipsoid Height differences were combined with the Geoid 2012A Heights shown below in Column E and best fit to the leveled heights at the HPN points shown in Column B. This has the effect of best fitting the Geoid 2012A surface through the NAVD88 Heights at all 20 points. The results shown in Column A are the differences in meters from the leveled heights to the computed heights based on GNSS measurements. This is a best fit (least squares) solution therefore the mean of the differences is zero. The Standard Deviation of the differences is 0.004 meters ( $0.01^{\prime}$ ) and the range is -0.007 to +0.007 meters $\left(+/-0.02^{\prime}\right)$. The solved rotations are +0.213 seconds around the north and +0.243 seconds around the east axis. The rotations represent the tilts applied to the Geoid 2012A model to best fit the HPN orthometric heights which represent a geoid surface. The maximum effect of this tilt if unaccounted for is 1.6 mm per kilometer ( $0.008^{\prime}$ per mile) and is absorbed in a constrained adjustment. The orthometric height of UCSF was modeled in this adjustment. As an additional check on the differential leveling to the highest HPN points, a constrained adjustment was processed fixing HPN points with orthometric heights lest than 8 meters around the north and east shoreline. As a result, points 101 and 102 were found at -0.005 and +0.001 meters respectively. A one way shortest distance from the north shoreline would allow 0.006 meters for First Order Class.

|  | A | B | C | D | E | F |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Point | Diff 's | NAVD88 Hts | NAD83 EH | Meas 'd GH | 2012A GH | E - D |
| 101 | -0.003 | 150.799 | 118.188 | -32.611 | -32.548 | 0.063 |
| 102 | 0.004 | 170.991 | 138.344 | -32.647 | -32.587 | 0.060 |
| 103 | 0.004 | 46.352 | 13.592 | -32.760 | -32.712 | 0.048 |
| 104 | 0.000 | 7.550 | -25.278 | -32.828 | -32.771 | 0.057 |
| 105 | -0.004 | 56.489 | 23.607 | -32.882 | -32.817 | 0.065 |
| 106 | -0.007 | 110.302 | 77.575 | -32.727 | -32.653 | 0.074 |
| 107 | 0.006 | 3.698 | -28.944 | -32.642 | -32.574 | 0.068 |
| 108 | 0.000 | 4.484 | -28.109 | -32.593 | -32.523 | 0.070 |
| 109 | -0.004 | 3.461 | -29.098 | -32.559 | -32.491 | 0.068 |
| 110 | 0.003 | 3.279 | -29.261 | -32.540 | -32.486 | 0.054 |
| 111 | 0.003 | 4.000 | -28.605 | -32.605 | -32.555 | 0.050 |
| 112 | -0.004 | 54.344 | 21.692 | -32.652 | -32.593 | 0.059 |
| 113 | -0.001 | 74.816 | 42.159 | -32.657 | -32.598 | 0.059 |
| 114 | -0.001 | 99.656 | 66.915 | -32.741 | -32.681 | 0.060 |
| 115 | 0.003 | 61.448 | 28.692 | -32.756 | -32.697 | 0.059 |
| 116 | 0.007 | 89.985 | 57.292 | -32.693 | -32.635 | 0.058 |
| 117 | -0.004 | 117.172 | 84.526 | -32.646 | -32.572 | 0.074 |
| 118 | 0.003 | 78.553 | 45.947 | -32.606 | -32.543 | 0.063 |
| 119 | -0.003 | 18.941 | -13.634 | -32.575 | -32.511 | 0.064 |
| 120 | -0.002 | 85.887 | 53.304 | -32.583 | -32.524 | 0.059 |
|  |  |  |  |  |  |  |

Geoid 2012A is a "hybrid" geoid model. Hybrid means it is based on GPS measured ellipsoid heights on a sampling of NAVD88 benchmarks over a large area to estimate the height of the NAD83(2011) zero ellipsoid surface above the NAVD88 zero surface. The measured NAD83(2011) 2010.00 Epoch Ellipsoid Heights (Column C) minus the leveled NAVD88 Heights (Column B) are the measured geoid heights at the HPN points (Column D) determined by this survey. The error in the Geoid 2012A hybrid model in San Francisco is 0.06 meters (Column F) being the difference in the computed Geoid 2012A Heights (Column E) and the measured geoid heights (Column D).

The recommended approach for determining orthometric heights with GNSS is to surround a project with three CCSF-HPN points (four preferred for redundancy) and compute a seven-parameter transformation that includes the Geoid 2012A Model to best fit the HPN 2013 NAVD88 Heights. The accuracy will depend on the combined accuracy of the NAVD88 heights of the HPN points, the GNSS measured ellipsoid height differences, the geoid heights and the effects of the tilt between the geoid model surface and the actual geoid surface. The largest source of error is usually in the measured ellipsoid heights. Following the specifications and procedures used in this survey, an orthometric height accuracy of 0.007 meters ( 0.02 feet) is obtainable.

As a matter of information, the NGS publishes the US Gravimetric Geoid 2012 (USGG2012) which is a gravimetric model referenced to the GRS80 ellipsoid, centered in the IGS08(2005.00) reference frame, and is the best geo-potential surface that approximates Mean Sea Level (MSL). USGG2012 is applied to WGS84 = IGS08 Ellipsoid Heights to obtain estimated heights referenced to global mean sea level (geoid). Utilizing the USGG2012 Model in a transformation to best fit the NAVD88 heights of the HPN points (described above) returned essentially the same results as the hybrid model; however, the rotations were +0.138 and +0.120 seconds around the north and east axis respectively, representing a negligible improvement. A new North American Vertical Datum is expected to be introduced in less than ten years. The origin or zero height is expected to be the geo-potential surface described above which is approximately 0.9 meters lower than the NAVD88 Datum and approximates the NGVD29 Datum.

## DATA COLLECTION, PROCESSING and EQUIPMENT

Five Leica GS15 geodetic GNSS receivers/antennas listed below were mounted on fixed height poles to collect, and store satellite signal data. The GS15 receivers tracked Navstar GPS and GLONASS satellites. Prior to initiating the field observations a calibration of the fixed height poles was conducted with a theodolite to verify their heights and plumb. The top of the poles were found to be plumb within 1 millimeter of the point. There were no equipment failures during the survey.

Date of Field Surveys: July 15 to July 19, 2013 (Average Date 2013.54)

## GNSS Survey Parameters:

Observations: Static occupations collected GPS and GLONASS signal data at a 15 second epoch rate for 45 minutes at all points with 8 hours at the base station setups for the radial observations on the first two days of the field campaign. Observations at the CORS and CGPS stations were GPS only for 24 hour at a 15 second epoch rate and downloaded from the Internet.
Constellation: 32 healthy US Navstar GPS satellites; 24 healthy Russian GLONASS satellites.
Satellite Observations: 12-21 satellites observed with a minimum of 6 GPS and 6 GLONASS at any time; GDOP $<2$; Elevation Mask for Data Collection set at $10^{\circ}$ and post processed at $15^{\circ}$.
Observables: GPS L1 \& L2 Carrier wave, GLONASS L1 \& L2.
Ephemeris: Precise GPS and GLONASS for static post processing.
Weather Conditions: Generally overcast marine layer and mild temperatures.
Space Weather: Boulder K Index $=1-3$ (gauges ionospheric activity on a scale of 0-9, $<5$ preferred). The K Index was 1-2 on all days except on July 15 it was 3.

## Equipment:

GNSS Base Receiver Unit No.: B, Operator: JTM, RA; Receiver Make \& Model: Leica GS15; Antenna Make \& Model: Leica GS15 Antenna Mount: Fixed Ht. Pole B; Antenna Height: 1.800m
GNSS Base Receiver Unit No.: C, Operator: DPL;
Receiver Make \& Model: Leica GS15; Antenna Make \& Model: Leica GS15 Antenna Mount: Fixed Ht. Pole C; Antenna Height: 1.800m
GNSS Base Receiver Unit No.: D, Operator: GP;
Receiver Make \& Model: Leica GS15; Antenna Make \& Model: Leica GS15 Antenna Mount: Fixed Ht. Pole D; Antenna Height: 1.800m
GNSS Base Receiver Unit No.: E, Operator: AV;
Receiver Make \& Model: Leica GS15; Antenna Make \& Model: Leica GS15 Antenna Mount: Fixed Ht. Pole E; Antenna Height: 1.800m
GNSS Base Receiver Unit No.: F, Operator: MM, PC;
Receiver Make \& Model: Leica GS15; Antenna Make \& Model: Leica GS15
Antenna Mount: Fixed Ht. Pole F; Antenna Height: 1.800m

CORS \& CGPS National Geodetic Survey Antennas
Note, absolute antenna models were used in the baseline processing and measurements were referenced to the monument not the antenna reference point (ARP).

| Stat. | Antenna | Radome |
| :--- | :--- | :--- |
| CCSF | AX1202 GG | NONE |
| EBMD | LEIAR10 | NONE |
| MHDL | ASH700936C_M | SNOW |
| P176 | TRM29659.00 | SCIT |
| P224 | TRM29659.00 | SCIT |
| P178 | TRM29659.00 | SCIT |
| TIBB | ASH701945B_M | SCIT |
| UCSF | ASH701945B_M | SCIT |
| WINT | ASH700936D_M | CAFG <no model available, substituted "ASH700936D_M NONE" |

Rinex Data, Antenna Models, Precise Ephemeris and Processing Software: Rinex files for the CORS and CGPS were imported from the NGS and SOPAC. Absolute antenna models were imported from the NGS and the Precise Ephemeris was imported from the NGS for the GPS and IGS for the GLONASS constellations. The Precise Ephemeris was used for all static post-processing in IGS08. The Baseline Processing was performed in Leica Geomatics Office (LGO) v8.1. The Network Adjustments were performed in Starnet v7.2.

## ACCURACY: LOCAL \& NETWORK

This survey conforms to the requirements of Public Resources Code Section 8801 through 8819 and 8850 through 8880. These geodetic control data meet the 5-millimeter Local Accuracy Standard for the horizontal coordinate values, the 5-millimeter Local Accuracy Standard for the vertical coordinate values (heights), the 1centimeter Network Accuracy Standard for the horizontal coordinate values, and the 1-centimeter Network Accuracy Standard for the vertical coordinate values (heights) at the 95 -percent confidence level according to the reporting standard published by FGDC in "Geospatial Positioning Accuracy Standard, Part 2, Geodetic Control Networks", FGDC-Std-007, 2-1998. This survey conforms to the intent of the FGCC "Geometric Geodetic Accuracy Standards and Specifications for Using GPS Positioning Techniques" (1989), the California Geodetic Control Committee (CGCC) "Specifications for High-Production GPS Surveying Techniques" (1993), and NOAA Technical Memorandum NOS NGS 58 "Guidelines for Establishing GPS-Derived Ellipsoid Heights".

Vector Residuals: The number of vectors, two-dimensional vector residuals and the absolute value of the vertical residuals resulting from the minimally constrained adjustment are listed below in meters.

|  | Two Dimensional Residuals |  |  |  | Vertical Residuals (absolute values) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | No. | Average |  | Std. Dev. Maximum |  | Average | Std.Dev. | Range |
| CCSF HPN | 83 | 0.003 | 0.002 | 0.010 |  | 0.003 | 0.003 | -0.009 to +0.016 |
| Regional CORS | 57 | 0.002 | 0.002 | 0.010 |  | 0.002 | 0.002 | -0.007 to +0.00 |

The vector residuals and the closures on control points addressed above in ADJUSTMENTS \& ANALYSIS are good indications of the accuracies obtained by this survey.

Local Accuracy: The local vector lengths, precisions, relative distance accuracy and relative vertical accuracy resulting from the minimally constrained adjustment at the $95 \%$ Level of Confidence are listed below in meters.

|  | Lengths |  | PPM Precisions |  | Relative Distance Error |  |  | Rel.Vert. Error |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Network | Vary | Average | Vary | Average | Averag | Maximum | Precision | Average | Maximum |
| CCSF HPN | 1675-8291 | 4267 | 0.4-2.3 | 1.1 ppm | 0.004 | 0.005 | 1:1,067,000 | 0.003 | 0.004 |
| Regional | 5322-37896 | 20224 | 0.1-0.6 | 0.2 ppm | 0.003 | 0.003 | 1:6,741,000 | 0.003 | 0.004 |

Following the criteria of the former FGCC classification system described in "Geometric Geodetic Accuracy Standards and Specifications for Using GPS Positioning Techniques" (1989), the maximum allowable relative error at the $95 \%$ confidence level is defined as $s=\sqrt{ }\left(\mathrm{e}^{2}+(0.1 \mathrm{pd})^{2}\right)$ where e is the base error, p is the ppm and d is the distance in kilometers. For the CCSF-HPN, B-Order is equivalent to $\sqrt{ }\left(8^{2}+(0.1 \cdot 1 \cdot 4.3)^{2}\right)=0.9$ centimeters and A-Order is equivalent to $\sqrt{ }\left(.5^{2}+(0.1 \cdot 0.1 \cdot 4.3)^{2}\right)=0.5$ centimeters. Loop closures for the HPN vary between 1
ppm and 5 ppm . In conclusion, this survey exceeds a B-Order classification $(1: 1,000,000)$ under the former system and the Regional Network exceeds an A-Order classification (1:10,000,000).

Network Accuracy: The Standard Deviations ( $68 \%$ Level of Confidence) of the latitude, longitude and ellipsoid heights and the $95 \%$ Level of Confidence of the Horizontal Positions and Ellipsoid Heights for the Regional Network and the HPN are listed below in meters. This table allows users to calculate the propagated error for future surveys based on the HPN positions.

For P176, TIBB and WINT the NGS Data Sheets state "Formal positional accuracy estimates are not available for this CORS because its coordinates were determined in part using modeled velocities. Approximate onesigma accuracies for latitude, longitude, and ellipsoid height can be obtained from the short-term time series". Standard Deviations were only available for P224 (more than 2.5 years of data). Therefore, for consistency the positional accuracy estimates for all CORS stations (P176, P224, TIBB and WINT) were taken from the "Short Term Time Series" available at the NGS website. These one-sigma accuracy estimates were used for weighting the constrained adjustment to develop Network Accuracies.

| NETWORK ACCURACY in Meters |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Coordinate Std. Deviations |  |  | Network Accy. | 95\% Confidence |
| Station | Latitude | Longitude | Ellipsoid Ht | Horizontal | Ellipsoid Ht |
| 101 | 0.002 | 0.002 | 0.004 | 0.005 | 0.008 |
| 102 | 0.002 | 0.002 | 0.004 | 0.005 | 0.008 |
| 103 | 0.003 | 0.003 | 0.004 | 0.006 | 0.009 |
| 104 | 0.003 | 0.003 | 0.004 | 0.006 | 0.009 |
| 105 | 0.002 | 0.002 | 0.004 | 0.006 | 0.009 |
| 106 | 0.003 | 0.003 | 0.004 | 0.006 | 0.009 |
| 107 | 0.003 | 0.003 | 0.004 | 0.006 | 0.009 |
| 108 | 0.002 | 0.002 | 0.004 | 0.006 | 0.009 |
| 109 | 0.003 | 0.002 | 0.004 | 0.006 | 0.009 |
| 110 | 0.002 | 0.002 | 0.004 | 0.006 | 0.008 |
| 111 | 0.002 | 0.002 | 0.004 | 0.006 | 0.008 |
| 112 | 0.002 | 0.002 | 0.004 | 0.006 | 0.008 |
| 113 | 0.002 | 0.002 | 0.004 | 0.006 | 0.008 |
| 114 | 0.003 | 0.002 | 0.004 | 0.006 | 0.009 |
| 115 | 0.002 | 0.002 | 0.004 | 0.006 | 0.008 |
| 116 | 0.003 | 0.002 | 0.004 | 0.006 | 0.009 |
| 117 | 0.002 | 0.002 | 0.004 | 0.006 | 0.009 |
| 118 | 0.002 | 0.002 | 0.004 | 0.006 | 0.008 |
| 119 | 0.002 | 0.002 | 0.004 | 0.006 | 0.008 |
| 120 | 0.002 | 0.002 | 0.004 | 0.006 | 0.008 |
| CCSF | 0.002 | 0.002 | 0.004 | 0.005 | 0.008 |
| EBMD | 0.002 | 0.002 | 0.004 | 0.004 | 0.008 |
| MHDL | 0.002 | 0.002 | 0.004 | 0.004 | 0.008 |
| P176 | 0.001 | 0.001 | 0.004 | 0.004 | 0.008 |
| P178 | 0.002 | 0.002 | 0.004 | 0.004 | 0.008 |
| P224 | 0.001 | 0.001 | 0.004 | 0.003 | 0.008 |
| TIBB | 0.001 | 0.001 | 0.004 | 0.004 | 0.008 |
| UCSF | 0.001 | 0.001 | 0.004 | 0.003 | 0.008 |
| WINT | 0.001 | 0.001 | 0.004 | 0.003 | 0.008 |

## Transformation 1999 NAD83(1991.35 Epoch) SPCS > 2013 NAD83(2011) 2010.00 Epoch SPCS

A map is on file with CCSF titled "City and County of San Francisco Precise Horizontal Survey Control" dated May 2001. The survey is based on NAD83 (1991) 1991.35 Epoch with adjustments published in 1991, 1998 and 1999. The 1999 State Plane Coordinate values shown on Sheets 4 \& 5 of 7 for ARMY=203, CANDLESTICK $=107$, SLOAT $=202$ and TIDAL=201 were used to compute a four parameter conformal transformation to convert 1999 State Plane Coordinates in feet to this 2013 survey.


The scale and rotation are negligible as expected between epochs of the same datum. The transformation primarily accounts for the north $1.7 \pm$ feet and west $1.2 \pm$ feet shift between the 1991.35 and the 2010.00 Epochs. Utilize the Transformation Equations and constants listed to convert 1999 NAD83 (1991) Epoch 1991.35 SPCS to NAD83 (2011) Epoch 2010.00 SPCS in CCSF. The horizontal accuracy of the computed positions is estimated at 0.05 feet at the $95 \%$ level of confidence based on the residuals.

To convert the 1999 Survey NAD83(1991) 1991.35 Epoch SPCS in feet to NAD83(2011) 2010.00 Epoch of the City \& County of San Francisco Coordinate System (CCSF-CS) in feet use the following transformation.

## Transformation: 1999 NAD83(1991) SPCS > NAD83(2011) 2010.00 Epoch CCSF-CS

| INPUT COORDINATES (Feet) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PT\# | 1999 | NAD83 (1991)1991 | 1.35) SPCS | 2010.00 CCSF-CS |  |  |
|  |  | North(1) | East (1) | PT\# | North(2) | East (2) |
| CANDL | LESTICK | K 2085128.546 | 6013911.480 | 107 | 62778.214 | 173801.613 |
| TIDAL |  | 2121772.462 | 5993470.060 | 201 | 98991. 152 | 152599.533 |
| SLOAT |  | 2095678.561 | 5984226.406 | 202 | 72708.341 | 143900.815 |
| ARMY |  | 2100667.364 | 6012652.104 | 203 | 78288.679 | 172218.652 |
| TRANSFORMATION SOLUTION RESIDUALS (Feet) |  |  |  |  |  |  |
|  | 1999 | 2013 | North | East | N.Azim \& Di |  |
|  | CANDLES | STICK 107 | -0.020 | +0.016 | $140^{\circ} 0.02$ |  |
|  | TIDAL | 201 | -0.032 | -0.009 | $195^{\circ} 0.033$ |  |
|  | SLOAT | 202 | +0.034 | -0.012 | $340^{\circ} 0.03$ |  |
|  | ARMY | 203 | +0.018 | +0.004 | $13^{\circ} 0.01$ |  |
| Root Mean Square of the North and East Residuals $=0.02$ |  |  |  |  |  |  |
| Scale Factor = 1.00007856 Standard Deviation = 0.00000079 |  |  |  |  |  |  |
| Rotation = -1' $\mathbf{1 1}^{\prime}$ |  |  | 7.4" Stand | ard Deviat | ion $=0^{\circ} 0$ | ' 00.2" |
| TRANSFORMATION EQUATIONS N2=A1*N1-A |  |  |  | N2=A1*N1-A2*E1+A4 | E2=A2*N1+A1*E1+A3 |  |
| A1= 0.9998615081 A2= -0 |  |  | .0208347280 | A3 $=-57958$ | 33.91914 | $4=-2147359$ |

## RECOMMENDATION - SUMMARY

As stated previously, CCSF sits between two major faults and it is expected that future re-surveys of the HPN will be conducted to determine secular and episodic movements within the area. If future surveys of the HPN follow the specifications and procedures adopted for this survey, the relative accuracy of measured shifts is expected to approach 5-6 millimeters at the $95 \%$ level of confidence. Statistically, this means the probability at the $95 \%$ level of confidence is that movement (signal) has occurred if the movement between two epochs is greater than the relative $95 \%$ error (noise). The differences in successive coordinates could be used to estimate movements but do not provide statistical information about the relative accuracies of movements. Measurements of temporal movements should be based on a rigorous simultaneous least squares adjustment of multiple redundant observations at two different epochs for each point to compute the movement and relative accuracy. The success of this process is predicated on the absolute recovery of the reference frame in this survey which is the IGS08(2005) 2013.54 Epoch based on the National Spatial Reference System (NSRS) CORS.

## SURVEYOR'S STATEMENT

This Report on the criteria, procedures and results of the City and County of San Francisco High Precision GNSS Survey was prepared by me on February 28, 2014 at the request of Bruce R. Storrs, PLS City and County Surveyor of San Francisco.


## APPENDIX

## GLOSSARY

| CCSF | City and County of San Francisco |
| :--- | :--- |
| CCSF-CS | City and County of San Francisco Coordinate System |
| CGPS | Continuously GPS Stations in California |
| CORS | Continuously Operated Reference Stations in the National Spatial Reference System |
| FGCC | Federal Geodetic Control Committee |
| FGDC | Federal Geographic Data Committee |
| GIS | Geographic Information System |
| GLONASS | Globalnaya Navigatsionnaya Sputnikovaya Sistema (Russian GPS system) |
| GNSS | Global Navigation Satellite System (GPS and GLONASS used in this survey) |
| GPS | Global Positioning System |
| HPN | High Precision Network |
| IGS08 | International GNSS Service 2008 Reference Frame |
| K INDEX | Space weather index ranging from 0-9, 1 being calm and 5 indicating a geomagnetic storm |
| LDP | Low Distortion Projection |
| NAD83 | North American Datum of 1983 |
| NAVD88 | North American Vertical Datum of 1988 |
| NGS | National Geodetic Survey |
| RTN | Real-Time Network |
| SOPAC | Scripps Orbit and Permanent Array Center |
| GDOP | Geometric Dilution of Precision |
| L1 | Carrier frequency @ 1575.42 MHz |
| L2 | Carrier frequency @1227.60 MHz |
| NAVD29 | North American Vertical Datum of 1929 |
| GRS80 | Geodetic Reference System of 1980 |
| HTDP | Horizontal Time-Dependent Positioning Program |
| PLS | Professional Land Surveyor |
| NOAA | National Oceanic and Atmospheric Administration |
|  |  |

"2013 NAD83(2011) 2010.00 Epoch" represents the 2011 Adjustment of the North American Datum at Epoch 2010.00 established in CCSF in 2013

NAD83 GEODETIC COORDINATE LIST
DATUM \& REFERENCE FRAME: NAD83(2011) Epoch 2010.00

| POINT | N. LATITUDE | W. LONGITUDE | ELLIPSOID HT meters |
| :---: | :---: | :---: | :---: |
| 101 | 37-45-54.52969 | 122-26-21.55646 | 118.188 |
| 102 | 37-44-16.70006 | 122-26-35.16804 | 138.344 |
| 103 | 37-46-48.82346 | 122-30-42.69982 | 13.592 |
| 104 | 37-45-03.75809 | 122-30-29.78795 | -25.278 |
| 105 | 37-42-54.76774 | 122-30-04.94280 | 23.607 |
| 106 | 37-42-25.30199 | 122-27-09.62037 | 77.575 |
| 107 | 37-42-22.15117 | 122-23-36.90485 | -28.944 |
| 108 | 37-44-24.76543 | 122-22-36.10746 | -28.109 |
| 109 | 37-46-35.29523 | 122-23-14.65957 | -29.098 |
| 110 | 37-48-32.30625 | 122-24-49.85029 | -29.261 |
| 111 | 37-48-21.50380 | 122-28-02.95054 | -28.605 |
| 112 | 37-47-16.23698 | 122-28-31.85392 | 21.692 |
| 113 | 37-46-15.21109 | 122-28-05.24080 | 42.159 |
| 114 | 37-45-06.84452 | 122-29-07.34048 | 66.915 |
| 115 | 37-43-59.89229 | 122-28-41.12920 | 28.692 |
| 116 | 37-43-33.80444 | 122-27-19.05616 | 57.292 |
| 117 | 37-43-04.59553 | 122-24-45.07281 | 84.526 |
| 118 | 37-44-35.20539 | 122-24-35.75058 | 45.947 |
| 119 | 37-46-46.37693 | 122-25-01.43682 | -13.634 |
| 120 | 37-47-27.12564 | 122-26-15.67191 | 53.304 |
| CCSF | 37-44-55.63969 | 122-24-01.58310 | -15.938 |
| MHDL | 37-50-32.34805 | 122-29-39.54740 | 66.402 |
| UCSF | 37-45-46.67199 | 122-27-29.28890 | 155.128 |

ELLIPSOID HT
feet
387.754
453.883
44.594
-82.931
77.449
254.510
-94.959
-92.221
-95.467
-96.002
-93.848
71.168
138.316
219.538
94.135
187.966
277.316
150.745
-44.731
174.881
-52. 290
217.855
508.949

IGS08 GEODETIC COORDINATE LIST
DATUM \& REFERENCE FRAME: IGS08(2005) Epoch 2013.54

| POINT | N. LATITUDE | W. LONGITUDE | ELLIPSOID HT meters |
| :---: | :---: | :---: | :---: |
| 101 | 37-45-54.54414 | 122-26-21.61608 | 117.665 |
| 102 | 37-44-16.71449 | 122-26-35.22764 | 137.821 |
| 103 | 37-46-48.83787 | 122-30-42.75949 | 13.072 |
| 104 | 37-45-03.77249 | 122-30-29.84759 | -25.798 |
| 105 | 37-42-54.78214 | 122-30-05.00241 | 23.085 |
| 106 | 37-42-25.31641 | 122-27-09.67995 | 77.053 |
| 107 | 37-42-22.16562 | 122-23-36.96440 | -29.467 |
| 108 | 37-44-24.77990 | 122-22-36.16703 | -28.633 |
| 109 | 37-46-35.30971 | 122-23-14.71918 | -29.621 |
| 110 | 37-48-32.32072 | 122-24-49.90994 | -29.783 |
| 111 | 37-48-21.51824 | 122-28-03.01021 | -29.126 |
| 112 | 37-47-16.25141 | 122-28-31.91358 | 21.171 |
| 113 | 37-46-15.22552 | 122-28-05.30044 | 41.637 |
| 114 | 37-45-06.85894 | 122-29-07.40011 | 66.394 |
| 115 | 37-43-59.90670 | 122-28-41.18882 | 28.171 |
| 116 | 37-43-33.81887 | 122-27-19.11576 | 56.770 |
| 117 | 37-43-04.60998 | 122-24-45.13238 | 84.003 |
| 118 | 37-44-35.21984 | 122-24-35.81017 | 45.424 |
| 119 | 37-46-46.39139 | 122-25-01.49644 | -14.157 |
| 120 | 37-47-27.14010 | 122-26-15.73155 | 52.782 |
| CCSF | 37-44-55.65415 | 122-24-01.64269 | -16.461 |
| EBMD | 37-48-54.03039 | 122-17-01.70688 | -15.922 |
| MHDL | 37-50-32.36248 | 122-29-39.60710 | 65.888 |
| P176 | 37-28-18.38315 | 122-21-25.71047 | 433.810 |
| P178 | 37-32-04.26983 | 122-19-56.51784 | 129.049 |
| P224 | 37-51-50.02759 | 122-13-08.62234 | 407.349 |
| TIBB | 37-53-27.15354 | 122-26-51.37682 | -21.084 |
| UCSF | 37-45-46.68643 | 122-27-29.34853 | 154.606 |
| WINT | 37-39-09.51974 | 122-08-26.05320 | -28.790 |

California State Plane Coordinates Zone 3: NAD83(2011) 2010.00 Epoch and NAVD88 Heights per CCSF $20132^{\text {nd }}$ Order Leveling Survey

| POINT\# | STATE PLANE COORD. |  | NAVD88 | STATE PLANE NORTH(ft) | E | NAVD88 HEIGHT(ft) | Convergence Angle | ---- Factors ---- |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | NORTH (m) | EAST (m) | HEIGHT (m) |  | EAST(ft) |  |  | Scale $\quad x$ | Ellipsoid = | Combined |
| 101 | 642177.520 | 1829147.188 | 150.799 | 2106877.414 | 6001127.064 | 494.746 | -1-11-14.3 | 0.99992921 | 0.99998145 | 0.99991066 |
| 102 | 639169.103 | 1828751.516 | 170.991 | 2097007.299 | 5999828.933 | 560.993 | -1-11-22.7 | 0.99992920 | 0.99997829 | 0.99990750 |
| 103 | 643985.863 | 1822793.428 | 46.352 | 2112810.286 | 5980281.439 | 152.073 | -1-13-54.2 | 0.99992931 | 0.99999787 | 0.99992718 |
| 104 | 640740.769 | 1823039.791 | 7.550 | 2102163.674 | 5981089.714 | 24.770 | -1-13-46.3 | 0.99992918 | 1.00000397 | 0.99993315 |
| 105 | 636752.037 | 1823562.786 | 56.489 | 2089077.308 | 5982805.572 | 185.331 | -1-13-31.1 | 0.99992937 | 0.99999630 | 0.99992567 |
| 106 | 635753.146 | 1827836.561 | 110.302 | 2085800.113 | 5996827.116 | 361.882 | -1-11-43.8 | 0.99992947 | 0.99998783 | 0.99991730 |
| 107 | 635548.974 | 1833043.520 | 3.698 | 2085130.260 | 6013910.280 | 12.133 | -1-09-33.5 | 0.99992948 | 1.00000454 | 0.99993403 |
| 108 | 639298.261 | 1834608.138 | 4.484 | 2097431.045 | 6019043.533 | 14.711 | -1-08-56.3 | 0.99992920 | 1.00000441 | 0.99993361 |
| 109 | 643340.513 | 1833745.648 | 3.461 | 2110693.000 | 6016213.847 | 11.355 | -1-09-19.9 | 0.99992928 | 1.00000457 | 0.99993384 |
| 110 | 646994.405 | 1831490.574 | 3.279 | 2122680.811 | 6008815.324 | 10.758 | -1-10-18.2 | 0.99992969 | 1.00000459 | 0.99993428 |
| 111 | 646759.384 | 1826761.484 | 4.000 | 2121909.745 | 5993299.969 | 13.123 | -1-12-16.4 | 0.99992964 | 1.00000449 | 0.99993412 |
| 112 | 644762.606 | 1826012.184 | 54.344 | 2115358.651 | 5990841.639 | 178.294 | -1-12-34.1 | 0.99992938 | 0.99999660 | 0.99992598 |
| 113 | 642867.936 | 1826623.601 | 74.816 | 2109142.554 | 5992847.597 | 245.459 | -1-12-17.8 | 0.99992924 | 0.99999338 | 0.99992262 |
| 114 | 640792.840 | 1825059.534 | 99.656 | 2102334.511 | 5987716.154 | 326.955 | -1-12-55.8 | 0.99992918 | 0.99998950 | 0.99991868 |
| 115 | 638715.658 | 1825657.369 | 61.448 | 2095519.621 | 5989677.550 | 201.601 | -1-12-39.8 | 0.99992923 | 0.99999550 | 0.99992472 |
| 116 | 637869.351 | 1827649.621 | 89.985 | 2092743.029 | 5996213.798 | 295.226 | -1-11-49.5 | 0.99992927 | 0.99999101 | 0.99992028 |
| 117 | 636891.154 | 1831400.952 | 117.172 | 2089533.729 | 6008521.289 | 384.422 | -1-10-15.3 | 0.99992935 | 0.99998674 | 0.99991608 |
| 118 | 639679.300 | 1831686.204 | 78.553 | 2098681.170 | 6009457.154 | 257.719 | -1-10-09.5 | 0.99992919 | 0.99999279 | 0.99992198 |
| 119 | 643735.185 | 1831140.342 | 18.941 | 2111987.853 | 6007666.271 | 62.142 | -1-10-25.3 | 0.99992930 | 1.00000214 | 0.99993144 |
| 120 | 645028.567 | 1829350.275 | 85.887 | 2116231.223 | 6001793.361 | 281.781 | -1-11-10.7 | 0.99992942 | 0.99999164 | 0.99992106 |
| 201 | 646718.080 | 1826812.971 | 3.659 | 2121774.233 | 5993468.889 | 12.005 | -1-12-15.1 | 0.99992963 | 1.00000454 | 0.99993417 |
| 202 | 638764.662 | 1823995.481 | 23.761 | 2095680.395 | 5984225.175 | 77.956 | -1-13-21.4 | 0.99992923 | 1.00000142 | 0.99993065 |
| 203 | 640285.230 | 1832659.665 |  | 2100669.127 | 6012650.919 |  | -1-09-45.5 | 0.99992918 | 1.00000434 | 0.99993352 |
| CCSF | 640292.109 | 1832535.278 |  | 2100691.693 | 6012242.824 |  | -1-09-48.6 | 0.99992918 | 1.00000250 | 0.99993168 |
| MHDL | 650842.310 | 1824485.178 |  | 2135305.146 | 5985831.789 |  | -1-13-15.5 | 0.99993044 | 0.99998958 | 0.99992002 |
| UCSF | 641969.844 | 1827484.810 | 187.77 | 2106196.063 | 5995673.081 | 616.04 | -1-11-55.8 | 0.99992920 | 0.99997566 | 0.99990486 |
|  |  |  |  |  |  | Average | -1-11-33.7 | 0.99992936 | 0.99999560 | 0.99992496 |

CCSF Plane Coordinates: NAD83(2011) 2010.00 Epoch and NAVD88 Heights per CCSF $20132^{\text {nd }}$ Order Leveling Survey


Projection Specifications:
Projection: Transverse Mercator, Ellipsoid: GRS-80, Scale: 1.000007, Latitude of Origin: $37^{\circ} 45^{\prime \prime} 00^{\prime \prime}$,
Central Meridian: $-\mathbf{1 2 2}^{\circ} 27^{\prime} 00^{\prime \prime}$, False Northing: 24000.0 meters, False Easting: 48000.0 meters.

## City \& County of San Francisco Regional Network \& High Precision Network

 (north up)

City \& County of San Francisco High Precision Network (north up)


## NGS STATION DESCRIPTIONS - CORS NGS Reference Data for P176, P224, TIBB \& WINT

CORS Coordinates, HTDP Solutions for NAD83(2011) 2010.00 to 2013.54, and NGS Data Sheets (retrieved at the time of this survey)and short-term time series graphs

## P176

## MILLSCREEKCN2007 (P176), CALIFORNIA

 PID = DN7542```
IGS08 VELOCITY
Predicted with HTDP_3.1.2 Apr 2012.
    VX = -0.0237 m/yr northward = 0.0213 m/yr
    VY = 0.0303 m/yr eastward = -0.0362 m/yr
    VZ = 0.0169 m/yr upward = 0.0000 m/yr
NAD_83 (2011) VELOCITY
Transformed from IGS08 velocity in Apr 2012.
    VX = -0.0074 m/yr northward = 0.0344 m/yr
    VY = 0.0307 m/yr eastward = -0.0227 m/yr
    VZ = 0.0265 m/yr upward = -0.0013 m/yr
```


Monument: MILLSCREEKCN2007 GRP

```
IGS08 POSITION (EPOCH 2005.0)
Computed in Apr 2012 using 29 days of data.
    X = -2712719.288 m latitude = 37 28 18.37726 N
    Y = -4281638.058 m longitude = 122 21 25.69787 W
    Z = 3859341.975 m ellipsoid height = 433.810 m
NAD_83 (2011) POSITION (EPOCH 2010.0)
Transformed from IGS08 (epoch 2005.0) position in Apr 2012.
    X = -2712718.623 m latitude = 37 28 18.36834 N
    Y = -4281639.174 m longitude = 122 21 25.65069 W
    Z = 3859342.078 m ellipsoid height = 434.339 m
```

* The position \& velocity were revised in Apr 2012.

```
HTDP (version 3.2.3) OUTPUT
HTDP UPDATED POSITIONS IN NAD_83(2011/CORS96/2007)
FROM 1-01-2010 TO 7-17-2013 (month-day-year)
FROM 2010.000 TO 2013.541 (decimal years)
                    OLD COORDINATE NEW COORDINATE VELOCITY DISPLACEMENT
P176
LATITUDE 37 28 18.36834 N 37 28 18.37230 N 34.53 mm/yr 0.122 m north
LONGITUDE 122 21 25.65069 W 122 21 25.65398 W -22.87 mm/yr -0.081 m east
```



```
X -2712718.623 -2712718.650
M rrrer
-7.50 mm/yr -0.027 m
    30.89 mm/yr 0.109 m
Z 3859342.078 3859342.172 26.58 mm/yr 0.094 m
```


DN7544 NGS Data Sheet

DN7544 CORS
DN7544 DESIGNATION -
DN7544
DN7544 PID -
DN7544 STATE/COUNTY-
DN7544 COUNTRY - US

This is a GPS Continuously Operating Reference Station. MILLSCREEKCN2007 GRP P176 DN7544 CA/SAN MATEO

DN7544
DN7544. The horizontal coordinates were established by GPS observations DN7544.and adjusted by the National Geodetic Survey in April 2012.
DN7544
DN7544.NAD 83(2011) refers to NAD 83 coordinates where the reference DN7544.frame has been affixed to the stable North American Tectonic Plate. DN7544
DN7544. The horizontal coordinates are valid at the epoch date displayed above DN7544.which is a decimal equivalence of Year/Month/Day. DN7544
DN7544.The XYZ, and position/ellipsoidal ht. are equivalent.
DN7544
DN7544. The Laplace correction was computed from DEFLEC12A derived deflections.
DN7544
DN7544. The ellipsoidal height was determined by GPS observations
DN7544. and is referenced to NAD 83.
DN7544
DN7544. The following values were computed from the NAD 83(2011) position. DN7544
DN7544; North East Units Scale Factor Converg.

DN7544;SPC CA 3	-	$609,477.407$	$1,835,741.550$	MT	0.99994099	-1	08	13.2
DN7544;SPC CA 3	-	$1,999,593.79$	$6,022,762.07$	SFT	0.99994099	-1	08	13.2

DN7544;UTM 10 - 4,147,403.346 556,845.451 MT 0.99963980 +0 2328.0

```
DN7544
DN7544! - Elev Factor x Scale Factor = Combined Factor
DN7544!SPC CA 3 - 0.99993185 x 0.99994099 = 0.99987284
DN7544!UTM 10 - 0.99993185 x 0.99963980 = 0.99957167
DN7544
DN7544
DN7544
DN7544 NAD 83(CORS)- 37 28 18.35942(N) 122 21 25.64286(W) AD(2002.00) A
DN7544 ELLIP H (04/??/12) 434.346 (m) GP(2002.00) 4 1
DN7544
DN7544.Superseded values are not recommended for survey control.
DN7544
DN7544.NGS no longer adjusts projects to the NAD 27 or NGVD 29 datums.
DN7544.See file dsdata.txt to determine how the superseded data were derived.
DN7544
DN7544_U.S. NATIONAL GRID SPATIAL ADDRESS: 10SEG5684547403(NAD 83)
DN7544
DN7544_STAMPING: UNKNOWN
DN7544 STATION DESCRIPTION
DN7544'THIS MONUMENT IS ASSOCIATED WITH CORS SITE 'P176'
DN7544'LATEST INFORMATION INCLUDING POSITIONS AND VELOCITIES
DN7544'ARE AVAILABLE IN THE COORDINATE AND LOG FILES ACCESSIBLE
DN7544'BY ANONYMOUS FTP OR THE WORLDWIDE WEB.
DN7544' ftp://cors.ngs.noaa.gov/cors/README.txt
DN7544' ftp://cors.ngs.noaa.gov/cors/coord/coord_08
DN7544' ftp://cors.ngs.noaa.gov/cors/station_log
DN7544' http://geodesy.noaa.gov/CORS
```


P224

The position \& velocity were revised in Aug 2011.

```
HTDP (version 3.2.3) OUTPUT
UPDATED POSITIONS IN NAD_83(2011/CORS96/2007)
    FROM 1-01-2010 T0 7-17-2013 (month-day-year)
```

FROM 2010.000 TO 2013.541 (decimal years)

	OLD COORDINATE			NEW COORDINATE			VELOCITY		DISPLACEMENT	
P224										
LATITUDE	37	51	50.01427 N	37	51	50.01666 N	20.82	mm/yr	0.074	m north
LONGITUDE	122	13	8.56363 W	122	13	8.56557 W	-13.38	$\mathrm{mm} / \mathrm{yr}$	-0.047	m east
ELLIP. HT.			407.873			407.868	-1.36	$\mathrm{mm} / \mathrm{yr}$	-0.005	m up
X			2688200.572			2688200.586	-3.94	$\mathrm{mm} / \mathrm{yr}$	-0.014	m
Y			4265644.864			4265644.797	18.85	$\mathrm{mm} / \mathrm{yr}$	0.067	m
Z			3893778.613			3893778.669	15.60	$\mathrm{mm} / \mathrm{yr}$	0.055	

Used HTDP and the CORS velocities to compute the 2013.54 Epoch below

	OLD COORDINATE			NEW COORDINATE			VELOCITY		DISPLACEMENT	
P224										
LATITUDE	37	51	50.01427 N	37	51	50.01654 N	19.80	$\mathrm{mm} / \mathrm{yr}$	0.070	m north
LONGITUDE	122	13	8.56363 W	122	13	8.56563 W	-13.80	$\mathrm{mm} / \mathrm{yr}$	-0.049	m east
ELLIP. HT.			407.873			407.869	-1.20	$\mathrm{mm} / \mathrm{yr}$	-0.004	m up
X			2688200.572			2688200.589	-4.69	$\mathrm{mm} / \mathrm{yr}$	-0.017	m
Y			4265644.864			4265644.799	18.44	$\mathrm{mm} / \mathrm{yr}$	0.065	m
Z			3893778.613			3893778.666	14.89	$\mathrm{mm} / \mathrm{yr}$	0.053	m

DH3881	NGS Data Sheet ${ }^{\text {* }}$
DH3881	CORS - This is a GPS Continuously Operating Reference Station.
DH3881	DESIGNATION - SIBLEYVOLCCN2005 GRP
DH3881	CORS_ID - P224
DH3881	PID - DH3881
DH3881	STATE/COUNTY- CA/CONTRA COSTA
DH3881	COUNTRY - US
DH3881	USGS QUAD - OAKLAND EAST (1997)
DH3881	*CURRENT SURVEY CONTROL
DH3881	
DH3881*	NAD 83(2011) POSITION- $375150.01427(\mathrm{~N}) 12213$ 08.56363(W) ADJUSTED
DH3881*	NAD 83(2011) ELLIP HT- 407.873 (meters) (08/??/11) ADJUSTED
DH3881*	NAD 83(2011) EPOCH - 2010.00
DH3881*	NAVD 88 ORTHO HEIGHT - **(meters) **(feet)
DH3881	
DH3881	NAD 83(2011) X - -2,688,200.572 (meters) COMP
DH3881	NAD 83(2011) Y - -4,265,644.864 (meters) COMP
DH3881	NAD 83(2011) Z - 3,893,778.614 (meters) COMP
	Laplace CORR - 2.51 (seconds) DEFLEC12A
DH3881	GEOID HEIGHT - -32.17 (meters) GE0ID12A
DH3881	HORZ ORDER - SPECIAL (CORS)
DH3881	ELLP ORDER - SPECIAL (CORS)
DH3881	
DH3881	FGDC Geospatial Positioning Accuracy Standards (95\% confidence, cm)
DH3881	Type Horiz Ellip Dist(km)
DH3881	
DH3881	NETWORK $2.02 \quad 6.62$
DH3881	
DH3881	NOTE: Click here for information on individual local accuracy
DH3881	values and other accuracy information.
DH3881	
DH3881	ACCURACIES - Complete network and local accuracy information.
DH3881	CORS - This is a GPS Continuously Operating Reference Station.
DH3881	DESIGNATION - SIBLEYVOLCCN2005 GRP
DH3881	PID - DH3881
DH3881	
DH3881	Statistical Information, in cm, for point DH3881 follows.
DH3881	
DH3881	Note that Horz and Ellip values are the official 95\%
DH3881	FGDC accuracy standards. The values of StdN, StdE and Stdh are the
DH3881	standard deviations (one sigma) of the coordinates (NETWORK) or
DH3881	of the difference in the coordinates (LOCAL) in Latitude, Longitude

DH3881
DH3881
DH3881 DH3881 DH3881 DH3881 DH3881 DH3881
and Ellipsoid Height. The value CorrNE is the correlation coefficient between the latitude and longitude components of either the coordinate (NETWORK) or coordinate difference (LOCAL).
Type/PID Horz Ellip Dist(km) StdN StdE Stdh CorrNE

NETWORK	2.02	6.62	0.00	0.91	0.71	3.38	+0.04283161

DH3881
DH3881. The horizontal coordinates were established by GPS observations DH3881.and adjusted by the National Geodetic Survey in August 2011.
DH3881
DH3881.NAD 83(2011) refers to NAD 83 coordinates where the reference DH3881.frame has been affixed to the stable North American Tectonic Plate. DH3881
DH3881. The horizontal coordinates are valid at the epoch date displayed above DH3881.which is a decimal equivalence of Year/Month/Day.
DH3881
DH3881. The XYZ, and position/ellipsoidal ht. are equivalent.
DH3881
DH3881. The Laplace correction was computed from DEFLEC12A derived deflections.
DH3881
DH3881. The ellipsoidal height was determined by GPS observations
DH3881. and is referenced to NAD 83.
DH3881
DH3881. The following values were computed from the NAD 83(2011) position.
DH3881

DH3881;	North	East	Units	Scale Factor		
DH3881;SPC CA 3	652,755.675	1,848,752.302	MT	0.99993111	-1 03	08.8
DH3881;SPC CA 3	2,141,582.58	6,065,448.18	sFT	0.99993111	-1 03	08.8
DH3881; UTM 10	4,191,001.178	568,692.783	MT	0.99965812	+0 28	45.7
DH3881						
DH3881!	Elev Factor	x Scale Facto		Combined Fac		
DH3881!SPC CA 3	0.99993600	0.99993111	=	0.99986712		
DH3881!UTM 10	0.99993600	0.99965812		0.99959414		

DH3881
DH3881
DH3881
DH3881 NAD 83(CORS)- $375150.00906(N) \quad 1221308.55850(W)$ AD(2002.00) A
DH3881 ELLIP H (06/??/05) 407.864 (m) GP(2002.00) 41
DH3881
DH3881. Superseded values are not recommended for survey control.

DH3881
DH3881.NGS no longer adjusts projects to the NAD 27 or NGVD 29 datums.
DH3881. See file dsdata.txt to determine how the superseded data were derived. DH3881
DH3881_U.S. NATIONAL GRID SPATIAL ADDRESS: 10SEG6869291001(NAD 83)
DH3881
DH3881_STAMPING: UNKNOWN
DH3881
DH3881 STATION DESCRIPTION
DH3881
DH3881'THIS MONUMENT IS ASSOCIATED WITH CORS SITE 'P224'
DH3881'LATEST INFORMATION INCLUDING POSITIONS AND VELOCITIES
DH3881'ARE AVAILABLE IN THE COORDINATE AND LOG FILES ACCESSIBLE
DH3881'BY ANONYMOUS FTP OR THE WORLDWIDE WEB.
DH3881' ftp://cors.ngs.noaa.gov/cors/README.txt
DH3881' ftp://cors.ngs.noaa.gov/cors/coord/coord_08
DH3881' ftp://cors.ngs.noaa.gov/cors/station_log
DH3881' http://geodesy.noaa.gov/CORS

TIBB

TIBURON PENINSUL (TIBB), CALIFORNIA

```
IGS08 VELOCITY
Predicted with HTDP_3.2.3 Dec 2012.
    VX = -0.0216 m/yr northward = 0.0148 m/yr
    VY = 0.0245 m/yr eastward = -0.0314 m/yr
    VZ = 0.0117 m/yr upward = 0.0000 m/yr
NAD_83 (2011) VELOCITY
Transformed from IGS08 velocity in Dec 2012.
    VX = -0.0052 m/yr northward = 0.0280 m/yr
    VY = 0.0249 m/yr eastward = -0.0177 m/yr
    VZ = 0.0213 m/yr upward = -0.0013 m/yr
```

Monument: TIBURON PENINSUL GRP
PID $=$ AI4507
IGS08 POSITION (EPOCH 2005.0)
Computed in Dec 2012 using 13 days of data.
$\mathrm{X}=-2704026.807 \mathrm{~m}$ latitude $=375327.14944 \mathrm{~N}$
$\mathrm{Y}=-4253050.099 \mathrm{~m} \quad$ longitude $=1222651.36586 \mathrm{~W}$
$Z=3895879.226 \mathrm{~m} \quad$ ellipsoid height $=-21.084 \mathrm{~m}$
NAD_83 (2011) POSITION (EPOCH 2010.0)
Transformed from IGS08 (epoch 2005.0) position in Dec 2012.
$X=-2704026.130 \mathrm{~m}$ latitude $=375327.13938 \mathrm{~N}$
$\mathrm{Y}=-4253051.240 \mathrm{~m} \quad$ longitude $=1222651.31741 \mathrm{~W}$
Z = 3895879.300 m ellipsoid height = -20.565 m

HTDP (version 3.2.3) OUTPUT
UPDATED POSITIONS IN NAD_83(2011/CORS96/2007)
FROM 1-01-2010 TO 7-17-2013 (month-day-year)
FROM 2010.000 TO 2013.541 (decimal years)
OLD COORDINATE NEW COORDINATE
TIBB

LATITUDE	37	53 27.13938 N	37	53	27.14260 N	28.06	mm/yr	0.099	m north
LONGITUDE	122	26 51.31741 W	122	26	51.31998 W	-17.72	$\mathrm{mm} / \mathrm{yr}$	-0.063	m east
ELLIP. HT.		-20.565			-20.570	-1.36	mm/yr	-0.005	m up
X		-2704026.130			2704026.148	-5.13	$\mathrm{mm} / \mathrm{yr}$	-0.018	m
Y		-4253051. 240			4253051.152	24.96	$\mathrm{mm} / \mathrm{yr}$	0.088	m
Z		3895879.300			3895879.376	21.31	$\mathrm{mm} / \mathrm{yr}$	0.075	

AI4507
AI4507. The horizontal coordinates were established by GPS observations
AI4507. and adjusted by the National Geodetic Survey in December 2012.
AI4507
AI4507.NAD 83(2011) refers to NAD 83 coordinates where the reference
AI4507.frame has been affixed to the stable North American Tectonic Plate.
AI4507
AI4507. The horizontal coordinates are valid at the epoch date displayed above AI4507.which is a decimal equivalence of Year/Month/Day.
AI4507
AI4507. The orthometric height was determined by GPS observations and a
AI4507.high-resolution geoid model.

AI4507
AI4507. The XYZ, and position/ellipsoidal ht. are equivalent.
AI4507
AI4507. The Laplace correction was computed from DEFLEC12A derived deflections.
AI4507
AI4507. The ellipsoidal height was determined by GPS observations
AI4507. and is referenced to NAD 83.
AI4507
AI4507. The following values were computed from the NAD $83(2011)$ position.
AI4507

AI4507
AI4507
AI4507
AI4507 NAVD 88 (04/06/00) 11.7 (m) GEOID99 model used GPS OBS
AI4507
AI4507. Superseded values are not recommended for survey control.
AI4507
AI4507.NGS no longer adjusts projects to the NAD 27 or NGVD 29 datums.
AI4507. See file dsdata.txt to determine how the superseded data were derived.
AI4507
AI4507_U.S. NATIONAL GRID SPATIAL ADDRESS: 10SEG4857293850(NAD 83)
AI4507
AI4507_MARKER: Z = SEE DESCRIPTION
AI4507_SETTING: 0 = UNSPECIFIED SETTING
AI4507_STAMPING: UNKNOWN
AI4507_MARK LOGO: NONE
AI4507_MAGNETIC: N = NO MAGNETIC MATERIAL
AI4507_STABILITY: A = MOST RELIABLE AND EXPECTED TO HOLD
AI4507+STABILITY: POSITION/ELEVATION WELL
AI4507_SATELLITE: THE SITE LOCATION WAS REPORTED AS SUITABLE FOR
AI4507+SATELLITE: SATELLITE OBSERVATIONS - 1998
AI4507
AI4507 HISTORY - Date Condition Report By
AI4507 HISTORY - 1998 MONUMENTED NGS
AI4507
AI4507
STATION DESCRIPTION
AI4507'DESCRIBED BY NATIONAL GEODETIC SURVEY 1998
AI4507'THIS MONUMENT IS ASSOCIATED WITH CORS SITE 'TIBB'
AI4507'LATEST INFORMATION INCLUDING POSITIONS AND VELOCITIES
AI4507'ARE AVAILABLE IN THE COORDINATE AND LOG FILES ACCESSIBLE
AI4507'BY ANONYMOUS FTP OR THE WORLDWIDE WEB.
AI4507' ftp://cors.ngs.noaa.gov/cors/README.txt
AI4507' ftp://cors.ngs.noaa.gov/cors/coord/coord_08
AI4507' ftp://cors.ngs.noaa.gov/cors/station_log
AI4507' http://geodesy.noaa.gov/CORS

WINT

HTDP (version 3.2.3) OUTPUT
UPDATED POSITIONS IN NAD_83(2011/CORS96/2007)
FROM 1-01-2010 TO 7-17-2013 (month-day-year)
FROM 2010.000 TO 2013.541 (decimal years)
OLD COORDINATE NEW COORDINATE VELOCITY DISPLACEMENT
WINT

LATITUDE	37	39	9.50579 N	37	39	9.50872 N	$25.54 \mathrm{~mm} / \mathrm{yr}$	0.090 m north
LONGITUDE	122	08	25.99416 W	122	08	25.99666 W	$-17.33 \mathrm{~mm} / \mathrm{yr}$	-0.061 m east
ELLIP. HT.	-28.259		-28.264	$-1.35 \mathrm{~mm} / \mathrm{yr}$	-0.005 m up			
X	-2689809.352		-2689809.373	$-5.80 \mathrm{~mm} / \mathrm{yr}$	-0.021 m			
Y		-4281189.080		-4281188.997	$23.34 \mathrm{~mm} / \mathrm{yr}$	0.083 m		
Z		3874973.548		3874973.617	$19.40 \mathrm{~mm} / \mathrm{yr}$	0.069 m		

AI4510.Formal positional accuracy estimates are not available for this CORS AI4510.because its coordinates were determined in part using modeled AI4510.velocities. Approximate one-sigma accuracies for latitude, longitude, AI4510. and ellipsoid height can be obtained from the short-term time series. AI4510.Additional information regarding modeled velocities is available on AI4510.the CORS Coordinates and Multi-Year CORS Solution FAQ web pages.

[^0]```
AI4510
AI4510.NGS no longer adjusts projects to the NAD 27 or NGVD 29 datums.
AI4510.See file dsdata.txt to determine how the superseded data were derived.
AI4510
AI4510_U.S. NATIONAL GRID SPATIAL ADDRESS: 10SEG7581267623(NAD 83)
AI4510_MARKER: Z = SEE DESCRIPTION
AI4510_SETTING: 0 = UNSPECIFIED SETTING
AI4510_STAMPING: UNKNOWN
AI4510_MARK LOGO: NONE
AI4510_MAGNETIC: N = NO MAGNETIC MATERIAL
AI4510_STABILITY: A = MOST RELIABLE AND EXPECTED TO HOLD
AI4510+STABILITY: POSITION/ELEVATION WELL
AI4510_SATELLITE: THE SITE LOCATION WAS REPORTED AS SUITABLE FOR
AI4510+SATELLITE: SATELLITE OBSERVATIONS - }199
AI4510
AI4510 HISTORY - Date Condition Report By
AI4510 HISTORY - 1998 MONUMENTED NGS
AI4510 STATION DESCRIPTION
AI4510'DESCRIBED BY NATIONAL GEODETIC SURVEY }199
AI4510'THIS MONUMENT IS ASSOCIATED WITH CORS SITE 'WINT'
AI4510'LATEST INFORMATION INCLUDING POSITIONS AND VELOCITIES
AI4510'ARE AVAILABLE IN THE COORDINATE AND LOG FILES ACCESSIBLE
AI4510'BY ANONYMOUS FTP OR THE WORLDWIDE WEB.
AI4510' ftp://cors.ngs.noaa.gov/cors/README.txt
AI4510' ftp://cors.ngs.noaa.gov/cors/coord/coord_08
AI4510' ftp://cors.ngs.noaa.gov/cors/station_log
AI4510' http://geodesy.noaa.gov/CORS
```


[^0]:    AI4510.The horizontal coordinates were established by GPS observations AI4510.and adjusted by the National Geodetic Survey in December 2012. AI4510
    AI4510.NAD 83(2011) refers to NAD 83 coordinates where the reference
    AI4510.frame has been affixed to the stable North American Tectonic Plate.
    AI4510
    AI4510. The horizontal coordinates are valid at the epoch date displayed above
    AI4510.which is a decimal equivalence of Year/Month/Day.
    AI4510
    AI4510. The orthometric height was determined by GPS observations and a
    AI4510.high-resolution geoid model using precise GPS observation and
    AI4510.processing techniques.
    AI4510
    AI4510.The XYZ , and position/ellipsoidal ht. are equivalent.
    AI4510
    AI4510. The Laplace correction was computed from DEFLEC12A derived deflections.
    AI4510
    AI4510.The ellipsoidal height was determined by GPS observations
    AI4510. and is referenced to NAD 83.
    AI4510
    AI4510. The following values were computed from the NAD 83(2011) position.
    AI4510
    AI4510; North East Units Scale Factor Converg.
    AI4510;SPC CA 6 - 1,123,770.181 1,478,989.373 MT 1.00283790 -3 1413.1
    AI4510;SPC CA 6 - 3,686,902.67 4,852,317.63 SFT 1.00283790 -3 1413.1
    AI4510;UTM 10 - 4,167,623.257 575,812.323 MT 0.99967079 +0 $31 \mathbf{3 0 . 1}$
    AI4510
    AI4510! $\quad$ - Elev Factor $x$ Scale Factor $=$ Combined Factor
    AI4510!SPC CA 6 - 1.00000443 x $1.00283790=1.00284235$
    AI4510!UTM 10 - 1.00000443 x $0.99967079=0.99967522$
    AI4510
    AI4510 SUPERSEDED SURVEY CONTROL
    AI4510 NAVD 88 (04/03/01) 4.2 ( m ) UNKNOWN model used GPS OBS
    AI4510 NAVD 88 (04/06/00) 4.3 (m) GEOID99 model used GPS OBS
    AI4510
    AI4510. Superseded values are not recommended for survey control.

