Hazard Monitors | me other opaque material | |---| | c concentration of the | | material being sampled. | | sampling highly solutions are diluted. | | s may affect readings. | | librant gas. | | tors may be required. | | en is required. | | lyst poisons. | | may create false | | ated hydrocarbons. | | zards with oxygen- | | turers and of different | | TTER than the calibrant g than is actually present. | | PRSE than the calibrant than is actually present. | | l create a meter response, | | easure ppm
of sensor employed and | | th
l c | | Hazard | Monitor | How monitor works | Limitations | |--------------------------|---|---|---| | Flammability (continued) | All CGIs | | All CGI's depend upon a battery supply. Corrosive gases can deteriorate filaments. Hot vapors and gases may condense onto the inner surface of the cooler hose. Recommended operating temperatures are typically between 32° and 104°F (0° to 40°C). Magnetic fields, high voltage wires, static electricity, radios, and cellular telephones can interfere with readouts. Liquids and particulates may disable the sensors. | | Oxygen
deficiency | Oxygen monitor | Monitor operates by diffusion. The air sample is drawn in by either a passive sensor or a battery-operated or bulb-operated pump. Oxygen reacts with electrolytes on the sensor, which generates a current flow to the meter. This current is amplified and displayed as percent-by-volume oxygen between 0% and 25%. | Elquids and particulates may disable the sensors. There is no indication of what type of gas may be displacing the oxygen. There is no indication of the toxicity of the gas displacing the oxygen. High concentrations of acid gases can quickly neutralize the electrolyte, causing rapid sensor failure. Strong oxidants will indicate a high or normal level of oxygen (false positive). Sensing units deteriorate over time and must be changed. Changes in humidity, temperature, and atmospheric pressure affect the monitor. Extreme cold may result in sluggish, delayed movement of the meter. | | Radioactivity | Gas-filled detector Geiger-Mueller counter | Contains a gas such as air, nitrogen, helium, or argon. Radiation interacts with the gas and produces ions. A positively charged electrode or anode collects negatively charged ions, while the negatively charged cathode collects positive ions. Monitor responds to X rays, gamma rays, and beta radiation. | Monitor requires a recovery time of 10⁻⁴ or 10⁻³ seconds after each pulse or ionization event. Over time, the counter may become saturated and no counts will be recorded. The meter will then display a zero-reading no matter what amount of radiation is present. Monitor is designed for nuclear attack emergencies, which pose radiological hazards much different from those of transportation or fixed site accidents. Alpha or low-energy beta radiation cannot be detected. | | Hazard | Monitor | How monitor works | Limitations | |---------------------------|---------------------------|---|--| | Radioactivity (continued) | Ionization chamber | Measures the ionization current flow in air between two electrodes. Monitor responds to beta rays, X rays, and gamma radiation. Those detectors with a thin covering over the chamber may also detect alpha radiation. | | | | Proportional counter | A gas-filled chamber has a central wire that acts as a high-voltage anode. The inner conducting surface of the chamber acts as the cathode. The amplitude of the pulse peak equals the amount of energy absorbed by the gas. Monitor can be used to measure alpha and neutron radiation, as well as to identify specific radionuclides. | Monitor requires that the voltage is carefully maintained. | | | Light-emitting dete | ctor | | | | Scintillation
detector | Detector contains solid, liquid, or gas phosphors such as zinc sulfide, sodium iodide, or cesium iodide crystals. The light created when radiation strikes the phosphors is proportional to the radiation energy absorbed. | | | | Luminescent detector | Detector uses solids such as metaphosphate glass, calcium fluoride, and lithium fluoride that store radiation energy. When processed, these solids emit a quantity of light proportional to the original amount of radiation energy. | | | | Radiation dosimete | r | | | | Film badge | Badge consists of a small piece of photographic film wrapped in a light-tight cover and supported with a metal backing. Radiation interacts with silver ions on the film. The more radiation the badge is exposed to, the darker the film becomes. | | | | Pocket dosimeter | Dosimeter measures X rays and gamma radiation. The unit consists of a quartz fiber, a scale, a lens to observe fiber movement across the scale, and an ionization chamber. | Frequent charging is required. Some dosimeters display a reading as soon as the unit is removed from the charger. The unit leaks small amounts of stored charge, causing the quartz fiber to drift and show a radiation reading. | | Hazard | Monitor | How monitor works | Limitations | |---------------------------|-----------------------------------|--|--| | Radioactivity (continued) | Personal alarm | The unit has visible and audible alarms and responds to any radiation over a preset level, usually between 1.0 and 2.5 mR/hr. The unit can respond to alpha, beta, X ray, and gamma radiation. | | | Toxic levels | Photoionization
detector (PID) | Instrument is effective for measuring low concentrations of materials. | Detector's ability to work depends entirely upon the transmission of UV light. Many factors can alter light and thus affect the PID's ability to do its job: water vapor (humidity) non-ionizable gases and vapors lamp condition dust and particulates heated atmospheres corrosive gases high concentrations of gases and vapors A meter reading of 0 ppm does NOT necessarily mean that no contaminant is present—PIDs cannot detect all potential contaminants present. The meter reading is NOT the actual concentration of contaminants present in ppm. PIDs do not respond to methane; however, methane will significantly decrease meter response to other ionizable contaminants. Meter readings may change when gases are mixed. | | | Flame ionization detector (FID) | Monitor uses a hydrogen-fed flame to burn organic materials present in the air. The flame has enough energy to ionize any organic material with an IP of 15.4 or less. To be detected, the organic material must have multiple carbon-hydrogen bonds or multiple carbon-carbon bonds. Some FIDs have an additional mode, called the gas chromatography (GC) mode. In this case: The sample is drawn into a column containing a carrier gas, usually a high-purity inert gas such as nitrogen or helium. Within the column, the individual components of the sample are separated. These separated components are represented as peaks on the recorder. | Monitor requires oxygen in order to burn. Some FIDs do not have flame-out alerts to notify the user that the flame has gone out. Not all FIDs are intrinsically safe. Non-intrinsically safe FIDs are a source of ignition when flammable gases or vapors are present. Large concentrations of flammable gases may also: serve as an additional fuel source for the hydrogen flame, causing an increase in flame size and ion production, followed by an automatic, momentary shutoff of the hydrogen supply; this results in a meter reading of 0 produce oxygen deficiency The recommended minimum operating temperatures range from 40° to 50°F (5° to 10°C). | | Hazard | Monitor | How monitor works | Limitations | |--------------------------|--|--|---| | Toxic levels (continued) | Colorimetric indicator tubes, (detector tubes) | Each tube is a hermetically sealed glass tube containing an inert material, such as silica gel, alumina, resin, pumice, or ground glass. The inert material is mixed with one or more reagents. | Reagents are usually specific to a particular type or class of chemical. Detector tubes, filled with reactive chemicals, are affected by any condition that would affect a chemical reaction, including: temperature humidity atmospheric pressure light time interfering gases or vapors There is a potential for cross-reactivity and false positives. Detector tubes have a margin of error of up to 35%. Response times may vary greatly from chemical to chemical. Responders with impaired color vision should NOT use detector tubes. | | | Electrochemical
sensor chemical
monitor | Monitor measures a variety of specific toxic gases. | If a chemical monitor uses a single toxic sensor, it will not indicate oxygen deficiency/enrichment or flammability. | | | Test strips and papers | Test strips are available for specific hazards. They are usually part of a HazMat identification system. | |