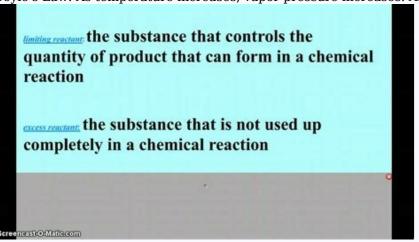
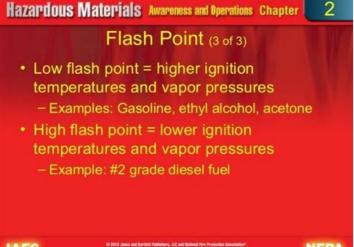

	7
I'm not robot	<u> </u>
	reCAPTCHA


I'm not robot!

What does flash point mean in chemistry

What is flash point in chemistry. Significance of flash point. What does flash point mean.

The flash point is a safety-related characteristic and defines the minimum temperature at which a volatile material's vapors ignite if given a source For other uses, see Flashpoint. Flaming cocktails with a flash point lower than room temperature. The flash point of a material is the "lowest liquid temperature at which, under certain standardized conditions, a liquid gives off vapours in a quantity such as to be capable of forming an ignitable vapour/air mixture". (EN 60079-10-1) The flash point is sometimes confused with the autoignition temperature, the temperature that causes spontaneous ignition. The fire point is the lowest temperature at which he vapors keep burning after the ignition source is removed. It is higher than the flash point nor fire point of the ignition source temperature, but ignition source temperature is far higher than either the flash or fire point, and can increase the temperature of fuel above the usual ambient temperature to facilitate ignition. Fuels The flash point is a discriptive characteristic that is used to characterize the fire hazards of fuels. Fuels which have a flash point above that temperature and is subject to Boyle's Law. As temperature increases, vapor pressure increases, the concentration of vapor of a flammable or combustible liquid in the air increases.



Hence, temperature determines the concentration of vapor of the flammable liquid in the air. A certain concentration of a flammable liquid. The flash point is the lowest temperature at which there will be enough flammable vapor to induce ignition when an ignition source is applied. [citation needed] Measurement. Open cup and closed cup. [3] In open cup devices, the sample is contained in an open cup which is heated and, at intervals, a flame brought over the surface. The measured flash point will actually vary with the height of the flame above the liquid surface and, at sufficient height, the measured flash point temperature will coincide with the fire point. The best-known example is the Cleveland open cup (COC). [4] There are two types of closed cup testers: non-equilibrial, such as Pensky-Martens, where the vapours above the liquid are not in temperature equilibrium with the liquid, and equilibrium with the liquid. In both these types, the cups are sealed with a lid through which the ignition source can be introduced. Closed cup testers normally give lower values for the flash point than open cup (typically 5-10 °C or 9-18 °F lower) and are a better approximation to the Penskey-Martens flash point testers, other non-equilibrial testers include TAG and Abel, both of which are capable of cooling the sample below ambient for low flash point materials.

The TAG flash point tester adheres to ASTM D56 and has no stirrer, while the Abel flash point testers adheres to IP 170 and ISO 13736 and has a stirring motor so the sample is stirred during testing. The flash point is an empirical measurement rather than a fundamental physical parameter. The measured value will vary with equipment and test protocol variations, including temperature ramp rate (in automated testers), time allowed for the sample to equilibrate, sample volume and whether the sample is stirred. Methods for determining the flash point of a liquid are specified in many standards.

For example, testing by the Pensky-Martens closed cup method is detailed in ASTM D93, IP34, ISO 2719, DIN 51758, JIS K2265 and AFNOR M07-019. Determination of flash point by the Small Scale closed cup method is detailed in ASTM D3828 and D3278, EN ISO 3679 and 3680, and IP 523 and 524. CEN/TR 15138 Guide to Flash Point Testing and ISO TR 29662 Guidance for Flash Point Testing cover the key aspects of flash point testing. Examples Fuel Flash point Autoignition temperature Ethanol (70%) 16.6 °C (61.9 °F)[5] 363 °C (685 °F)[5] Coleman fuel (White Gas) –4 °C (25 °F)[6] 215 °C (410 °F)[6] Gasoline (petrol) –43 °C (-45 °F)[7] 280 °C (536 °F)[8] Diesel (2-D) >52 °C (126 °F)[7] 210 °C (410 °F)[8] Jet fuel (A/A-1) >38 °C (100 °F)[9] 210 °C (410 °F)[9] Vegetable oil (canola) 327 °C (621 °F) Gasoline (petrol) is a fuel used in a spark-ignition engine. The fuel is mixed with air within its flammable limits and heated by compression and subject to Boyle's Law above its flash point, then ignited by the spark plug.

To ignite, the fuel must have a low flash point, but in order to avoid preignition caused by residual heat in a hot combustion temperature. Diesel fuel flash points vary between 52 and 96 °C (126 and 205 °F). Diesel is suitable for use in a compression-ignition engine. Air is compressed until it heats above the autoignition temperature of the fuel, which is then injected as a high-pressure spray, keeping the fuel-air mix within flammable limits. A diesel-fueled engine has no ignition source (such as the spark plugs in a gasoline engine), so diesel fuel can have a high flash point, but must have a low autoignition temperature. Jet fuel flash points also vary with the composition of the fuel. Both Jet A and Jet A-1 have flash points between 38 and 66 °C (100 and 151 °F), close to that of off-the-shelf kerosene. Yet both Jet B and JP-4 have flash points between -23 and -1 °C (-9 and 30 °F). Standardization Automatic Pensky-Martens closed cup tester with an integrated fire extinguisher Flash points of substances are measured according to standard test methods described and defined in a 1938 publication by T.L. Ainsley of South Shields entitled "Sea Transport of Petroleum" (Capt. P. Jansen). The test methodology defines the apparatus required to carry out the measurement, key test parameters, the procedure for the operator or automated apparatus to follow, and the precision of the test method. Standard test methods are written and controlled by a number of national and international committees and organizations of Petroleum, Jansen and Hayes, Ainsley, South Shields 1938 ^ The number of Flammability Panel. See also Autoignition temperature. Jet fuel flash points also vary with the composition of flash points, but must have a low autoignition temperature. Jet fuel flash points also vary with the composition of flash points and Jet A-1 have f

Flash Points

- Flash point is the lowest temperature at which a liquid can form an ignitable mixture in air near the surface of the liquid. The lower the flash point, the easier it is to ignite the material.
- According to NFPA 30, Class I flammable liquids possess a flash point of less than 100°F (38°C) while combustible liquids possess a flash point of 100°F (38°C) or more.
- SDSs contain vapor densities for the chemical substances.
 Knowing the vapor density can tell you how a vapor will act.
- A vapor density less than 1.0 will tend to rise and spread

out. This reduces the hazard.

 A vapor density of 1.0 or more will tend to sink to the lowest point on the ground. These vapors can then travel along the ground sometimes for long distances and find ignition sources. This makes chemicals with high vapor densities particularly dangerous.