Exploiting Win32kbase Windows System Driver using Return
Oriented Programming (ROP) for Kernel-Usermode Communication to
Evade Detection from Easy Anti Cheat

Ethan Provost

To preface this report, we will be using KDMapper, a manual
mapping tool that will allow us to load our unsigned kernel driver via
the vulnerable iqvw64e.sys intel driver. We will call this our
unsigned driver, which will be used to handle reading and writing
memory requests from the usermode (cheat) application. Figure 1
depicts the structure of the PoC.

Figure 1

Kernelmode
System Driver

win32kbase.sys [w Unsigned Driver.sys

(Previously mapped into memory
via kdmapper.exe
exploiting igvwGde.sys)

Usermode

System File

Cheat.exe win32u.dll Target Game.exe

Overview

As seen above, our cheat program will call a vulnerable function,
in this case NtCompositionInputThread, in win32u.dll, and pass a
custom structure (that contains our read/write commands) as a
parameter. This parameter will then be passed to the function in
kernel space via win32kbase.sys. This will now allow our commands to
be in kernel space. The kernel driver will then interpret those
instructions by hooking NtCompositionInputThread and processing the
commands, it will return the modified communication struct to the
usermode application that can use that data to render an ESP, move the
camera for an aimbot, and more.

Figure 2:

. text:00000001C01F1F20

. text:00000001C01F1F20 public NtComp tionInputThread

. text:00000001CO01F1F20 NtCompositionInputThread proc ar 5 DATA XREF: ta:00000001C02411F80
. text:00000001CO1F1F20 ; .pdata:00000001C0:
.text:00000001CO1F1F20

. text:00000001CO1F1F20 r = qword ptr

. text:00000001CO1F1F20 r = qword ptr

. text:00000001C01F1F20

. text:00000001C01F1F20 48 89 5C 24 08 mov [rsp+arg_0], rbx

. text:00000001CO1F1F20

.text:00000001CO1F1F25 48 89 74 24 10 mov [rsp+arg 8], rsi

. text:00000001CO1F1F2A 57 push rdi

. text:00000001CO1F1F2B 48 83 EC 20 sub rsp,

. text:00000001CO1F1F2F 48 8B @5 12 BF 05 00 mov rax, cs:qword_1C024DE48

. text:00000001C01F1F36 41 8B D8 mov ebx, r8d

. text:00000001CO01F1F39 48 8B FA mov

. text:00000001CO1F1F3C 48 8B F1 mov

. text:00000001CO1F1F3F 48 85 CO test

. text:00000001CO1F1F42 74 08 jz 1CO1F1FAC

. text:00000001CO1F1F44 FF 15 B6 CO 07 00 call cs:__guard_dispatch_icall_fptr
. text:00000001CO1F1F4A EB 05 jmp short loc_1C@1F1F51

public NtCompositionInputThr
NtCompositionInputThread proc near ; DAT
; -pda

gword ptr
qword ptr

mov [rsp+a

mov [rsp+ar

push rdi

sub

mov rax s :qword_’ ADEAS
mowv 5

mov rdi,

mov i

test rax,

jz short loc 1C@1F1FAC
call cs: puard dispatch_icall fptr
Jjmp short loc_1C@1F1F51

Explanation

The first step in implementing our exploit is to locate the
gadget we are going to use. A gadget is a small set of assembly
instructions, in the form of bytes, that is located somewhere
throughout a binary. The presence of these bytes do not have to make
up the instructions we want to execute, but simply be present. For
example we may need to utilize a gadget, so we need to
search our target binary for this string literal "\x5F\xC3". Once we
have located it, we can exploit an existing ﬂﬂﬂ instruction to jump to
our gadget address. It will then execute the [JJollgerBg:-Yd instruction
even if the actual instructions at that address make up some other
data.

It is important to know where the parameters of a function are
stored in memory. The first parameter is stored in the RCX register
and the second in RDX, as the Microsoft x64 Calling Convention
describes, “Integer arguments are passed in registers RCX, RDX, R8 and
R9."” Any functions that exceed this number of parameters, will push
those parameters into the stack.
(https://learn.microsoft.com/en-us/cpp/build/x64-calling-convention?vi
ew=msvc-170)

With this information, we will need to locate a
gadget, represented by the following string literal: "\x51\xC3". In
this instance of the win32kbase.sys binary, I have located the gadget

bytes in the instruction [JulsBNgEINEIET-ollakRhd at OxT1cBTaa73.

Figure 3:
4C 3B 2D 51 C3 1D @@ cmp

L BF 84 (@ FE FF FF jz
test

Once we have located our gadget in the vulnerable win32kbase.sys,
we can swap the pointer of QWORD_1C024DE48 (located in the mov rax
instruction in Figure 2) to the pointer to the gadget, 6x1c@1aa73,
using the kernel function InterlockedExchangePointer.

(https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/w
dm/nf-wdm-interlockedexchangepointer)

https://learn.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-170
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-interlockedexchangepointer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-interlockedexchangepointer

Once this .data pointer swap is in place, calling the
NtCompositionInputThread function will move the gadget pointer into
rax, and then redirect code flow to our gadget, due to the function
calling MCIVETLMNEESERdel e UNMREAdY Wwhich contains instructions ﬂﬂﬂ
g=2¢. At the gadget pointer, it will execute which will
push whatever is in RCX onto the stack, and then return. Essentially,
we can execute any arbitrary unsigned code by passing the address to
that unsigned code into RCX. We will use this by making RCX the
address to our unsigned driver’'s communication function.

Figure 4 (Communication Structure):

uct KernelRequest

ULOMNGSY source pid;
ULONGES source address;
ULOMNGES target pid;

ULONGES target address;
ULOMNGES size;

const char* module_name;
vold* owtput;
RequestCode code;

HernelRequest, * PEKernelRequest;

The communication function also known as the FunctionHook
function, processes commands that are passed through the second
parameter in RDX as a pointer to the communication structure. It will
parse the communication structure (Figure 4) and execute commands we
implement in our unsigned driver such as GetBaseAddress, WriteMemory,
and ReadMemory. Because we are redirecting code flow from an NT
Win32kbase function to this function, our communication function will
need to reflect the NT function we are calling in usermode. In this
instance, we are calling NtCompositionInputThread, so our
communication function will have the following function signature:

Win32kbase:

Recreated in our Unsigned Driver:

__imted __ fastcall FunctionHook(uint64 t rox, uinted t rdx, uintéd t r3)

Now we need to find a way to store the address of our kernel
communication function. For this exploit, by creating a registry entry
in the kernel, I will be storing the address to our FunctionHook in a
registry key as a DWORD. This will be useful later as we will be able
to retrieve registry data from our usermode component.

E" Registry Editor

Name Type Data
ab| {Default) REG_S5Z {wvalue not set)
e/ GlobalHook REG_QWORD Gufffob@2dler7av77e

Now we will be focusing on the code in the usermode component.
Suppose we are calling NtCompositionInputThread from usermode in
win32u.dll (See the boxed/outlined function call in Figure 5). In that
case, we can pass a pointer to our FunctionHook as our first parameter
by accessing the registry key we created. Secondly, we will pass in a
pointer to the communication structure as the second parameter to this
function. That struct will contain data the unsigned driver will use
to read and write to the target process.

Figure 5 (Usermode)

id* function address = nullptr;
_ inte4a(_ fastcall* function)({uinté4 t, uinte4 t, vimtes t, uintsd t);
uinte4_t hook_base = NULL;
DWORD pid = MULL;

1 DriverInity()

hook_base = Registry::ReadRegistry(_("SOFTWARE\\Unnamed"), _{"6lobalHook"));
if (!hook_base)
i

printf(_("[!] Error Map Driverin“));

return false;

LoadLibraryA{_ (“user32.d11"}};
LoadLibraryA{_("win32u.d11"});
function address = GetProcAddress{GetModuleHandleA({"win32u.d11l")), _("NtCompositionInputThread™));
if (!function_address)
i
printf{_("[!] Failed To Find Function Address\n™}};

h

(PVDID }&function = function_address;

typename 1> t read{uintes t address)

if (address)

{
EernelRequest request;
T buffer = {};
request.magic = @x1337;
request.code = RequestCode: :read;
request.target pid = pid;
request.source pid = GetCurremtProcessId{);
request.source_address = address;
request.target_address = {uinte4 t)&buffer;
request.size = sizeof(t);

function{hook_base, (uintss t)&request, @, @);
return buffer;

Conclusion

With this in place, we have hooked NtCompositionInputThread from
our unsigned driver, and can send and process the communication
structure and execute its commands.

One question that arose with my research was if we would be able
to use the third or fourth parameter of a function if the first is
being occupied or is vital to reaching the point of code execution
that we need. In this scenario, if we are using the second parameter,
according to the x64 calling convention, it would be stored in RDX.
Therefore, we would need to find a gadget with the following assembly
and shellcode: and “\x52\xC3" respectively. In the
unsigned driver and usermode, we would need to send and process our
communication struct through the R8 register.

In Figure 6, you will see the driver operating to find the base
address of an Easy Anti Cheat protected game, Apex Legends.

Figure 6 (Proof of Concept):

L .

completed 31 ms

