
Exploiting Win32kbase Windows System Driver using Return
Oriented Programming (ROP) for Kernel-Usermode Communication to

Evade Detection from Easy Anti Cheat

Ethan Provost

To preface this report, we will be using KDMapper, a manual
mapping tool that will allow us to load our unsigned kernel driver via
the vulnerable iqvw64e.sys intel driver. We will call this our
unsigned driver, which will be used to handle reading and writing
memory requests from the usermode (cheat) application. Figure 1
depicts the structure of the PoC.

Figure 1

Overview

As seen above, our cheat program will call a vulnerable function,

in this case NtCompositionInputThread, in win32u.dll, and pass a
custom structure (that contains our read/write commands) as a
parameter. This parameter will then be passed to the function in
kernel space via win32kbase.sys. This will now allow our commands to
be in kernel space. The kernel driver will then interpret those
instructions by hooking NtCompositionInputThread and processing the
commands, it will return the modified communication struct to the
usermode application that can use that data to render an ESP, move the
camera for an aimbot, and more.
 Figure 2:

Explanation

The first step in implementing our exploit is to locate the

gadget we are going to use. A gadget is a small set of assembly
instructions, in the form of bytes, that is located somewhere
throughout a binary. The presence of these bytes do not have to make
up the instructions we want to execute, but simply be present. For
example we may need to utilize a pop rdi ; ret gadget, so we need to
search our target binary for this string literal "\x5F\xC3". Once we
have located it, we can exploit an existing jmp instruction to jump to
our gadget address. It will then execute the pop rdi ; ret instruction
even if the actual instructions at that address make up some other
data.

It is important to know where the parameters of a function are

stored in memory. The first parameter is stored in the RCX register
and the second in RDX, as the Microsoft x64 Calling Convention
describes, “Integer arguments are passed in registers RCX, RDX, R8 and
R9.” Any functions that exceed this number of parameters, will push
those parameters into the stack.
(https://learn.microsoft.com/en-us/cpp/build/x64-calling-convention?vi
ew=msvc-170)

With this information, we will need to locate a push rcx; ret

gadget, represented by the following string literal: "\x51\xC3". In
this instance of the win32kbase.sys binary, I have located the gadget
bytes in the instruction cmp r13; cs:gspepInit at 0x1c01aa73.

 Figure 3:

Once we have located our gadget in the vulnerable win32kbase.sys,

we can swap the pointer of QWORD_1C024DE48 (located in the mov rax
instruction in Figure 2) to the pointer to the gadget, 0x1c01aa73,
using the kernel function InterlockedExchangePointer.

(https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/w
dm/nf-wdm-interlockedexchangepointer)

https://learn.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-170
https://learn.microsoft.com/en-us/cpp/build/x64-calling-convention?view=msvc-170
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-interlockedexchangepointer
https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-interlockedexchangepointer

Once this .data pointer swap is in place, calling the
NtCompositionInputThread function will move the gadget pointer into
rax, and then redirect code flow to our gadget, due to the function
calling __guard_dispatch_icall_fptr which contains instructions jmp
rax. At the gadget pointer, it will execute push rcx ; ret which will
push whatever is in RCX onto the stack, and then return. Essentially,
we can execute any arbitrary unsigned code by passing the address to
that unsigned code into RCX. We will use this by making RCX the
address to our unsigned driver’s communication function.

Figure 4 (Communication Structure):

The communication function also known as the FunctionHook

function, processes commands that are passed through the second
parameter in RDX as a pointer to the communication structure. It will
parse the communication structure (Figure 4) and execute commands we
implement in our unsigned driver such as GetBaseAddress, WriteMemory,
and ReadMemory. Because we are redirecting code flow from an NT
Win32kbase function to this function, our communication function will
need to reflect the NT function we are calling in usermode. In this
instance, we are calling NtCompositionInputThread, so our
communication function will have the following function signature:

Win32kbase:

Recreated in our Unsigned Driver:

Now we need to find a way to store the address of our kernel

communication function. For this exploit, by creating a registry entry
in the kernel, I will be storing the address to our FunctionHook in a
registry key as a DWORD. This will be useful later as we will be able
to retrieve registry data from our usermode component.

Now we will be focusing on the code in the usermode component.

Suppose we are calling NtCompositionInputThread from usermode in
win32u.dll (See the boxed/outlined function call in Figure 5). In that
case, we can pass a pointer to our FunctionHook as our first parameter
by accessing the registry key we created. Secondly, we will pass in a
pointer to the communication structure as the second parameter to this
function. That struct will contain data the unsigned driver will use
to read and write to the target process.

Figure 5 (Usermode)

Conclusion

With this in place, we have hooked NtCompositionInputThread from

our unsigned driver, and can send and process the communication
structure and execute its commands.

One question that arose with my research was if we would be able

to use the third or fourth parameter of a function if the first is
being occupied or is vital to reaching the point of code execution
that we need. In this scenario, if we are using the second parameter,
according to the x64 calling convention, it would be stored in RDX.
Therefore, we would need to find a gadget with the following assembly
and shellcode: push rdx ; ret and “\x52\xC3” respectively. In the
unsigned driver and usermode, we would need to send and process our
communication struct through the R8 register.

In Figure 6, you will see the driver operating to find the base

address of an Easy Anti Cheat protected game, Apex Legends.

Figure 6 (Proof of Concept):

