
R Programming

R is an interpreted
programming

language

Created by Pankaj Chouhan

@codeswithpankaj.com

What is R Programming?

R is a programming language and also a software environment for statistical
computing and data analysis. R was developed by Ross Ihaka and Robert
Gentleman at the university of Auckland, New Zealand. R is an open-source
programming language and it is available on widely used platforms e.g. Windows,
Linux, and Mac. It generally comes with a command-line interface and provides a
vast list of packages for performing tasks. R is an interpreted language that
supports both procedural programming and object-oriented programming.

Install R and Jupyter:1

Launch Jupyter Notebook:3

Install R Kernel for Jupyter:2

Create a New Notebook: 4

Write and Execute R Code:5

Getting Started With R

Write and execute R code in a Jupyter Notebook.

Install Jupyter Notebook using pip
pip install notebook

install.packages("IRkernel")
IRkernel::installspec()

jupyter notebook

This is an R code cell.
x <- c(1, 2, 3, 4, 5)
mean_x <- mean(x)
mean_x

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/01%20Day%20Getting%20Started%20With%20%20R

R Comments
Ready to start?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/01%20Day%20Getting%20Started%20With%20%20R

R, comments are used to add explanatory or descriptive notes within your code. Comments are
ignored by the R interpreter and are not executed as part of the program.

Single-line Comments: 1 Single-line Comments Example :

This is a single-line comment
x <- 10 # This comment explains the
purpose of the following code

Multi-line Comments:2 Multi-line Comments Example 1 :

'''
Codes With Pankaj
a multi-line comment in R.
'''

Multi-line Comments Example 2 :

"""
This is yet another way to create p4n
a multi-line comment in R.
"""

Commenting Out Code 1 Commenting Out Code

This code is temporarily disabled
x <- 5
y <- 10

Inline Comments: 2 Inline Comments:

result <- x + y # Calculate the sum
of x and y

R Variables and
Constants

Ready to start ?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/03%20Day%20R%20Variables%20and%20Constants

What Are Variables?

Variables are used to store and manipulate data. Variables can hold
various types of data, such as numbers, text, logical values, and
more. Here are some key points about variables in R:

Variable names in R are case-sensitive, meaning that "myVariable"
and "myvariable" would be treated as distinct variables.
Variable names must start with a letter (a-z or A-Z) or a period (.),
followed by letters, numbers, or periods.

Variable Names:

Declaration1 Declaration

x <- 5
#Assigns the integer 5 to the variable 'x'
name <- "John"
#Assigns the string "John" to the variable 'name'

Data Types2 Data Types

age <- 30 # Integer
temperature <- 98.6 # Double
name <- "Alice" # String
is_student <- TRUE # Logical (TRUE or FALSE)

Variables

Constants1 Constants

PI <- 3.14159

Constants
There isn't a specific keyword or syntax for declaring constants like some other
programming languages. However, you can achieve the concept of constants by
convention. By naming a variable in ALL_CAPS and not modifying its value
throughout your code, you can indicate that it's intended to be a constant.

Data Types
Ready to start ?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/04%20Day%20R%20Data%20Types

Data Types
data types are essential for categorizing and processing different types of data.
R has a variety of built-in data types to handle various data structures and
values. Here are some of the primary data types in R:

A variable can store different types of values such as numbers,
characters etc. These different types of data that we can use in our code
are called data types.

Numeric1 Numeric

x <- 42 # Integer
y <- 3.1415 # Double (floating-point)

Types of DataType

Character2 Character

name <- "p4n"
message <- 'p4n, Hello!'

Logical3 Logical

is_student <- TRUE
is_adult <- FALSE

Integer4 Integer

count <- as.integer(10)

Types of DataType

Complex5 Complex

complex_num <- 3 + 2i

Factor6 Factor

gender <- factor(c("Male", "Female", "Male", "Female"))

R Output and Input
Ready to start ?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/05%20Day%20R%20Print%20Output%20%26%20User%20Input

print() Function:1
print() Function:

x <- 42
print(x)

Types of DataType

cat() Function:2 cat() Function:

a <- 10
b <- 20
cat("The sum of a and b is:", a + b, "\n")

paste() and paste0()
Functions:

3 paste() and paste0() Functions:

code to illustrate the paste0() function
paste0("codes","with","pankaj")
paste(1,'two',3,'four',5,'six')

readline() function1
readline() function

Prompt the user for input
user_input <- readline("Enter something: ")

Display the user's input
cat("You entered:", user_input, "\n")

Take user input in R

In this code:
readline("Enter something: ") is used to prompt the user for input with the
message "Enter something: ". The user enters text, and it's stored in the
user_input variable.

cat("You entered:", user_input, "\n") is used to display the user's input along
with a message.

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/05%20Day%20R%20Print%20Output%20%26%20User%20Input#r-print-output-and-input
https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/05%20Day%20R%20Print%20Output%20%26%20User%20Input

R Operator
Ready to start ?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/06%20Day%20R%20Operators

Arithmetic Operators:1 Arithmetic Operators

x <- 10 # Numeric Variables
y <- 3 # Numeric Variables

sum_result <- x + y # Addition

difference_result <- x - y # Subtraction

product_result <- x * y # Multiplication

quotient_result <- x / y # Division

exponent_result <- x^y # Exponentiation

remainder_result <- x %% y # Modulus (Remainder)

Integer Division (Quotient)
integer_division_result <- x %/% y

Operators

+ (Addition)1

* (Multiplication)3

- (Subtraction)2

^ (Exponentiation)4

%% (Modulus)5

%/% (Integer Division)6

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/05%20Day%20R%20Print%20Output%20%26%20User%20Input#r-print-output-and-input

Comparison Operators:2 Comparison Operators:

a <- 5
b <- 10
is_equal <- a == b # FALSE
is_not_equal <- a != b # TRUE
is_less_than <- a < b # TRUE
is_greater_than <- a > b # FALSE

Operators

== (Equal to)1

< (Less than)3

!= or <> (Not equal to)2

> (Greater than)4

<= (Less than or equal to)5

>= (Greater than or equal to)6

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/05%20Day%20R%20Print%20Output%20%26%20User%20Input#r-print-output-and-input

Logical Operators3 Logical Operators

is_true <- TRUE
is_false <- FALSE
logical_not <- !is_true # FALSE
logical_and <- is_true & is_false # FALSE
logical_or <- is_true | is_false # TRUE

Operators

! (Logical NOT)1

| (Logical OR)3

& (Logical AND)2

&& (Short-circuit AND)4

|| (Short-circuit OR)5

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/05%20Day%20R%20Print%20Output%20%26%20User%20Input#r-print-output-and-input

Assignment Operators4 Assignment Operators

x <- 10
y = 3

Operators

<- or = Assigns 1

Miscellaneous Operators5 Miscellaneous Operators

is_present <- 5 %in% c(1, 2, 3, 4, 5) # TRUE
seq_numbers <- 1:5 # Creates a sequence 1, 2, 3, 4, 5

%in% : 1

Checks if an element belongs to a vector or list

: 2

Creates a sequence of numbers.

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/05%20Day%20R%20Print%20Output%20%26%20User%20Input#r-print-output-and-input

R if..else
Ready to start ?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/07%20Day%20R%20if...else

R if..else
R if..else

if (condition) {
 # Code to execute if the condition is TRUE
} else {
 # Code to execute if the condition is FALSE
}

The if...else statement is used for conditional
execution of code. It allows you to specify a
condition, and based on whether that condition is
TRUE or FALSE, different blocks of code will be
executed. The basic syntax of the if...else statement in
R is as follows

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/07%20Day%20R%20if...else
https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/07%20Day%20R%20if...else

Example 1: Simple if...else

Example 2: Nested if...else

Example 1: 1
x <- 10if (x > 5) {
 cat("x is greater than 5.\n")
} else {
 cat("x is not greater than 5.\n")
}

if...else

Example 22
y <- 3if (y > 5) {
 cat("y is greater than 5.\n")
} else if (y == 5) {
 cat("y is equal to 5.\n")
} else {
 cat("y is less than 5.\n")
}

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/07%20Day%20R%20if...else

R ifelse() Function
ifelse() function is a vectorized way to perform conditional operations. It allows
you to apply a specified condition to each element of a vector or data frame and
return a new vector or data frame based on the condition. The basic syntax of
the ifelse() function is as follows:

test_expression: The condition to be tested.

It can be a logical vector or expression.

yes_expression: The value to be returned

when the condition is TRUE.

no_expression: The value to be returned

when the condition is FALSE.

R ifelse() Function

ifelse(test_expression, yes_expression, no_expression)

ifelse() function Example 1
Example: Using ifelse() to categorize exam scores
scores <- c(78, 92, 64, 88, 75)
grades <- ifelse(scores >= 90, "A", ifelse(scores >= 80, "B",
ifelse(scores >= 70, "C", "D")))

Print the result
cat("Grades:", grades, "\n")

 ifelse() function

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/07%20Day%20R%20if...else

R for Loop
Ready to start ?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/07%20Day%20R%20if...else

R for Loop

R for Loop

for (variable in sequence) {
 # Code to be executed for each element in
the sequence
}

For loop is used to repeatedly execute a block of
code a specified number of times or iterate through
elements in a sequence (such as a vector or a list). It
provides a way to create iterative processes in your
program.

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/07%20Day%20R%20if...else
https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/07%20Day%20R%20if...else

Using a for loop to iterate through numbers from 1 to 5 Example 1
Example: Using a for loop to iterate through numbers from 1 to 5
for (i in 1:5) {
 cat("Count:", i, "\n")
}

 for loop

Using a for loop to iterate through elements in a vector Example 2
Example: Using a for loop to iterate through elements in a vector
fruits <- c("apple", "banana", "cherry", "date")

for (fruit in fruits) {
 cat("Fruit:", fruit, "\n")
}

Using seq_along() in a for loop Example 3
Example: Using seq_along() in a for loop
fruits <- c("apple", "banana", "cherry", "date")

for (i in seq_along(fruits)) {
 cat("Index:", i, "Fruit:", fruits[i], "\n")
}

 for loop

R While Loop
Ready to start ?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/09%20Day%20R%20while%20Loop

R while Loop

R While Loop

while (condition) {
 # Code to be executed while the condition
is TRUE
 # The condition should eventually become
FALSE to exit the loop
}

While loop is used to repeatedly execute a block of
code as long as a specified condition remains TRUE. It
provides a way to create iterative processes in your
program

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/07%20Day%20R%20if...else
https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/07%20Day%20R%20if...else

Using a while loop to count from 1 to 5 Example 1
Example: Using a while loop to count from 1 to 5
count <- 1

while (count <= 5) {
 cat("Count:", count, "\n")
 count <- count + 1
}

 While loop

R repeat Loop
Ready to start ?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/11%20Day%20R%20repeat%20Loop

 basic structure of a repeat loop in R is as follows:

R repeat Loop

repeat {
 # Code to be executed repeatedly
 if (condition) {
 break # Terminate the loop if the
condition is met
 }
}

Repeat loop is used to create an infinite loop that
continues to execute a block of code until a specified
condition is met or until an explicit break statement is
encountered within the loop. repeat loops are
typically used when you need to repeatedly perform
a task until a specific condition is satisfied.

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/07%20Day%20R%20if...else
https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/07%20Day%20R%20if...else
https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/07%20Day%20R%20if...else

Using a repeat loop to count from 1 to 5 Example 1
Example: Using a repeat loop to count from 1 to 5
count <- 1

repeat {
 cat("Count:", count, "\n")
 count <- count + 1
 if (count > 5) {
 break # Terminate the loop when count reaches 5
 }
}

 repeat loop

In this example, the repeat loop continues to execute as long as count is less than or equal to
5. Once count becomes greater than 5, the break statement is encountered, and the loop
terminates.

repeat loops are useful when you need to create loops that don't have a predetermined
number of iterations and rely on a condition or user input to exit. However, it's important to be
cautious when using repeat loops to avoid creating infinite loops that run indefinitely. Always
include a condition and a break statement to ensure that the loop can be terminated.

R break and next
Ready to start ?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/11%20Day%20R%20repeat%20Loop

Using break in a for loop Example 1
for (i in 1:10) {
 if (i == 5) {
 break # Exit the loop when i equals 5
 }
 cat("Value:", i, "\n")
}

Break Statement:

The break statement is used to exit (terminate) a loop prematurely when a certain
condition is met.
When break is encountered inside a loop, the loop is immediately terminated, and the
program continues with the code following the loop.
break is often used to exit loops when a specific condition is satisfied.

Using next in a for loop Example 1
for (i in 1:5) {
 if (i %% 2 == 0) {
 next # Skip even numbers
 }
 cat("Value:", i, "\n")
}

Next Statement :

The next statement is used to skip the current iteration of a loop and move on to the next
iteration.
When next is encountered inside a loop, the current iteration is immediately terminated,
and the loop proceeds to the next iteration.
next is often used to skip specific iterations based on a condition.

R Functions
Ready to start ?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/13%20Day%20R%20Functions%20

R Functions
Functions are blocks of code that can be defined and reused to perform
specific tasks or operations. Functions encapsulate a series of statements,
accept input (arguments), and often return output values. Functions are a
fundamental concept in R programming and are essential for modularizing
code and making it more organized and reusable.

 basic structure of defining and using a function in R

Function definition
function_name <- function(arg1, arg2, ...) {
 # Function body: code to perform a specific task
 # You can use the arguments (arg1, arg2, ...) within the function

 # Return a value (optional)
 return(result)
}

Function call
output <- function_name(arg1_value, arg2_value, ...)

Key components of a function:
function_name: The name of the function you
define.
arg1, arg2, ...: Arguments or parameters that the
function accepts. You can have zero or more
arguments.
result: The value the function returns (optional).
arg1_value, arg2_value, ...: Actual values or
expressions provided when calling the function.

Define a function to add two numbers Example 1
Define a function to add two numbers
add_numbers <- function(x, y) {
 result <- x + y
 return(result)
}

Call the function
sum_result <- add_numbers(5, 3)
cat("Sum:", sum_result, "\n")

R Functions :

In this example:
add_numbers is the function name.
x and y are the function's arguments.
Inside the function, result is calculated as the sum of x and y.
The return(result) statement returns the result.
We call the function with values 5 and 3 and store the result in sum_result.

Calculate the sum of a vector Built-in Functions1

Example of built-in functions
Calculate the sum of a vector
numbers <- c(5, 10, 15, 20)
sum_result <- sum(numbers)
cat("Sum of numbers:", sum_result, "\n")

Calculate the mean of a vector
mean_result <- mean(numbers)
cat("Mean of numbers:", mean_result, "\n")

Find the length of a vector
length_result <- length(numbers)
cat("Length of vector:", length_result, "\n")

Examples of different types of functions in R

Example of a user-defined functionUser-Defined Function2

Example of a user-defined function
Define a function to calculate the area of a rectangle
calculate_rectangle_area <- function(length, width) {
 area <- length * width
 return(area)
}

Call the user-defined function
rectangle_area <- calculate_rectangle_area(4, 6)
cat("Area of rectangle:", rectangle_area, "\n")

Examples of different types of functions in R

Example of an anonymous functionAnonymous Function
(Lambda Function)

3
Example of an anonymous function
Use lapply to square each element in a vector
numbers <- c(1, 2, 3, 4, 5)
squared_numbers <- lapply(numbers, function(x) x^2)
cat("Squared numbers:", unlist(squared_numbers), "\n")

Examples of different types of functions in R

Example of a higher-order functionHigher-Order Function4
Example of a higher-order function
Use sapply to apply a function to each element in a list
fruits_list <- list("apple", "banana", "cherry")
lengths <- sapply(fruits_list, length)
cat("Lengths of fruits:", lengths, "\n")

R String
Ready to start ?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/15%20Day%20R%20Strings%20

Creating stringsCreating Strings1
Creating strings
string1 <- "Hello, p4n!" # Using double quotes
string2 <- 'codes with pankaj' # Using single quotes

R String
Strings are used to represent and manipulate text data. You can create and
manipulate strings in various ways in R. Here are some fundamental
operations and examples related to strings in R

Concatenating stringsConcatenating Strings2
Concatenating strings
str1 <- "p4n"
str2 <- "World"
concatenated <- paste(str1, str2)
cat("Concatenated:", concatenated, "\n")

R String

Finding the length of a stringString Length3
Finding the length of a string
text <- "Welcome to p4n."
length_text <- nchar(text)
cat("Length of the string:", length_text, "\n")

Extracting substringsSubstring Extraction4

Extracting substrings
text <- "R Programming"
substring <- substr(text, start = 3, stop = 7)
cat("Substring:", substring, "\n")

R String

Converting to lowercaseString Manipulation5
Converting to lowercase
text <- "Hello,p4n!"
lower_text <- tolower(text)
cat("Lowercase:", lower_text, "\n")

String comparisonString Comparison6

String comparison
text1 <- "apple"
text2 <- "banana"
result <- text1 < text2
cat("Comparison result:", result, "\n")

R String

String InterpolationString Interpolation7

String interpolation
name <- "Nishant"
age <- 12
greeting <- sprintf("Hello, my name is %s and I am %d years old.",
name, age)
cat("Greeting:", greeting, "\n")

String comparisonSplitting and Joining Strings:8
Splitting and joining strings
text <- "apple,banana,cherry"
split_text <- strsplit(text, ",")[[1]]
joined_text <- paste(split_text, collapse = ";")
cat("Joined text:", joined_text, "\n")

R String

R Vectors
Ready to start ?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/16%20Day%20R%20Vectors

 Creating Vectors Creating Vectors1
Creating numeric vectors
numeric_vector <- c(1, 2, 3, 4, 5)

Creating character vectors
character_vector <- c("apple", "banana", "cherry")

Creating logical vectors
logical_vector <- c(TRUE, FALSE, TRUE, FALSE)

R Vector
Vector is a fundamental data structure that allows you to store and manipulate a
collection of values of the same data type. Vectors can be used to store
numbers, characters, logical values, and other data types. Here are some key
points and examples related to vectors in R:

You can create vectors in R using the c() function or by specifying a sequence of values within c(). Here are examples:

Vector OperationsVector Operations2

Arithmetic operations on numeric vectors
vector1 <- c(1, 2, 3)
vector2 <- c(4, 5, 6)
result_addition <- vector1 + vector2
result_multiplication <- vector1 * vector2

Element-wise comparisons on numeric vectors
comparison_result <- vector1 > vector2

Logical operations on logical vectors
logical_result <- vector1 < 3 & vector2 >= 5

R Vectors

Accessing Elements:Accessing Elements:3

Accessing elements of a vector
numeric_vector <- c(10, 20, 30, 40, 50)
first_element <- numeric_vector[1]
third_element <- numeric_vector[3]

R Vectors

Vector functions Vector Functions4

Vector functions
numeric_vector <- c(10, 20, 30, 40, 50)
vector_length <- length(numeric_vector)
vector_sum <- sum(numeric_vector)
vector_mean <- mean(numeric_vector)

Vectorized OperationsVectorized Operations5

Vectorized operations
numeric_vector <- c(1, 2, 3, 4, 5)
square_vector <- numeric_vector^2

R Vectors

Vector AttributesVector Attributes6

Assigning names to vector elements
vector <- c(a = 10, b = 20, c = 30)

R Matrix
Ready to start ?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/16%20Day%20R%20Vectors

R Matrix
Matrix is a two-dimensional data structure that consists of rows and columns,
similar to a table or a spreadsheet. Matrices are used to store and manipulate
data in a structured format. Here are some key points and examples related to
matrices in R:

R Matrix

Matrix is a rectangular arrangement of numbers in
rows and columns. In a matrix, as we know rows are
the ones that run horizontally and columns are the
ones that run vertically. In R programming, matrices
are two-dimensional, homogeneous data structures

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/07%20Day%20R%20if...else
https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/07%20Day%20R%20if...else

MatrixExample
R program to create a matrix
A = matrix(
Taking sequence of elements
c(1, 2, 3, 4, 5, 6, 7, 8, 9),
No of rows
nrow = 3,
No of columns
ncol = 3,
By default matrices are in column-wise order
So this parameter decides how to arrange the matrix
byrow = TRUE
)
Naming rows
rownames(A) = c("a", "b", "c")

Naming columns
colnames(A) = c("c", "d", "e")

cat("The 3x3 matrix:\n")
print(A)

R Matrix

Vectorized OperationsCreating Matrices1

Creating a numeric matrix
numeric_matrix <- matrix(data = 1:12, nrow = 3, ncol = 4)
Creating a character matrix with row and column nameschar_matrix <-
matrix(data = c("A", "B", "C", "D"), nrow = 2, ncol = 2,dimnames =
list(c("Row1", "Row2"), c("Col1", "Col2")))

R Vectors

R List
Ready to start ?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/18%20Day%20R%20List

R List
list is a versatile data structure that can hold various types of data elements,
including numbers, characters, vectors, other lists, and even functions. Lists are
often used to store and manage heterogeneous data and can be nested within
each other to create complex data structures. Here are some key points and
examples related to lists in R

Creating Matrices

Creating a list with different data types
my_list <- list(name = "Alice", age = 30, scores = c(85,
92, 78), has_pet = TRUE)

Creating Matrices1

Accessing List ElementsAccessing List Elements2
Accessing list elements by name
name <- my_list$name
age <- my_list$age

Accessing list elements by position
first_score <- my_list[[3]][1]

R List

Nested ListsNested Lists3
Creating a nested list
nested_list <- list(person1 = list(name = "Bob", age = 25), person2 =
list(name = "Alice", age = 30))

Modifying ListsModifying Lists4
Adding a new element to the list
my_list$city <- "New York"

Modifying an existing element
my_list$age <- 31

Removing an element from the list
my_list$city <- NULL

R List

List FunctionsList Functions5
List functions
list_length <- length(my_list)
list_names <- names(my_list)
str(my_list)

List of FunctionsList of Functions6
Creating a list of functions
function_list <- list(square = function(x) x^2, double = function(x)
2*x)

Calling functions from the list
result1 <- function_list$square(5)
result2 <- function_list$double(7)

R List

R Array
Ready to start ?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/18%20Day%20R%20List

R Array
In R, an array is a multi-dimensional data structure that can store data of the
same data type. Unlike matrices, which are two-dimensional, arrays can have
more than two dimensions, making them suitable for representing and working
with higher-dimensional data. Here are some key points and examples related
to arrays in R:

R While Loop

An Array is a data structure which can store data of
the same type in more than two dimensions.

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/07%20Day%20R%20if...else

 Creating Arrays Creating Arrays1

Creating a 2-dimensional array
data_matrix <- matrix(1:12, nrow = 3, ncol = 4)
my_array <- array(data_matrix, dim = c(3, 4, 2))

Creating a 3-dimensional array with dimension names
data_array <- array(1:24, dim = c(3, 4, 2),
 dimnames = list(c("A", "B", "C"),
c("X", "Y", "Z"), c("M", "N")))

R Array

Accessing Array ElementsAccessing Array
Elements

2

Accessing elements of an array
element1 <- my_array[1, 2, 1]
element2 <- data_array["A", "Y", "M"]

Array OperationsArray Operations3

Transposing a 3-dimensional array
transposed_array <- aperm(data_array, c(3, 2, 1))

R Array

Array FunctionsArray Functions4

Array functions
array_dim <- dim(my_array)
array_dimnames <- dimnames(data_array)
str(data_array)

Array TypeArray Type5

Creating a logical array
logical_array <- array(c(TRUE, FALSE, TRUE, TRUE), dim =
c(2, 2))

R Array

R Data Frame
Ready to start ?

https://github.com/Pankaj-Str/R-Programming-Tutorial/tree/main/20%20Day%20R%20Data%20Frame%20

R Array
In R, a data frame is a two-dimensional data structure that resembles a table
or a spreadsheet. It is one of the most commonly used data structures for
handling and analyzing data because it can store data of different types
(numeric, character, logical) in columns and rows. Data frames are particularly
useful for representing structured data, such as datasets from spreadsheets
or databases. Here are some key points and examples related to data frames
in R:

Creating Data FramesCreating Data Frames1

Creating a data frame
student_data <- data.frame(
 Name = c("Alice", "Bob", "Charlie", "David"),
 Age = c(25, 22, 24, 23),
 Grade = c("A", "B", "A", "C"),
 Passed = c(TRUE, TRUE, TRUE, FALSE)
)

R Data Frames

You can create data frames in R using the data.frame() function. You provide vectors of data
for each column, and each vector becomes a column in the data frame

Accessing Data Frame ElementsAccessing Data Frame
Elements

2

Accessing elements of a data frame
name1 <- student_data$Name[1]
Accessing the first student's name
age3 <- student_data$Age[3]
Accessing the age of the third student

Modifying Data FramesModifying Data Frames3
Adding a new column
student_data$City <- c("New York", "Los Angeles", "Chicago",
"Houston")

Modifying an existing column
student_data$Grade[4] <- "B"

Removing a column
student_data$City <- NULL

R Data Frames

Data Frame FunctionsData Frame Functions4

Data frame functions
num_rows <- nrow(student_data)
num_cols <- ncol(student_data)
column_names <- names(student_data)
data_summary <- summary(student_data)

Data Frame TypeData Frame Type5
Creating a data frame with mixed data types
mixed_data <- data.frame(
 Name = c("Alice", "Bob"),
 Age = c(25, 30),
 Passed = c(TRUE, FALSE)
)

R Data Frames

