

Little Miami WWTP Solids Disposal & Odor Control Progressive Design-Build Project

- January 2023 to Fall of 2028
- Project includes:
 - Sludge Receiving Station & Blend Tanks
 - Screening and Thickening
 - Anaerobic Digestion
 - Dewatering & Loadout
 - Digester Gas Conditioning and Utilization
 - Odor Control

Little Miami Wastewater Treatment Plant

Courtesy of Google Maps

Site Rendering

Digester Rendering

Digester Gallery Rendering

Pre-BODR Solids PFD

Current 90% Design Solids PFD

Objective of Staged Thermophilic Anaerobic Digestion

- Cost reduction
- Staged Thermophilic Anaerobic Digestion achieves EQ Biosolids as defined by Ohio EPA through P-8 and Class A EQ as defined by Federal EPA through Alternative 1 - time and temperature requirements (24 hours at 55°C)
 - Digesters Fed at Thermophilic Temperature
 - Digesters Computational Fluid Dynamics (CFD)
 - Operating Routine(s)

Staged Thermophilic Anaerobic Digestion

STAD – Case Studies

WRRF	Similarities to LMWWTP	Differences to LMWWTP
	Multi-staged TAD Sile above d	Three stages Shorter sile above d
	Silo-shaped	Shorter silo-shaped
Shafdan	 Hydraulic pumped jet mixed 	 Complete mixed
Tel Aviv, Israel	 Operated at 55°C 	
	 Produces equivalent US EPA Class A 	
	Biosolids	
	 Multi-staged TAD 	 Smaller flow through vessels
Annacis Island	 Silo-shaped 	 Shorter silo-shaped
Vancouver,	 Mixed digesters 	 Complete mixed
British	 Operated at 55°C 	
Columbia	 Produces equivalent US EPA Class A 	
	Biosolids	
	 Multi-staged AD 	• Temperature Phased AD (thermophilic
Oceanside	 Mixed plug-flow digesters 	followed by mesophilic digester)
San Francisco,	 Operated at 55°C 	 Egg-shaped digesters
CA	 Met US EPA requirements for Class A 	
	Biosolids	

STAD – Sampling Plan

Analysis	Sample Location(s) ¹	Sampling Frequency
Fecal Coliform	 Upstream of Stage 1 Digester Downstream of Stage 2 Digester Downstream of Digester 3 Downstream of dewatering (cake) 	Weekly at Start, 3 times per week after results meet EQ for first time
Metals	Downstream of dewatering (cake)	Every 2 weeks at Start, Monthly after results meet EQ twice in the row
TSS, VSS, VSR	Before and after each unit process	
pH, Alkalinity, VFAs, COD	Each digester	3 times per week ²

¹ Upstream of the digester: at the digester feed pump discharge Downstream of the digester: at the digester transfer pump discharge

TS = total solids

VSS = volatile suspended solids

VSR = volatile solids reduction

VFAs = volatile fatty acids

COD = chemical oxygen demand

² Assumes solids removal from the plant for beneficial use or disposal 3 times per week (Rule 745-40-09-(B)(1) requires sampling for TS each day solids leave the plant for beneficial use or disposal)

CFD

- CFD implemented to
 - Ensure compliance with EPA time and temperature requirements

CFD (continue...)

CFD implemented to evaluate short circuiting

Normal Operating Scenario

- Goal is a total of 24 hr contact time at 55 °C
 - 3 tanks In Service: 8 hr per tank achieved w/500 gpm loop & low zone mixing only
 - 2 tanks In Service: 12 hr per tank achieved w/400 gpm loop & no mixing

Alternate Operating Scenario

- Goal is a total of 5 hr contact time at 60 °C
 - CFD modeling results: 10 hr contact w/ 2 tanks in service

Backup Operating Scenario

Batch operation of the three in service digesters

Project Update

Summary

- Achieve Class A EQ biosolids using STAD process
- STAD process achieves Class A EQ biosolids at a reduced project cost
- Client has pursued a progressive design-build approach to project delivery

Project Update

- Design currently 90% complete
- Approval of the Permit to Install (PTI) application by Ohio EPA is anticipated this week
- Early works packages (equipment procurement, site excavation) are currently underway
- Close to agreement on Guaranteed Maximum Price (GMP) for the Main Works Package
- NTP for the construction of the Main Works Package is expected in July 2025

Thank you

Jacobs

- Fran Sparer
 - frances.sparer@jacobs.com
- Dave Baxter
 - david.baxter@jacobs.com