

- EPA Biosolids Risk Assessment
 - Synagro's view and observations
- Approach to managing biosolids program risks in the era of PFAS
 - Strategic Actions
 - Tactical/Operational, and
 - Technology Based

EPA Draft Health Risk Assessment

Synagro's view of Health Risk Assessment (HRA)

- The HRA, as issued, was an incomplete and misleading analysis. The science was flawed.
 - Overly conservative assumptions about farm family modeled e.g., no waiting period between applications.
 - Ignores existing regulations for avoidance of run-off into waterways.
 - Does not consider recent research on plant uptake and bioavailability of PFOS/PFOA.
- The risk management component was omitted; no perspective on relative risks. For example,
 - No benefits of biosolids land application are considered.
 - Should compare risk to other exposures (e.g., cosmetics, carpeting, food packaging, cookware? Risk of using chemical fertilizer versus biosolids?
- Biosolids management is NOT optional and the HRA fails to consider the risks of alternatives.

Impacts Observed

- Created uncertainty and confusion and increased costs within the regulated industry.
- Drove several state legislatures to move forward with their own PFAS/Biosolids related rulemaking.

Current Status

- Changing personnel and rulemaking approach may slow process.
- Draft HRA comment period extended, science and framework challenged Final model unlikely until 2027.
- Both sides of isle now seem to recognize need for "polluter pays" and "passive receiver" liability protection.

Mitigating Perceived Risks

A Multi-Tiered Approach to Managing Biosolids in the PFAS Era

Strategies Pursued

Three-Tiered Approach to Managing Perceived Risks

- I. Strategic Approaches
- 2. Tactical / Operational Changes
- 3. Evaluate Potential Technology-Based Solutions

Strategic Approaches – Addressing Biosolids Policy

Strategic Approaches

- I. Consistently deliver key messages
- 2. Build and support industry coalitions to educate policy makers
- 3. Defending biosolids beneficial use

Key Messages

- Advocating for source control It has worked in the past and will work here.
- Continuity of "polluter pays" principle (passive receiver exemption)
- Supporting study and testing in various states Collecting data to make good decisions
- Opposing bans and de-facto bans that use non-scientific numeric standards.
- Be quick to study and slow to regulate
 - A lot of research ongoing, let it happen before we make rules
- Supporting interim state regs based on samples from generators
- Supporting national science-based regulations as good for everyone.

CRROPS
Coalition of
Recyclers of
Residual
Organics by
Providers of
Sustainability

Tactical / Operational Strategies

- Organizational Changes to Address Federal and State Legislation Initiatives
 - At Synagro that has meant adding senior level resources to coordinate communications with regional internal teams and external stakeholders e.g., regulators, policy makers, and trade groups.
 - Decide who on your team is tracking these initiatives.
- Customer/Internal communications
 - Do your research, learn your numbers Synagro is researching levels at our Class A facilities and our largest land application customers. Need data to understand and speak credibly.
 - Identify and address potential dischargers.
 - Many customers evaluating drying Volume reduction and as a first-step toward other technologies.
- External communications
 - Focused on educating end users.
 - Developed PFAS fact sheets for FAQ and tool to calculate loading rates.
 - Response to media articles about PFAS and biosolids risks Try to educate and balance.
 - Commissioned a third-party study on PFAS and biosolids land application.

Operational Strategies – Remembering the Benefits

In the face of constant noise, let's not let people forget the benefits of biosolids beneficial use...

Using Technology to Manage PFAS

Synagro's Position in the Technology Market

- Synagro is a Solution Provider We consider ourselves "technology neutral."
- We are not consultants, but we routinely evaluate new technologies via our Stage Gate process.

Stage Gate Process for Technology Review

- Heat drying Appears to reduce PFAS and is a good step Class A product and volume reduction are strong bets in uncertain times.
- Lime addition may mineralize PFAS, while destroy volatile solids may concentrate PFAS.
- Many thermal technologies are still emerging, in our view Exit in small scale or single-installation facilities. We are working with various manufacturers to help commercialize these systems.
- Often, core systems work but there are issues with scaling, systems integration, and materials handling.

PFAS Management Technologies

Examples of PFAS-friendly technologies that have recently passed our Stage Gate screening include:

- SynaPure
- Char Pyrolysis
- Pyrocal Gasification
- Deep Well Injection

SynaPure Wastewater Treatment System

SynaPure – Containerized Wastewater Treatment

- Combines membrane ultra/nanofiltration and reverse osmosis.
- Excellent treatment for lower-flow liquid sources.
- Removes PFAS to non-detection levels.
- Cost effective compared to most haul-away options.
- Waste streams treated include:
 - PFAS users (pre-treatment)
 - Landfill leachate (passive receivers)
 - Metals removal
 - High strength food wastes
 - Water and wastewater treatment lagoon flows

Pyrolysis and Gasification

CHAR - High Temperature Pyrolysis

- Indirect rotary kiln Syngas recovery, RTO for emissions control.
- Follows bench and small-scale pilots 10 DT/day pilot at the City of Baltimore, Back River plant
- Demonstrate at least 6 months sustained performance.
- Verify the PFAS characteristics (if any) and fate across the HTP.

Pyrocal – Biosolids Gasification

- Pyrocal is an integrated technology manufacturer and system supplier.
- Logan Water facility is processing 100% biosolids Started as a demo and is now a full-scale facility with three years of continuous operation.
- Intgrated belt drying and gasification.
- Collecting data on PFAS destruction and fate.

Char High Temperature Pyrolysis – Full Scale Demo

Pyrocal – Biosolids Gasification Unit – Logan, Queensland, Australia

Carbon Sequestration via Deep Well Injection

Carbon Sequestration by Deep Well Injection

- Vaulted operates the only two permitted biosolids deep injection wells in the United States.
- TIRE Partnership with the City of Los Angeles: 10+ year successful operating history.
- Deep Injection Well management of wastes is proven technology.
- A wide variety of waste products are managed via deep well injection, including:
 - Oil & gas waste, brines, Haz Waste Landfill leachate, wastewater effluent
- Inject slurries at 8% to 10% dry solids using high pressure to expand or create new spaces in the target formation.

- Andrew's view Beneficial use of biosolids is going to survive
 - Risks are minimal
 - Benefits are well documented
 - Emerging state-level models after researching levels (e.g., MN)
- Pollution prevention was, is, and will continue to be the right approach
- Rule changes are coming, so get prepared
- What you can do:
 - Research your numbers and your industrial users.
 - Push hard on source control Like metals reductions in from pre-503, this is the key.
- Technology options are evolving rapidly and moving quickly to commercial viability

