

Centrifuge Operational Adjustments Result in Cost Savings Opportunities at NEORSD

Midwest Biosolids Association, 2nd Annual Conference

Brian Flannagan, NEORSD Adam Parmenter, HDR

May 21, 2025

Agenda

- 1. NEORSD Background
- 2. Testing Purpose & Goals
- 3. Centrifuge Operation Fundamentals
- 4. Centrifuge Optimization Test Results
- 5. Next Steps

NEORSD Background

NEORSD – Northeast Ohio Regional Sewer District

Southerly WWTP is the largest of NEORSD's three wastewater plants

Average daily flow of 120 MGD, Max day 480 MGD (Secondary Treatment)

Centrifuge Dewatering

Incineration

Process Flow of Renewable Energy Facility

Gravity Thickener (GT) Operations

- Receives Primary Sludge (PS)& Excess Activated Sludge (EAS)
- •GT pumping philosophy has been to keep a <5-foot blanket to maintain a high total solids content.
- Total solids out of GTs up to6% TS in low flow conditions
- GT Issues in Wet Weather

Testing Purpose & Goals

Purpose & Goal of Testing

• Problem:

Wet weather events flush thinner sludge through the process and reduce the GTs effectiveness. This
impacts normal centrifuge operations.

• Goals:

- Determine if a consistently thinner sludge to dewatering centrifuges have negative impacts centrifuge operation
- Secondary Goal of determining additional Operations "Levers to Pull" and Energy Saving opportunities

Centrifuge Thin Sludge Testing Plan

- Simulate a low solids sludge concentration (thin sludge) into a centrifuge, as low as 0.5% TS
- Determine any needed setpoint changes for successful performance

Six Individual Tests

- Test #1 Thin Sludge, Low Solids Loading Rate (Minimum Flow Rate)
- Test #2 Thin Sludge, High Solids Loading (Maximum Flow Rate)
- Test #3 Polymer Reduction Optimization (Cost Saving)
- Test #4 Centrifuge Higher Bowl Speed (Cake Solids Control)
- Test #5 Centrifuge Lower Bowl Speed (Energy Savings & Cake Solids Control)
- Test #6 Centrifuge Lower Torque (Cake Solids Control & Centrate Quality)

Centrifuge Thin Sludge Testing Setup

- Polymer Jar Testing
- Confirmed existing polymer creates good floc at as low as 0.5% TS feed solids w/ NPW
- Small polymer dose increase may be needed at thinner sludge feed rates
- Determine NPW Injection Location
 Into Centrifuge Feed

Centrifuge Operation Fundamentals

Centrifuge Anatomy

Centrifuge Anatomy Breakdown

Centrifuge Anatomy

Animations Complements of Alfa-Laval

Centrifuge Anatomy

The decanter centrifuge is like a clarifier.....

Operational Control – Differential Speed

- Scroll Rotates at a consistent different speed than the bowl
 - Greater speed difference = Faster solids discharged & less residence time
 - Lower speed difference = Higher %TS & longer residence time

Operational Control - Torque

- Scroll Speed Changes Based on Resistance from Solids
- Higher % TS higher torque
- Allows for Consistent Cake
- Variations in Torque
 - Changes in feed characteristics
 - Polymer dosage

Centrifuge Optimization Test Results

Test #1 - Thin Sludge, Low Solids Loading Rate (Minimum Flow Rate) Findings:

- Stable performance 1,500 lbs/hr (Machine's minimum rated throughput)
- Stable performance at 0.8% TS
- No torque, centrate quality, or cake total solids changes.
- Centrifuge can handle thinner sludge during wet weather events without negative impacts

DATE, TIME, & RUN	No.			PROCE	SS REA	DINGS	LAB RE	SULTS	CALC'D RESULT	
		Run	Feed	NPW	Feed +	Scroll	Scroll	Feed	Cake	Feed
			Rate	Rate	NPW	Differ.	Torque	%	%	Loading
Date	Time	Number	gpm	gpm	gpm	(RPM)	(%)	TS	TS	dry lbs/hr
Tuesday, July 30, 2024	12:00	1	135	0	135	2.0	50	3.62	31.52	2445
Tuesday, July 30, 2024	13:15	2	135	50	185	2.0	50	Not Taken	Not Taken	#VALUE!
Tuesday, July 30, 2024	13:50	3	135	100	235	2.0	50	1.47	33.00	1728
Tuesday, July 30, 2024	13:50	4	135	100	235	2.0	50	1.62	Not Taken	1904
Tuesday, July 30, 2024	14:00	5	135	100	235	2.0	50	1.55	Not Taken	1822
Tuesday, July 30, 2024	14:30	6	135	150	285	2.0	50	3.74	Not Taken	2526
Tuesday, July 30, 2024	15:00	7	135	158	293	2.0	50	3.74	34.11	2526
Tuesday, July 30, 2024	15:00	8	135	158	293	2.0	50	1.14	Not Taken	1671
Tuesday, July 30, 2024	15:00	9	135	158	293	2.0	50	0.84	Not Taken	1231
Tuesday, July 30, 2024	15:00	10	135	158	293	2.0	50	1.13	Not Taken	1656
Tuesday, July 30, 2024	16:20	11	100	156	256	2.0	50	1.33	37.42	1703
Tuesday, July 30, 2024	16:20	12	100	156	256	2.0	50	1.20	Not Taken	1537
Tuesday, July 30, 2024	16:20	13	100	156	256	2.0	50	1.18	Not Taken	1511

Test #2 - Thin Sludge and High Solids Loading (Maximum Flow Rate) Findings:

- Stable performance up to 350 GPM Feed (Machine's maximum rated hydraulic throughput)
- Stable performance at as low as 1.8% TS Feed
 - NPW Injection limited lower %TS Feed testing
- No torque, centrate quality, or cake total solids changes.
- Centrifuge can handle thinner sludge during wet weather events without negative impacts at high flow rates

DATE, TIME, & RUN	No.			PROCE	SS RE	ADINGS		LAB R	ESULTS	CALC'D RESULT	
		Run	Feed	NPW	Feed +	Scroll	Scroll	Feed	Cake	Feed	
			Rate	Rate	NPW	Differ.	Torque	%	%	Loading	
Date	Time	Number	gpm	gpm	gpm	(RPM)	(%)	TS	TS	dry lbs/hr	
Wednesday, July 31, 2024	07:00	1	140	0	140	2.0	50	4.84	35.56	3390	
Wednesday, July 31, 2024	07:20	2	185	0	185	2.0	50	4.84	Not Taken	4479	
Wednesday, July 31, 2024	10:15	3	185	75	260	2.0	50	2.73	35.78	3551	
Wednesday, July 31, 2024	10:15	4	185	75	260	2.0	50	2.71	35.78	3525	
Wednesday, July 31, 2024	11:30	5	185	159	344	2.0	50	1.79	39.74	3080	
Wednesday, July 31, 2024	11:30	6	185	159	344	2.0	50	1.83	39.74	3149	
Wednesday, July 31, 2024	12:15	7	185	159	344	2.0	50	2.04	39.74	3510	
Wednesday, July 31, 2024	12:15	8	185	159	344	2.0	50	2.38	39.74	4096	

Test #3 - Polymer Reduction Optimization (Cost Saving) Findings:

- Polymer dose was reduced to as low as 5.2 lbs/dt while still maintaining a 95% solids capture rate.
- 30% potential reduction in polymer use possible without compromising performance.

DATE, TIME, & RUN	TIME, & RUN No. PROCESS READINGS								POLY	MER I	NFO		LAB R	RESULTS	CALCULATED RESULTS				
		Run	Feed	NPW	Feed +	Polymer to	Poly	Scroll	Scroll	Neat	Intro	Dilute	Post	Dilute	Feed	Cake	Feed	Solids	Polymer
			Rate	Rate	NPW	Sludge	Rate	Differ.	Torque	Poly	Point	Soln	Dilution	Soln	%	%	Loading	Recovery	Dose
Date	Time	Number	gpm	gpm	gpm	Ratio	gpm	(RPM)	(%)	%active		%active	gpm	gpm	TS	TS	dry lbs/hr	· %	active lbs/ton
Wednesday, July 31, 2024	3:15	1	160	0	160	15.50%	24.8	2.0	50	39.0	3B Inlet	0.11	0	24.8	4.63	37.10	3706	100.0	7.4
Wednesday, July 31, 2024	3:25	2	160	0	160	14.75%	23.6	2.0	50	39.0	3B Inlet	0.11	0	23.6	4.63	34.47	3706	97.9	7.0
Wednesday, July 31, 2024	3:35	3	160	0	160	14.25%	22.8	2.0	50	39.0	3B Inlet	0.11	0	22.8	4.63	38.06	3706	97.7	6.8
Wednesday, July 31, 2024	3:45	4	160	0	160	13.00%	20.8	2.0	50	39.0	3B Inlet	0.11	0	20.8	4.63	39.73	3706	97.9	6.2
Wednesday, July 31, 2024	3:55	5	160	0	160	12.00%	19.2	2.0	50	39.0	3B Inlet	0.11	0	19.2	4.63	38.96	3706	96.8	5.7
Wednesday, July 31, 2024	4:05	6	160	0	160	11.00%	17.6	2.0	50	39.0	3B Inlet	0.11	0	17.6	4.63	39.33	3706	95.0	5.2
Wednesday, July 31, 2024	4:15	7	160	0	160	10.00%	16.0	2.0	50	39.0	3B Inlet	0.11	0	16.0	4.63	36.12	3706	89.9	4.8

Test #4 - Centrifuge Higher Bowl Speed (Cake Solids Control) Findings:

- Bowl speed increased from 2300 RPM to 2500 RPM
- No significant operational benefits
- Introduces higher energy consumption and potential additional wear-and-tear issues
- No improvements in cake solids control or performance

DATE, TIME, & RUN	PRO	CESS R	EADING	GS	LAB	RESUL	.TS	CALC'D F	Motor Data			
		Run	Feed	Scroll	Scroll	Bowl	Feed	Cake	Centrate	Feed	Solids	Bowl
			Rate	Differ.	Torque	Speed	%	%	%	Loading	Recovery	Motor
Date	Time	Number	gpm	(RPM)	(%)	(RPM)	TS	TS	TS	dry lbs/hr	%	Amps
Thursday, August 1, 2024	9:00	1	160	2.0	50	2300	4.06	39.09	0.06	3250	98.7	49.6
Thursday, August 1, 2024	10:10	2	160	2.0	50	2400	4.06	37.14	0.08	3250	98.2	51.0
Thursday, August 1, 2024	10:20	3	160	2.0	50	2500	4.06	37.75	0.00	3250	100.0	52.5

Test #5 - Centrifuge Lower Bowl Speed (Cake Solids Control & Centrate Quality) Findings:

- The bowl speed was decreased from the standard 2300 RPM to 2000 RPM
- Lower bowl speed maintains desired cake concentration of >28% TS
- An 11-amp energy savings per centrifuge
- Lowering the bowl speed can reduce wear on the centrifuge bearings and extend equipment life

CENTRIFUGE No. 3B													
DATE, TIME, & RUN No.			PROCESS READINGS				LAB RESULTS			CALC'D RESULTS		Motor Data	
		Run	Feed	Scroll	Scroll	Bowl	Feed	Cake	Centrate	Feed	Solids	Bowl	Bowl
			Rate	Differ.	Torque	Speed	%	%	%	Loading	Recovery	Motor	Motor
Date	Time	Number	gpm	(RPM)	(%)	(RPM)	TS	TS	TS	dry lbs/hr	%	Amps (%)	Amps (A)
Thursday, August 1, 2024	9:00	1	160	2.0	50	2300	4.06	39.09	0.06	3250	98.7	49.6	149.8
Thursday, August 1, 2024	10:45	1	160	2.0	50	2200	4.06	39.47	0.14	3250	96.9	47.8	144.4
Thursday, August 1, 2024	11:10	2	160	2.0	50	2100	4.06	38.40	0.18	3250	96.0	46.7	141.0
Thursday, August 1, 2024	11:30	3	160	2.0	50	2000	4.06	39.23	0.12	3250	97.3	45.9	138.6
Thursday, August 1, 2024	11:30	4	160	2.0	50	2000	4.06	37.91	0.09	3250	98.0	45.9	138.6

Test #6 - Centrifuge Lower Torque (Cake Solids Control & Centrate Quality)

- Lowered torque from 50% to 42%
- Lowering the torque resulted in a wetter cake which could be useful when cake total solids are too dry for the incinerator

CENTRIFUGE No. 3B											
DATE, TIME, & RUN No.				CESS R	EADING	GS	LAB	RESUL	CALC'D RESULTS		
		Run	Feed	Scroll	Scroll	Bowl	Feed	Cake	Centrate	Feed	Solids
			Rate	Differ.	Torque	Speed	%	%	%	Loading	Recovery
Date	Time	Number	gpm	(RPM)	(%)	(RPM)	TS	TS	TS	dry lbs/hr	%
Thursday, August 1, 2024	12:30	1	250	2.0	50	2300	4.06	39.09	0.06	5077	98.7
Thursday, August 1, 2024	14:20	2	250	3.0	48	2300	4.06	38.61	0.24	5077	94.7
Thursday, August 1, 2024	14:30	3	250	4.0	46	2300	4.06	36.20	0.20	5077	95.6
Thursday, August 1, 2024	14:45	4	250	4.0	44	2300	4.06	35.29	0.21	5077	95.4
Thursday, August 1, 2024	14:55	5	250	4.0	42	2300	4.06	33.01	0.21	5077	95.4

Next Steps

Conclusion

- Optimization is a Continuous Process
- Understand Performance Links Among Various Parameters
- Maintain Operating Records to Identify Process & Operational Changes
- Take Action!

THANK YOU

Centrifuge Operational Adjustments Result in Cost Savings Opportunities at NEORSD

Brian Flannagan, NEORSD

FlanaganB@neorsd.org

Adam Parmenter, HDR

Adam.Parmenter@hdrinc.com

612-501-2010

