

Biosolids Management Decisions Considering Climate Change and Future Pollutants Mohammad Abu-Orf, PhD, National Biosolids Practice Leader March 26, 2024

Case Study: NYCDEP

- DEP is the largest combined water and wastewater utility in the United States, with 6,000 employees and an annual budget of more than \$1 billion.
- DEP's Bureau of Wastewater Treatment (BWT) operates 14 in-City WRRFs treating more than 1 billion gallons of wastewater per day and producing approximately 500,000 wet tons per year of residual biosolids.
- DEP's Office of Energy and Resource Recovery (OERR) is guiding DEP's efforts to meet Citywide energy and carbon reduction goals through the Energy and Carbon Neutrality Plan

NYC DEP Biosolids and Energy Plan

2025 • 35% GHGe Reduction • 20% Reduction in Energy Usage

2050

- 80% GHGe Reduction
- Energy Neutral Operations at WWTPs

2030 0 Waste to Landfills

A strategic plan to optimize biosolids management and increase resource recovery through beneficial use

Objectives

- Provide a tool that allows DEP flexibility to evaluate the carbon footprint impacts for portfolio wide biosolids management
- Provide data to evaluate the potential impact of different decisions
- Develop example Roadmap to 2050

Approach

Multi-Criteria Decision Analysis (MCDA)

"We can't just consider cost! What about the other stakeholders' concerns..."

- Breaks Complex problems down into smaller and more consistent pieces
- Competing pros and cons are documented
 - Different stakeholders:
 - Different objectives and priorities
 - Different hopes and fears

MCDA Process

Model Blocks

Process Blocs

Product Blocks

• End-use Blocks

Process Blocs

Products Blocks

- Undigested Sludge
- Class A Liquid Biosolids
- Class B Liquid Biosolids
- Unclassified Digested Sludge
- Class A Cake
- Class B Cake
- Unclassified Cake
- Class A Dried
- Blended Product (e.g. Bloom)

- Compost
- Raw Biogas
- Conditioned Biogas
- Syngas
- Biochar
- Biodiesel
- Biomass/Energy Crops
- Ash

End-Use Blocks

Disposal/ Destruction

Landfill

Incineration

Beneficial Use

Land Application

Urban Agriculture

Rangeland

Land Reclamation

Land Application to Grow Energy Crops **Energy Recovery**

Vehicle Use

Pipeline Injection

Solid Fuel

Engine

2050 Final Scenarios

RNG = Renewable Natural Gas ICE = Internal Combustion Engine MVR = Mechanical Vapor Recompressing

									End	
Scenario	1.	2.	3.	4.	5B	6	Digester Gas	Post-processing	to Energy	End-Product Fate*
1	Yes	No	Yes	-	-	-	RNG to Pipeline	Compost	-	Class A to Agriculture
2	Yes	No	No	No	No	Yes	RNG to Pipeline	MVR	Biomass Boiler	Ash to concrete
3	Yes	No	Yes	-	-	-	RNG to Pipeline	_	-	Residuals to Land reclamation
4	Yes	No	No	No	No	No	RNG to Pipeline	MVR/Pyrolysis	Syngas to ICE	Biochar to Urban Ag
5	Yes	No	No	No	No	No	RNG to Pipeline	MVR/Pyrolysis	Syngas to ICE	Biochar to Agriculture
										Biochar to Land
6	Yes	No	No	No	No	No	RNG to Pipeline	MVR/Pyrolysis	Syngas to ICE	Reclamation
7	Yes	Yes	Yes	-	-	-	RNG to Pipeline	-	-	Class A to Urban Ag
8	Yes	Yes	Yes	-	-	-	RNG to Pipeline	_	-	Class A to Agriculture
										Class A to Land
9	Yes	Yes	Yes	-	-	-	RNG to Pipeline	-	-	Reclamation
10	Yes	No	Yes	-	-	-	Fuel Cells	_	-	Residuals to Agriculture

*DEP is targeting minimum Class B for dewatered residuals applied to land

Technologies that Meets NYC Future

Scenario	Scenario Description	Scenario	Scenario Description	
А	2018 Baseline	5	2050 Digested, dried residuals to Pyrolysis, Biochar to Agriculture	
р	2020 Baseline	6	2050 Digested, dried residuals to Pyrolysis, Biochar to Land	
В		0	Reclamation	
1	2050 Compost – Class A to Land	7	2050 THP, Class A to Urban Agriculture	
2	2050 Digested, dried residuals to Solid Fuel	8	2050 THP, Class A to Agriculture	
3	2050 Digested residuals to Land Reclamation	9	2050 THP, Class A to Land Reclamation	
4	2050 Digested, dried residuals to Pyrolysis,	10	2050 Biogas to Fuel Cells, Digested residuals to Agriculture	
	Biochar to Urban Agriculture			

Conclusion and Path forward

- Example of cutting edge biosolids planning using carbon footprint reduction as the lens for planning
- Portfolio of technologies able to meet future pollutants
- Study produced new information regarding impact of end-use and markets on life cycle carbon footprint, including different methods of land application
- Justifies diversified portfolio with multiple beneficial use options

Thank you mabuorf@hazenandsawyer.com

Example Scenario Model Run