

E: 0ffice@astaria.co.uk

W: https://astaria.co.uk/

Security Assessment
Prepared For

AppCheck Labs

Document Revision

Initial Report Prepared By: AppCheck-NG Version: 1.0

Assessment Schedule

Assessment Performed on Thursday 13 June 2020

Report Prepared on Thursday 13 June 2020

|

mailto:0ffice@astaria.co.uk

2

1.1. Contents .. 2

2. Project Overview ... 3

2.1. Scanning methology overview ... 3

2.2. Scan Scope ... 3

3. Summary of Vulnerabilities: High / Medium ... 4

3.1. Graphical Summary ... 5

3.2. HIGH Impact Vulnerabilities .. 6

3.3. Medium Impact Vulnerabilities ... 9

4. Assessment Results ... 10

4.1. Content Variance SQL Injection: Microsoft SQL Server ... 10

4.2. Error based SQL Injection .. 12

4.3. Highly privileged SQL user account detected .. 14

4.4. User passwords stored in clear-text .. 15

4.5. AWS: S3 Bucket write permission granted to All AWS users ... 16

4.6. Possible External Service Takeover: Amazon S3 via cloudfront .. 17

4.7. Sentinel: Password Reset Buffer Truncation Vulnerability .. 19

4.8. Source Code Disclosure via Path manipulation ... 20

4.9. Reflected Cross-site Scripting (Exploited) .. 22

4.10. Cross-Site Scripting via postMessage (process_message_event) ... 26

4.11. Remote Code Execution via Insecure File Upload ... 28

4.12. Vulnerable JavaScript Libraries Detected ... 29

4.13. Padding Oracle .. 31

4.14. HTTP Header Injection .. 32

4.15. Security Headers Report ... 34

4.16. Subdomain Takeover Audit... 36

5. Extended Information .. 38

5.1. Port Scan .. 38

1.1. CONTENTS

3

 2. PROJECT OVERVIEW

AppCheck includes two distinct scanning engines designed to test Web Applications and computer systems for
vulnerabilities.

Application Scanning

For each URL configured with the scan, AppCheck performs online reconnaissance to gather information
pertaining to the site that is publicly available in search engines and other online indexing services.

Next, AppCheck will map out the application using a sophisticated crawling engine. The crawler combines
traditional web scraping with a browser-based crawler which implements artificial intelligence to mimic typical
application user behaviour.

The “Mapped Attack Surface” enumerated during the initial phases of the scan, is then subject to methodical
security testing. Typically, the assessment process works by taking each user supplied data component, such as
a form field of query string parameter, then modifies it to include a specific test case before submitting it to
the server. Based on the applications response, further test cases are then submitted through the same
method to confirm the vulnerability.

Common vulnerabilities detected during the web application scan include; Injection flaws such as SQL, NoSQL,
XML, Code, and Command injection, Cross-Site Scripting and hundreds of other vulnerability classes arising
from insecure code.

Infrastructure & Platform Scanning

In this context, Infrastructure includes all components that are not covered within the application scanning
phase. The infrastructure scan beings by port scanning each host to identified accessible services. Each service
is then probed for vulnerabilities such as missing security patches, configuration weaknesses and information
disclosure vulnerabilities.

Common vulnerabilities detected during the infrastructure scanning phase include; missing operating system
patches, weak administrative passwords and access control vulnerabilities.

If the target system is hosted within Amazon Web Services, Google Cloud or Azure, specific configuration
assessment modules are launched to identify common configuration weaknesses.

The following web applications were defined within the scope for this assessment:

Application URLs / IP Addresses

http://shop.appcheck.com/

http://catalog.appcheck.com/

2.1. SCANNING METHOLOGY OVERVIEW

2.2. SCAN SCOPE

http://shop.appcheck.com/
http://catalog.appcheck.com/

4

 3. SUMMARY OF VULNERABILITIES: HIGH / MEDIUM

Vulnerability Impact Ratings

HIGH

HIGH: Successful exploitation could lead to highly privileged access to the target
host or cause a denial of service condition.

Vulnerabilities are labelled "HIGH" severity if they have a CVSS base score of 7.0
-10.0.

Medium

Medium: Exploitation of the vulnerability will not directly lead to privileged
access to the host, service or data. However, vulnerabilities with a Medium
impact can often be combined with other flaws to elevate their impact.

Vulnerabilities will be labelled "Medium" severity if they have a base CVSS score
of 4.0-6.9

Low

Low: This impact rating is assigned to vulnerabilities that, when exploited in
isolation, have a negligible impact on security. Typically, vulnerabilities that
disclose information that may be useful to the attacker are considered to have a
low impact.

Vulnerabilities are labelled "Low" severity if they have a CVSS base score of 0.0-
3.9.

5

Key findings have been ranked and positioned in the following table according to the relative risk or probability
of exploit. Vulnerabilities are split into 3 impact categories: High, Medium and Low. Risk is calculated by
comparing the impact vs. the probability of exploit which is represented using colour coding.

3.1. GRAPHICAL SUMMARY

Vulnerability Summary

10

9

8

7

6

5

4

3

2

1

0

 Probability

High

Medium

5 1

1

1

Low

1

High Medium

Impact

Low

N
u

m
b

e
r

o
f

V
u

ln
e

ra
b

ili
ti

e
s

6

The following vulnerabilities have been assigned a HIGH impact rating. Successful exploitation of these vulnerabilities could lead to highly privileged access to the affected
host or data or a denial of service condition.

Impact / Ref Description Affected Hosts

CVSS: 9.4
Impact/Prob:

High/High

SQL Injection

SQL Injection Vulnerabilities were discovered within the listed resources and applications.

SQL injection vulnerabilities occur when client supplied data is included within an SQL Query without sanitisation.
This vulnerability could be exploited by a malicious attacker to read, modify, delete or create SQL table data. In
many cases it also possible to exploit features of SQL server to execute system commands and/or access the local
file system.

The following SQL Injection variants were detected:

Content Variance SQL Injection: Microsoft SQL Server

Error Based SQL Injection

http://catalog.appcheck.com

CVSS: 7.6

Impact/Prob:
High/High

Highly privileged SQL user account detected

The affected application appears to be using a default administrative account to connect to the backend database.
The use of a highly privileged account increases the impact of a SQL Injection vulnerability and could allow the
attacker to take complete control of the database host.

http://catalog.appcheck.com

CVSS: 6.2
Impact/Prob:

High/High

User passwords stored in clear-text

User registered account credentials appear to be stored in clear-text or reversible encryption.

AppCheck attempts to automatically register an account on the system using an email address that is later received
by the Sentinel out-of-band monitoring system. The same email address is used within password recovery forms to
determine if the password submitted during registration is sent back to the user.

If Sentinel receives the registered password via email, then the application must either store the password in clear-
text or using reversible encryption.

http://shop.appcheck.com

3.2. HIGH IMPACT VULNERABILITIES

http://catalog.appcheck.com/
http://catalog.appcheck.com/
http://shop.appcheck.com/

7

Impact / Ref Description Affected Hosts

CVSS: 9.4

Impact/Prob:
High/Medium

AWS: S3 Bucket write permission granted to All AWS users

An Amazon Web Servers (AWS) Simple Storage Service (S3) Bucket was found to be world writable. It is possible for
an attacker to upload files to this Bucket that can then be later downloaded by other users.

This flaw could be exploited to host malicious content or exploit other systems that rely on files stored within the
bucket.

https://s3.amazonaws.com

CVSS: 8.8

Impact/Prob:
High/Medium

Possible External Service Takeover: Amazon S3 via Cloudfront

A resource imported by or linked to the target application resolves to a CNAME record for a cloud-based service
that has been incorrectly registered or has been deleted.

It’s possible for an attacker to register this service and host malicious content which would then be automatically
linked to or imported by your application.

http://shop.appcheck.com

CVSS: 6.4

Impact/Prob:
High/High

Sentinel: Password Reset Buffer Truncation Vulnerability

A potential buffer truncation vulnerability was discovered within a password reset field. It may be possible to reset
another user’s password by exploiting this flaw.

http://shop.appcheck.com

CVSS: 5.0
Impact/Prob:
High/Medium

Source Code Disclosure via Path Manipulation

Path Traversal Vulnerabilities occur when server-side scripts process file paths supplied by client without correctly

validating the file path. This check determines if restricted files can be accessed by manipulating client supplied
input to include path traversal sequences such as ../ and ..\

http://catalog.appcheck.com

CVSS: 4.3
Impact/Prob:
High/Medium

Reflected Cross-site Scripting (Exploited)

Cross Site scripting vulnerabilities were discovered. A malicious attacker could exploit these flaws to perform a
social engineering attack against users of the affected application.

http://shop.appcheck.com

http://shop.appcheck.com/
http://shop.appcheck.com/
http://catalog.appcheck.com/
http://shop.appcheck.com/

8

Impact / Ref Description Affected Hosts

CVSS: 4.3

Impact/Prob:
High/Medium

Cross-Site Scripting via postMessage (process_message_event)

A postMessage handler function attached to the affected page implements a code pattern that is vulnerable to
Cross-Site Scripting (XSS). AppCheck detected this potential flaw by tracing Message Events through JavaScript
handler functions within the page then providing the flaw via client-side exploitation.

http://shop.appcheck.com

CVSS: 9.4

Impact/Prob:
High/High

Remote Code Execution via Insecure File Upload

AppCheck identified a form that permits server scripts to be uploaded and executed on the server. A malicious
attacker could exploit this flaw to execute system commands on the server.

http://catalog.appcheck.com

http://shop.appcheck.com/
http://catalog.appcheck.com/

9

The following vulnerabilities have been assigned a Medium impact rating.

Impact / Ref Description Affected Hosts

CVSS: 5.1
Impact/Prob:
Medium/Low

Vulnerable JavaScript Libraries Detected

One or more outdated JavaScript libraries were detected. The presence of a vulnerable library does not
necessarily mean that the application is vulnerable, however the library could allow a vulnerability to be
introduced even when secure code practices are followed.

http://shop.appcheck.com

CVSS: 5.0

Impact/Prob:
Medium/High

Padding Oracle

A web application hosted on the remote server is potentially prone to a padding oracle attack.

http://shop.appcheck.com

CVSS: 4.3
Impact/Prob:

Medium/Medium

HTTP Header Injection

The listed web application is vulnerable to one or more header injection vulnerabilities. HTTP header injection
vulnerabilities occur when user-supplied data is copied into a response header in an unsafe way. If an attacker
can inject newline characters into the header, then they can insert new malicious headers into the servers
response. A number of attacks are possible by exploiting this flaw such as HTTP Response Splitting, Session
Fixation, URL Redirection and Cross Site Scripting.

http://catalog.appcheck.com

3.3. MEDIUM IMPACT VULNERABILITIES

http://shop.appcheck.com/
http://shop.appcheck.com/
http://catalog.appcheck.com/

10

CVSS Score: 9.4 CVSS Vector: AV:N/AC:L/Au:N/C:C/I:C/A:N Impact/Probability: High/High

Affected: http://catalog.appcheck.com

SQL injection vulnerabilities occur when client supplied data is included within an SQL Query without sanitisation. This vulnerability could be exploited by a malicious
attacker to read, modify, delete or create SQL table data. In many cases it also possible to exploit features of SQL server to execute system commands and/or access the
local file system.

4.1.1. REMEDIATION

The most effective way to prevent SQL injection attacks is to use prepared statements, also known as paramaterized or binded queries. This method separates out the
structure of the query from the data therefore preventing the query from being manipulated in an unsafe way.

You should review the documentation for your database and application platform to determine the appropriate APIs which you can use to perform parameterized
queries.

Data processed from an external source such as user input should be subject to an input validation filter. The most secure approach is to white list known good characters
such as those within the Aa-Zz range and deny all others.

To gain a better understanding of SQL Injection issues and to learn different methods of preventing the problem see the following resources:

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

4.1.2. TECHNICAL OVERVIEW

Vulnerable parameters:

App URI Parameter

http://catalog.appcheck.com /product_detail.aspx payload.product_id

4. ASSESSMENT RESULTS

4.1. CONTENT VARIANCE SQL INJECTION: MICROSOFT SQL SERVER

http://catalog.appcheck.com/
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://catalog.appcheck.com/

11

4.1.3. TECHNICAL ANALYSIS

Affected Component: http://catalog.appcheck.com/product_detail.aspx [param: payload.product_id]

The SQL Injection flaw was identified by injecting multiple SQL statements designed to return different application responses. This test attempts to identify the backend
platform by injecting SQL statements that will only successfully execute on a specific database or platform, in this case; "Microsoft SQL Server".

Detection Payloads

The following payload evaluates to True when executed by the database server:

1 AND 292-(sElEcT @@PACK_RECEIVED-@@PACK_RECEIVED)-249=292-(sElEcT @@PACK_RECEIVED-@@PACK_RECEIVED)-249 OR 1234=4321

Conversely, the following payload evaluates to False:

1 AND 160-(sElEcT @@PACK_RECEIVED-@@PACK_RECEIVED)-109=986-(sElEcT @@PACK_RECEIVED-@@PACK_RECEIVED)-934 OR 1234=4321

By sampling the applications response under True/False injections, AppCheck identified a string that is returned when the statement is True but is never returned when
the statement is False.

String Matching:

The following string is returned when a SQL statement is injected that evaluates to True:

<td height="20" colspan="5" align="right" bgcolor="#f7f7f7" class="basketmiddle">Surplus delivery charges for Europe or Rest of
the World will be calculated on the Checkout page</td>

http://catalog.appcheck.com/product_detail.aspx

12

CVSS Score: 9.4 CVSS Vector: AV:N/AC:L/Au:N/C:C/I:C/A:N Impact/Probability: High/High

Affected: http://catalog.appcheck.com

SQL injection vulnerabilities occur when client supplied data is included within an SQL Query without sanitisation. This vulnerability could be exploited by a malicious
attacker to read, modify, delete or create SQL table data. In many cases it also possible to exploit features of SQL server to execute system commands and/or access the
local file system.

4.2.1. REMEDIATION

The most effective way to prevent SQL injection attacks is to use prepared statements, also known as parameterized or binded queries. This method separates out the
structure of the query from the data therefore preventing the query from being manipulated in an unsafe way.

You should review the documentation for your database and application platform to determine the appropriate APIs which you can use to perform parameterized
queries.

Data processed from an external source such as user input should be subject to an input validation filter. The most secure approach is to white list known good characters
such as those within the Aa-Zz range and deny all others.

To gain a better understanding of SQL Injection issues and to learn different methods of preventing the problem see the following resources:

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

4.2.2. TECHNICAL OVERVIEW

Vulnerable parameters:

App URI Parameter

http://catalog.appcheck.com /product_list.aspx?cat1=1 cat1

4.2. ERROR BASED SQL INJECTION

http://catalog.appcheck.com/
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://catalog.appcheck.com/

13

4.2.3. TECHNICAL ANALYSIS

http://catalog.appcheck.com/product_list.aspx?cat1=1 [param: cat1]

Technical Details

A SQL Injection vulnerability was detected by injecting a payload designed to return a specific token within application error messages. Each injected payload is designed
to only return the token when executed by a specific SQL server, in this case "Microsoft SQL Server".

Injected Payload:

1 AND 1234=convert(int,char(0x33)+char(0x5f)+char(0x31)+char(0x5f)+char(0x33)+char(0x5f)+char(0x33)+char(0x5f)+char(0x37)) OR 1234=4321

Token returned by the server:

3_1_3_3_7

4.2.4. PROOF OF CONCEPT

To provide proof of concept, the SQL Injection flaw was exploited to extract a list of databases and table names from the database server.

List of databases: List of tables in current database:

• master

• master1

• MF20

• model

• msdb

• securesec

• tempdb

• users

• sqlmapoutput

• tblAdmin

• tblBrands

• tblCats

• tblEnquiries

• tblMailing

• tblMembers

• tblMembersAddress

• tblProductsOptions

• tblProductsReviews

• tblTestimonials

• tblVouchers

http://catalog.appcheck.com/product_list.aspx?cat1=1

14

CVSS Score: 7.6 CVSS Vector: AV:N/AC:H/Au:N/C:C/I:C/A:C Impact/Probability: High/High

Affected: http://catalog.appcheck.com

The affected application appears to be using a default administrative account to connect to the backend database. The use of a highly privileged account increases the
impact of a SQL Injection vulnerability and could allow the attacker to take complete control of the database host.

4.3.1. REMEDIATION

Create and deploy a new user account with the least amount of privilege necessary for the application to operate.

4.3.2. TECHNICAL ANALYSIS

Example: http://catalog.appcheck.com

Technical Summary

The following database server administrative user account was identified: sa

4.3. HIGHLY PRIVILEGED SQL USER ACCOUNT DETECTED

http://catalog.appcheck.com/
http://catalog.appcheck.com/

15

CVSS Score: 6.2 CVSS Vector: AV:L/AC:L/Au:S/C:C/I:C/A:N Impact/Probability: High/High

Affected: http://shop.appcheck.com

AppCheck attempts to automatically register an account on the system using an email address that is later received by the Sentinel out-of-band monitoring system. The
same email address is used within password recovery forms to determine if the password submitted during registration is sent back to the user.

If Sentinel receives the registered password via email, then the application must either store the password in clear-text or using reversible encryption. This presents
significant vulnerability since any attacker who is able to gain access to the user database and/or application is likely to also have access to user passwords.

4.4.1. REMEDIATION

User passwords should never be stored in clear-text, instead, a hash of the users password should be used.

• A strong password hashing algorithm should be used such as SHA-512 to help defend against offline attacks.

• Each password should be combined with a unique Salt value before hashing takes place to defend against

cryptanalysis attacks

See the following resource for further recommendations:

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

4.4.2. TECHNICAL ANALYSIS

Example: http://shop.appcheck.com/self_signup/reset_password

Technical Details

A user account was registered via http://shop.appcheck.com/self_signup/register with the email address owxgh0ag49@sentinel.pentesting.us and a password of
AppCh3ck!9fOCt.

The password reset feature was invoked via http://shop.appcheck.com/self_signup/reset_password returning the following email which appears to contain the clear
text password:

To complete registration please follow the URL: http://shop.appcheck.com/self_signup/activate?code=zCUarZfJmR

Your account password is AppCh3ck!9fOCt

4.4. USER PASSWORDS STORED IN CLEAR-TEXT

http://shop.appcheck.com/
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
http://shop.appcheck.com/self_signup/reset_password
http://shop.appcheck.com/self_signup/register
mailto:owxgh0ag49@sentinel.pentesting.us
http://shop.appcheck.com/self_signup/reset_password
http://shop.appcheck.com/self_signup/activate?code=zCUarZfJmR

16

CVSS Score: 9.4 CVSS Vector: AV:N/AC:L/Au:N/C:C/I:C/A:N Impact/Probability: High/Medium

Affected: https://s3.amazonaws.com

An Amazon Web Servers (AWS) Simple Storage Service (S3) Bucket was found to be world writable. It is possible for an attacker to upload files to this Bucket that can then
be later downloaded by other users. This flaw could be exploited to host malicious content or exploit other systems that rely on files stored within the bucket.

4.5.1. REMEDIATION

Review permissions on the affected S3 Bucket

4.5.2. TECHNICAL ANALYSIS

It is possible to write to the Amazon Web Services S3 bucket: https://s3.amazonaws.com/appcheck-news/ as any AWS user. The S3 bucket was referenced via the
following pages on the scanned application:

http://shop.appcheck.com/product_news/

4.5.3. PROOF OF CONCEPT

This flaw was detected by uploading the file: https://s3.amazonaws.com/appcheck-news/bqrfkqfssu.txt using the Amazon S3 API configured with AppCheck credentials
(which should have not explicit permissions set).

This file can then be downloaded by other users using the API or using a standard web browser. This flaw is typically introduced when the 'AuthenticatedUsers' group is
permitted write access to the bucket

4.5. AWS: S3 BUCKET WRITE PERMISSION GRANTED TO ALL AWS USERS

https://s3.amazonaws.com/appcheck-news/
http://shop.appcheck.com/product_news/
https://s3.amazonaws.com/appcheck-news/bqrfkqfssu.txt

17

CVSS Score: 8.8 CVSS Vector: AV:N/AC:M/Au:N/C:C/I:N/A:C Impact/Probability: High/Medium

Affected: http://shop.appcheck.com

A resource imported by or linked to the target application resolves to a CNAME record for a cloud-based service that has been incorrectly registered or has been deleted.
It’s possible for an attacker to register this service and host malicious content which would then be automatically linked to or imported by your application.

Subdomain Takeover Background

A 'Subdomain Takeover' vulnerability typically arises when a resource such as a JavaScript is loaded from an external domain which becomes publicly available (often
unexpectedly) and can be hijacked by another party. There are two different classes of Subdomain Takeover, each with a different underlying cause. The following
scenarios describe the most common cases:

CNAME / DNS Takeover

A Web site with a domain name of appcheck.com uses a CNAME record to another domain, for example:

static.appcheck.com CNAME cndserver.otherdomain.com

At some point in time, otherdomain.com expires and is available for registration by anyone. Since the CNAME record is not removed from then appcheck.com DNS zone,
anyone who registers otherdomain.com has full control over shop.appcheck.com until the DNS record is updated.

External Service / CDN Takeover

Modern web applications often make use of Content Delivery Networks (CDN) and third-party service provides in order to deploy static content, integrate services,
improve bandwidth efficiency and provide protection against DDoS attacks. Since the CDN or service resides on a different domain, most providers offer the ability to
delegate via CNAME. For example, consider a website with the address www.appcheck.com has an integrated shop provided by Shopify at
https://appcheckshop.myshopify.com. To allow users to deploy services with a friendlier recognisable name, Shopify (and many others) allow their services to be
accessed by creating a CNAME record that points to the hosted service. For example:

shop.appcheck.com CNAME appcheckshop.myshopify.com

4.6. POSSIBLE EXTERNAL SERVICE TAKEOVER: AMAZON S3 VIA CLOUDFRONT

http://shop.appcheck.com/
http://www.appcheck.com/

18

Now the user is able to access the resource at https://shop.appcheck.com which Shopify is configured to recognise as the shop configured at
appcheckshop.myshopify.com.

A vulnerability can arise is the hosted service expires, is deleted or was not correctly configured correctly allowing a malicious attacker to register the service and hijack
the domain.

4.6.1. REMEDIATION

Review the affected component to determine if the linked resource has expired, had its configuration changed or being deleted. Typically, this flaw is resolved by
addressing the issue with the third party, registering the affected domain or removing the link to it.

4.6.2. TECHNICAL ANALYSIS

A URL embedded within the page http://shop.appcheck.com/shoes/ was found to resolve to a CNAME for a third-party provider Amazon S3 via Cloudfront. A request to
this resource matches a signature that suggests it is not currently registered and could therefore be hijacked by a malicious attacker.

Parent Page: http://shop.appcheck.com/shoes/

External URL: http://deletedbucket.pentesting.us/file3.js

URL Matches

The output below shows references to the affected hostname deletedbucket.pentesting.us within the page:

...m a thrid party provider (AWS via cloudfront)

<script src='http://deletedbucket.pentesting.us/file3.js'></script>
appcheck</a...

External provider signatures

The output below shows references to signature “NoSuchBucket” within the services providers response:

<?xml version="1.0" encoding="UTF-8"?>
<Error><Code>NoSuchBucket</Code><Message>The specified bucket does not exist</Message><BucketName>de...

CNAME: deletedbucket.pentesting.us resolves to: d233da7fg936sj.cloudfront.net

http://shop.appcheck.com/shoes/
http://shop.appcheck.com/shoes/
http://deletedbucket.pentesting.us/file3.js
http://deletedbucket.pentesting.us/file3.js%27
http://www.appcheck.com/

19

CVSS Score: 6.4 CVSS Vector: AV:N/AC:L/Au:N/C:P/I:P/A:N Impact/Probability: High/High

Affected: http://shop.appcheck.com

A buffer truncation vulnerability was discovered within a password reset field. It may be possible to reset another users password by exploiting this flaw.

AppCheck identified this flaw by targeting a password reset form within the application. An email address discovered during the crawl phase was submitted along with a
long string of whitespace characters and a second email address. Upon receipt of an email to the AppCheck analyses the email to determine if contains password reset
information.

The flaw occurs when the password reset system truncates the supplied email address value before checking for it in the database. If the original buffer is then used when
the password reset email is sent, it is possible to supply additional recipients.

4.7.1. REMEDIATION

Validate the supplied value to ensure only trusted values are accepted. Alternatively review backend application processing to ensure the email address for the supplied
account is retrieved from the database and used as the target for the email.

4.7.2. TECHNICAL ANALYSIS

http://shop.appcheck.com/sentinel/sentinel_password_reset

Technical Details

AppCheck Submitted an email address found during the crawl phase; testuser1@appcheck.com followed by 128 white space characters then a second email address in
the format; ;yqdd5PszpP@sentinel.pentesting.us An email was then received by the AppCheck Sentinel Monitor indicating that the targeted form is vulnerable.

Recieved Email

Received: from [172.18.0.11] by 46.17.59.217 with ESMTP ;
Thu, 13 Jun 2019 14:20:12 +0100

To reset your password please access https://shop.appcheck.com/pwreset.aspx?token=182fa27a52ba1fba1

4.7. SENTINEL: PASSWORD RESET BUFFER TRUNCATION VULNERABILITY

http://shop.appcheck.com/
http://shop.appcheck.com/sentinel/sentinel_password_reset
mailto:testuser1@appcheck.com
mailto:%3Byqdd5PszpP@sentinel.pentesting.us

20

CVSS Score: 5.0 CVSS Vector: AV:N/AC:L/Au:N/C:P/I:N/A:N Impact/Probability: High/Medium

Affected: http://catalog.appcheck.com

Path Traversal Vulnerabilities occur when a server-side component process file paths supplied by client without correctly validating the file path. This check determines if
restricted files can be accessed by manipulating client supplied input to include path traversal sequences such as ../ and ..\ (and encoded variants)

Path traversal vulnerabilities could be exploited to access sensitive configuration information such as user databases and application source code.

4.8.1. REMEDIATION

Strictly validate user supplied input using a white list filter to ensure that complete file paths or directory traversal structures are not permitted. The following additional
recommendations were taken from; https://www.owasp.org/index.php/File_System#Path_traversal

• When a URI request for a file/directory is to be made, build a full path to the file/directory if it exists, and normalize all characters (e.g., %20 converted to

spaces).

• It is assumed that a 'Document Root' fully qualified, normalized, path is known, and this string has a length N. Assume that no files outside this directory can

be served. Ensure that the first N characters of the fully qualified path to the requested file is exactly the same as the 'Document Root'.

• Ensure the user cannot supply all parts of the path - surround the file request with your own path code.

• If forced to use user input for file operations, normalize the input before using in a file I/O API.

4.8.2. TECHNICAL OVERVIEW

Vulnerable parameters:

App URI Parameter

http://catalog.appcheck.com /download.aspx?pdf=Brochure.pdf pdf

4.8.3. TECHNICAL ANALYSIS

4.8. SOURCE CODE DISCLOSURE VIA PATH MANIPULATION

http://catalog.appcheck.com/
https://www.owasp.org/index.php/File_System#Path_traversal
http://catalog.appcheck.com/

21

Source Code Match

By submitting the payload ../download.aspx within the query.pdf parameter it was possible to disclose the source code of the download.aspx server-side script. This
typically occurs when the supplied parameter value is passed to a function designed to read local files and return the contents to the user. In this case the target script is
submitted in an attempt to disclose its source code. This vulnerability could be exploited to disclose application source code and the contents of configuration files and
scripts.

<%@ LANGUAGE="VBSCRIPT" %>

<% 'If InStr(request.querystring("file"),"../")=0 and InStr(request.querystring("file"),"%2E%2E%2F")=0 then

' ...

22

CVSS Score: 4.3 CVSS Vector: AV:N/AC:M/Au:N/C:N/I:P/A:N Impact/Probability: High/Medium

Affected: http://shop.appcheck.com

Cross Site Scripting (XSS) vulnerabilities occur when data submitted to the application is not properly handled before being embedded within the application's response or
stored for later retrieval.

Reflected XSS vulnerabilities are typically exploited by embedding malicious script code within links to the application. The attacker would then attempt to coerce the
user into following the maliciously crafted link via a social engineering attack such as a Phishing email.

Upon clicking the malicious link the embedded script code is inserted into the server's response and executed within user's web browser.

XSS vulnerabilities could by exploited to:

• Read user session cookies and submit them to the attacker. The attacker can then hijack the users session with the application.

• Access sensitive information stored within the body of the page such as HTML forms (or the entire page). The attacker could exploit this to read data

protected by the Same Origin policy.

• Perform "Onsite Request forgery". Since JavaScript executes within the context of the victim user it is possible to perform any action the user can perform.

The attacker could exploit XSS flaws to invoke dangerous functions such as "transfer funds".

• Deploy exploit frameworks (e.g. BeEF, XSSShell, XSS Harvest) to conduct maintain control of the users session even if the user browses away from the

affected page.

• Redirect the user to a malicious website.

• Deface the application.

4.9. REFLECTED CROSS-SITE SCRIPTING (EXPLOITED)

http://shop.appcheck.com/

23

4.9.1. REMEDIATION

To Prevent XSS attacks a multi-layered approach is recommended:

• Validate data against a white list of known good data

• Perform white-list based data sanitisation of output

• Apply validation in a context specific way, where possible avoiding inherently dangerous DOM areas such as JavaScript event handlers, existing scripts and

attribute names.

To Prevent XSS attacks a multi-layered approach is recommended. One of the key challenges when defending against XSS vulnerabilities is ensuring the defence matches
the context of the data being rendered within the page (DOM). For example, HTML Entity encoding tainted data may succeed when the data rendered directly within the
page body but would fail when the data is embedded within a JavaScript event handler.

As a first line of defence, it is recommended that all input originating from an untrusted source should be validated against "known good". This not only helps prevent XSS
but also other web application vulnerabilities.

Validate Input

Input received from the client should be strictly validated on the server side before any further processing takes place. The filter should use a "White List" approach by
only accepting "Known Good" characters. Validation should be performed on a per-field basis and should be as strict as possible. Ensure that data is canonicalised /
decoded before being compared to the filter (in line with the way data is used by the application when it is rendered).

Sanitize data based on a whitelist before embedding in the DOM (page)

Before rendering tainted data, it should be sanitized to ensure it cannot inject script code or otherwise manipulate the page in a dangerous way. Due to the different
ways browsers will interpret different parts of the DOM, the sanitisation should be specific to the context where it is used.

A common approach to data sanitisation involves defining a list of safe characters such as 0-9, A-Z,a-z then HTML Entity encoding or replacing any character that does not
fall within the allowed range. HTML Entity encoding is a method of representing any character in a way that will be displayed when rendered but not interpreted as
markup. Both named entities and decimal/hexadecimal values can be used.

For example, HTML entity encoding and opening tag character < could by represented as < (less than) or < to use its hexadecimal notation (0x3c translates to <).
The key benefit to this approach is that it allows the user of the application to input a range of characters and have them rendered as intended. However the attacker
would be prevented from injecting HTML tags as part of a Cross-Site Scripting attack.

It is however important to understand the context in which the sanitised data will be used or processed to ensure further decoding will not allow attacks against the
application. For example, if user input is embedded within an existing JavaScript event handler (e.g. onclick="userinput"), the browser will decode HTML entities before
use and therefore sanitisation in this context (using this method) is not effective.

24

The following describes some common areas of the DOM in which data originating from the user may be rendered along with some guidance on the encoding strategy to
use:

Page body: Data rendered within the page body, e.g. within the payload of a <div> or anywhere within the page outside of an attribute string or script should be white list
sanitised to HTML entity encode characters that are not within the range Aa-Zz, 0-9. Entity encoding coverts characters that are used to build DOM elements to an
alternative that is displayed but not interpreted as markup. E.g < is converted to < and > is converted to >

Attribute String: Data embedded within an attribute value should he sanitised so that it is not possible to break out of the attribute value into another context. For quote
delimited strings, quote characters could be escaped to read " for double quotes and ' for single quotes. This will prevent the attacker from breaking out of
the attribute value to embed a JavaScript event handler or form a new tag. URL/SRC attributes: Attributes that are used to store URLs, such as "href", "src" and "data"
may support the JavaScript protocol hander (javascript:code_to_execute). For these cases it is also important to strictly validate input against known good values to
ensure that the attacker cannot embed a JavaScript URL. Note that HTML entity encoding URLS is not effective and javascript:alert(1) would be decoded and
executed by the browser.

Script Blocks / Event-Handler attributes: Embedding tainted data within the script context is inherently dangerous and should be avoided if possible. For JavaScript data
values, e.g JSON elements, it is essential to ensure data is properly escaped to ensure the attacker cannot terminate the script using </script> (effective even if quotes are
escaped). Some JavaScript functions are almost never safe to use with untrusted data such as Eval() and window.setInterval().

4.9.2. TECHNICAL OVERVIEW

Vulnerable parameters:

App URI Parameter

http://shop.appcheck.com /get_shipping_info?data=id id

4.9.3. TECHNICAL ANALYSIS

http://shop.appcheck.com/get_shipping_info?data=id [param: id]

Accuracy

This vulnerability was confirmed through actual JavaScript execution. The following payload will execute the JavaScript code alert(1):

'-alert(1)-'

Encoding

Standard URL Encoding (IE Compatible)

http://shop.appcheck.com/
http://shop.appcheck.com/get_shipping_info?data=id

25

Technical Summary

Tainted data submitted to the application within the data (Query String) is insecurely embedded within an existing JavaScript Event Handler. It may be possible to add
inject JavaScript code via the affected parameter that will be executed when the handler is invoked. Payloads such as "-alert(1)-" or '-alert(1)-' will often demonstrate
this flaw by displaying an alert box.

Note: HTML Entity encoded data within an event handler is automatically decoded before being interpreted by the browser. Therefore, even when metacharacters such
as ' and " are HTML encoded (e.g. as ' and "), it is still possible to break out of quoted strings and inject JavaScript.

By injecting a ' delimiter it is possible to break out of the string context and append JavaScript The Example below shows the tainted value 'lvsFCqw added to the protocol
handler that would be executed when the hanlder is invoked by the browser:

• <iframe src='javascript:var x=1234lvsFCqw;alert(x);' >

Example Exploit URL

The following URL should trigger a JavaScript alert(1) when using the Firefox browser: http://shop.appcheck.com/get_shipping_info?data=id
%26%2339%3B%26%2345%3Balert%26%2340%3B1%26%2341%3B%26%2345%3B%26%2339%3B

http://shop.appcheck.com/get_shipping_info?data=id%20%26%2339%3B%26%2345%3Balert%26%2340%3B1%26%2341%3B%26%2345%3B%26%2339%3B
http://shop.appcheck.com/get_shipping_info?data=id%20%26%2339%3B%26%2345%3Balert%26%2340%3B1%26%2341%3B%26%2345%3B%26%2339%3B

26

 4.10. CROSS-SITE SCRIPTING VIA POSTMESSAGE (PROCESS_MESSAGE_EVENT)

CVSS Score: 4.3 CVSS Vector: AV:N/AC:M/Au:N/C:N/I:P/A:N Impact/Probability: Medium/Medium

Affected: http://shop.appcheck.com/facebook

A postMessage handler function attached to the affected page implements a code pattern that is vulnerable to Cross-Site Scripting (XSS). AppCheck detected this
potential flaw by tracing Message Events through JavaScript handler functions within the page then providing the flaw via client side exploitation.

Cross-Site Scripting

Cross Site Scripting (XSS) vulnerabilities occur when data submitted to the application is not properly handled before being embedded within the application's Page/DOM.

XSS vulnerabilities could by exploited to:

• Read user session cookies and submit them to the attacker. The attacker can then hijack the users session with the application.

• Access sensitive information stored within the body of the page such as HTML forms (or the entire page). The attacker could exploit this to read data

protected by the Same Origin policy.

• Perform "Onsite Request forgery". Since JavaScript executes within the context of the victim user it is possible to perform any action the user can perform.

The attacker could exploit XSS flaws to invoke dangerous functions such as "transfer funds".

• Deface the application.

4.10.1. REMEDIATION

Where possible the origin of postMessage events should be strictly validated to ensure the message originated from a trusted source. When regular expressions are used,
care should be taken to ensure wildcard expressions such as "." do not compromise the security of the validation.

For example, a regular expression defined as ^https*://www.appcheck.com$/ would also allow domains such as http://wwwXappcheck.com.

If processing code from any origin is expected behaviour, data should be safely encoded before being written to the DOM in a way that could allow JavaScript to be
embedded.

For example:

• Changing the page location based on message payload data.

• If the attacker is able to navigate the page to a Javascript: URI it is possible to execute malicious code in the context of the affected domain.

• Updating innerHTML / outerHTML attributes of an element.

http://shop.appcheck.com/facebook
http://wwwxappcheck.com/

27

4.10.2. TECHNICAL ANALYSIS

http://shop.appcheck.com/facebook

Technical Details

A postMessage Event Handler named process_message_event processed a message event insecurely.

Handler Code

function process_message_event(event){
if(event.origin.indexOf(window.location.hostname) == -1){

return
}

if(event.data.hasOwnProperty("url")){

redirectTo(event.data.url);
}

}

Dangerous function triggered at:

function redirectTo(url){
window.open(url);

}

Caller Code:

function redirectTo(url){
window.open(url);

}.. truncated.. see above for full code.

Description: If the attacker can control page navigation though window.open or by setting location.href. It is possible to perform a Cross-Site Scripting attack by supplying
a 'JavaScript:' URI

4.10.3. PROOF OF CONCEPT

The following postMessage payloads triggered JavaScript execution within the affected page:

{"url": "javascript:(opener||top).alert(551820052008)//<svg onload=top.alert(551820052008)>https://appcheck-ng.com"}

http://shop.appcheck.com/facebook

28

 4.11. REMOTE CODE EXECUTION VIA INSECURE FILE UPLOAD

CVSS Score: 9.4 CVSS Vector: AV:N/AC:L/Au:N/C:C/I:C/A:N Impact/Probability: High/High

Affected: http://catalog.appcheck.com

The affected application form does not correctly validate the uploaded file type and permits server-side scripts to be uploaded and executed on the server. This flaw
could be exploited by the attacker to upload a server-side script designed to allow remote command execution and other dangerous activity (commonly referred to as a
"webshell")

4.11.1. REMEDIATION

Strictly validate the uploaded file type to ensure only known good/benign files are permitted. File names should be fully decoded and canonicalized before being
validated ensuring path traversal structures such as ../ are not permitted. If possible, files should be stored outside of the web server root or subdirectory to prevent
direct access to the file. Directories used to store files should have script execute permissions revoked.

4.11.2. TECHNICAL OVERVIEW

Vulnerable parameters:

App URI Parameter

http://catalog.appcheck.com /upload_forms/upload_with_csrf payload.data.uploaded_file

4.11.3. TECHNICAL ANALYSIS

The HTML form found at http://catalog.appcheck.com/upload_forms/upload_with_csrf allows dangerous script files to be uploaded and executed on the server. The
vulnerability was identified by uploading a PHP script file designed to echo a dynamically generated string upon successful execution.

Script file name: Appcheck_CPpXu.php

Uploaded File Description: A PHP script designed to return a dynamically generated string (HnYmkOHQVKmKEMcdUtpj) when executed

Script File Contents:

<?php echo chr(72).chr(110).chr(89).chr(109).chr(107).chr(79).chr(72).chr(81).chr(86).chr(75).chr(109).chr(75).chr(69).chr(77).chr(99).chr(100).chr(85).chr(116
).chr(112).chr(106); ?>

String produced upon successful execution: HnYmkOHQVKmKEMcdUtpj

The uploaded script was executed by accessing the following URL: http://catalog.appcheck.com/upload_forms/render_php_file

http://catalog.appcheck.com/
http://catalog.appcheck.com/
http://catalog.appcheck.com/upload_forms/upload_with_csrf
http://catalog.appcheck.com/upload_forms/render_php_file

29

 4.12. VULNERABLE JAVASCRIPT LIBRARIES DETECTED

CVSS Score: 5.1 CVSS Vector: AV:N/AC:H/Au:N/C:P/I:P/A:P Impact/Probability: Medium/Low

Affected: http://shop.appcheck.com

One or more outdated JavaScript libraries were detected. The presence of a vulnerable library does not necessarily mean that the application is vulnerable,

however the library could allow a vulnerability to be introduced even when secure code practices are followed.

In some cases, the library may expose vulnerable components (including unused features) that are readily exploitable. AppCheck has encountered several
examples of this in the wild, some of which are analysed within our Hunting PostMessage vulnerabilities whitepaper: https://appcheck-ng.com/hunting-html-
5-postmessage-vulnerabilities/

This finding is reported to highlight components that should be updated to prevent vulnerabilities being introduced into otherwise secure code.

4.12.1. REMEDIATION

Upgrade the affected library to the latest release

4.12.2. AFFECTED LIBRARIES

Library Vulnerability Detail Affected Pages

jQuery jQuery before 3.4.0
Object.prototype
pollution

(CVE-2019-11358)

AppCheck analysed the jQuery library version by executing it within a local browser engine.
The detected version number 3.3.1 appears to be vulnerable to one or more known
security flaws.

Library Url: https://code.jquery.com/jquery-3.3.1.js

Vulnerable below version: 3.4.0

References

https://blog.jquery.com/2019/04/10/jquery-3-4-0-released/

https://nvd.nist.gov/vuln/detail/CVE-2019-11358

http://shop.appcheck.com/

http://shop.appcheck.com/
https://appcheck-ng.com/hunting-html-5-postmessage-vulnerabilities/
https://appcheck-ng.com/hunting-html-5-postmessage-vulnerabilities/
http://shop.appcheck.com/

30

Library Vulnerability Detail Affected Pages

jQuery XSS with location.hash
(CVE-2011-4969)

AppCheck analysed the jQuery library version by executing it within a local browser engine.
The detected version number 1.6.1 appears to be vulnerable to one or more known
security flaws.

Library Url: http://webappsim:8686/jquery/jquery.js

Vulnerable below version: 1.6.3

References

https://nvd.nist.gov/vuln/detail/CVE-2011-4969

http://research.insecurelabs.org/jquery/test/

https://bugs.jquery.com/ticket/9521

http://shop.appcheck.com/en/

jQuery Selector interpreted as
HTML (CVE-2012-6708)

AppCheck analysed the jQuery library version by executing it within a local browser engine.
The detected version number 1.6.1 appears to be vulnerable to one or more known
security flaws.

Library Url: http://webappsim:8686/jQuery/jQuery.js

Vulnerable below version: 1.9.0b1

References

http://bugs.jquery.com/ticket/11290

https://nvd.nist.gov/vuln/detail/CVE-2012-6708

http://research.insecurelabs.org/jquery/test/

http://shop.appcheck.com/en/

AngularJS Outdated angularjs
library detected: The
attribute usemap can
be exploited

AppCheck analysed the angularjs library version by executing it within a local browser
engine. The detected version number 1.1.5 appears to be vulnerable to one or more
known security flaws.

Library Url: http://shop.appcheck.com/ria_1/application.js

Below Version: 1.2.30

At or above: 1.0.0

References

https://github.com/angular/angular.js/blob/master/CHANGELOG.md#1230-patronal-
resurrection-2016-07-21

http://shop.appcheck.com/chat

http://research.insecurelabs.org/jquery/test/
http://shop.appcheck.com/en/
http://bugs.jquery.com/ticket/11290
http://research.insecurelabs.org/jquery/test/
http://shop.appcheck.com/en/
http://shop.appcheck.com/ria_1/application.js
http://shop.appcheck.com/chat

31

 4.13. PADDING ORACLE

CVSS Score: 5.0 CVSS Vector: AV:N/AC:L/Au:N/C:P/I:N/A:N Impact/Probability: Medium/High

Affected: http://shop.appcheck.com

A web application hosted on the remote server is potentially prone to a padding oracle attack.

By manipulating the padding on an encrypted string, it was possible to generate an error message that indicates a likely 'padding oracle' vulnerability. Such a vulnerability
can affect any application or framework that uses encryption improperly, such as some versions of ASP.net, Java Server Faces, and Mono. An attacker may exploit this
issue to decrypt data and recover encryption keys, potentially viewing and modifying confidential data.

4.13.1. REMEDIATION

Update the affected server software, or modify the affected scripts so that they properly validate encrypted data before attempting decryption.

4.13.2. TECHNICAL OVERVIEW

Vulnerable parameters:

App URI Parameter

http://shop.appcheck.com /userinfo/base64?v1=j2yaGy6J1K063T55dnGNbbQyUExnUlWFzJmxW%2bcApB/35y4zHVVEUz5NE06LfGXg v1

4.13.3. TECHNICAL ANALYSIS

Technical Summary

The Padding Oracle vulnerability was identified by observing the application's responses to a series of values that had a single bit changed before being returned to the
application in the 'query.v1' parameter.

The original base64 encoded value: 'j2yaGy6J1K063T55dnGNbbQyUExnUlWFzJmxW%2bcApB/35y4zHVVEUz5NE06LfGXg'.

The first test flipped the last bit resulting in: 'j2yaGy6J1K063T55dnGNbbQyUExnUlWFzJmxW+cApB/35y4zHVVEUz5NE06LfGXh'.

The second test flipped the first bit resulting in: 'D2yaGy6J1K063T55dnGNbbQyUExnUlWFzJmxW+cApB/35y4zHVVEUz5NE06LfGXg'.

The application's response to the first test had a status code begining with 5 and contained the string 'server error' which was not present in the other responses, this
indicates that the Padding Oracle vulnerability is present.

http://shop.appcheck.com/
http://shop.appcheck.com/

32

 4.14. HTTP HEADER INJECTION

CVSS Score: 4.3 CVSS Vector: AV:N/AC:M/Au:N/C:N/I:P/A:N Impact/Probability: Medium/Medium

Affected: http://catalog.appcheck.com

The listed web application is vulnerable to a header injection vulnerability. HTTP header injection vulnerabilities occur when user-supplied data is copied into a response
header in an unsafe way. If an attacker can inject newline characters into the header, then they can insert new malicious headers into the servers response. A number of
attacks are possible by exploiting this flaw such as HTTP Response Splitting, Session Fixation, URL Redirection and Cross Site Scripting.

To gain a better understanding of these issues see the following resources:

• http://www.owasp.org/index.php/HTTP_Response_Splitting

• http://www.owasp.org/index.php/XSS

• http://www.owasp.org/index.php/Session_Fixation

• http://en.wikipedia.org/wiki/HTTP_header_injection

4.14.1. REMEDIATION

If possible, applications should avoid copying user-controllable data into HTTP response headers. If this is unavoidable, then the data should be strictly validated to
prevent header injection attacks. In most situations, it will be appropriate to allow only short alphanumeric strings to be copied into headers, and any other input should
be rejected. At a minimum, input containing any characters with ASCII codes less than 0x20 should be rejected.

4.14.2. TECHNICAL OVERVIEW

Vulnerable parameters:

App URI Parameter

http://catalog.appcheck.com /account_login.aspx?origin=checkout_shipping.aspx origin

http://catalog.appcheck.com/
http://www.owasp.org/index.php/HTTP_Response_Splitting
http://www.owasp.org/index.php/XSS
http://www.owasp.org/index.php/Session_Fixation
http://en.wikipedia.org/wiki/HTTP_header_injection
http://catalog.appcheck.com/

33

4.14.3. TECHNICAL ANALYSIS

http://catalog.appcheck.com/account_login.aspx?origin=checkout_shipping.aspx [param: origin]

Technical Summary

By inserting the new line characters %0D%0A into the parameter value it was possible to inject a new HTTP header named testheaderxxx into the servers response

Manipulated Headers

Server: Microsoft-IIS/5.0

Date: Mon, 07 Jan 2019 15:31:22 GMT

X-Powered-By: ASP.NET

Connection: close

Location: account.aspx?origin=checkout_shipping.aspx

testheaderxxx: testval1&login=user

Content-Length: 121

Content-Type: text/html

Cache-control: private

http://catalog.appcheck.com/account_login.aspx?origin=checkout_shipping.aspx

34

 4.15. SECURITY HEADERS REPORT

CVSS Score: 0 CVSS Vector: Informational Impact/Probability: Informational

Affected: http://catalog.appcheck.com, http://shop.appcheck.com

Several security headers have been introduced in recent years to help mitigate certain attacks against web applications. This finding reports the result of an audit against
the most common headers.

See the Technical Details section for a description of audited header.

4.15.1. TECHNICAL ANALYSIS: HTTP://SHOP.APPCHECK.COM

Header Description

X-Frame-Options The X-Frame-Options HTTP response header can be used to indicate whether or not a browser should be allowed to render a page in a
<frame>, <iframe> or <object>. Sites can use this to avoid clickjacking attacks, by ensuring that their content is not embedded into other
sites. Available options include; DENY preventing all framing, SAMEORIGIN to allow framing by sites with the same origin. Some browsers
permit ALLOW-FROM http://www.appcheck.com to permit framing by a specific URL. However, this is not longer supported by Chrome.
In most cases 'X-Frame-Options: SAMEORIGIN' is the recommended option. Alternatively, Content-Security-Policy is the preferred option
when framing by some sites should be permitted.

Finding: Partial. The security header was found for some pages but not others.

For example, the following pages did not return the security header:

• http://shop.appcheck.com/landing/signout.html

• http://shop.appcheck.com/accounts/o8/id

• http://shop.appcheck.com/sitemap/sitemap_testfile.txt

• http://shop.appcheck.com/test.exe

• http://shop.appcheck.com/met_virus_sig.exe

http://catalog.appcheck.com/
http://shop.appcheck.com/
http://shop.appcheck.com/
http://www.appcheck.com/
http://shop.appcheck.com/landing/signout.html
http://shop.appcheck.com/accounts/o8/id
http://shop.appcheck.com/sitemap/sitemap_testfile.txt
http://shop.appcheck.com/test.exe
http://shop.appcheck.com/met_virus_sig.exe

35

Header Description

X-XSS-Protection X-XSS-Protection sets the configuration for the cross-site scripting filter built into most browsers. Recommended value 'X-XSS-Protection:
1; mode=block'.

Finding: Partial. The security header was found for some pages but not others.

For example, the following pages did not return the security header:

• http://shop.appcheck.com/landing/signout.html

• http://shop.appcheck.com/accounts/o8/id

• http://shop.appcheck.com/sitemap/sitemap_testfile.txt

X-Content-Type-Options X- Content-Type-Options stops a browser from trying to MIME-sniff the content type and forces it to stick with the declared content-type.
The only valid value for this header is X-Content-Type-Options: nosniff.

Finding: Partial. The security header was found for some pages but not others.

For example, the following pages did not return the security header:

• http://shop.appcheck.com/landing/signout.html

• http://shop.appcheck.com/accounts/o8/id

• http://shop.appcheck.com/sitemap/sitemap_testfile.txt

Content-Security-Policy Content Security Policy is an effective measure to protect your site from XSS attacks. By whitelisting sources of approved content, you can
prevent the browser from loading malicious assets.

Finding: Partial. The security header was found for some pages but not others.

For example, the following pages did not return the security header:

• http://shop.appcheck.com/landing/signout.html

• http://shop.appcheck.com/accounts/o8/id

• http://shop.appcheck.com/sitemap/sitemap_testfile.txt

• http://shop.appcheck.com/test.exe

• http://shop.appcheck.com/met_virus_sig.exe

Referrer-Policy Referrer Policy is a new header that allows a site to control how much information the browser includes with navigations away from a
document and should be set by all sites.

Finding: Missing. The security header was not found for any pages

http://shop.appcheck.com/landing/signout.html
http://shop.appcheck.com/accounts/o8/id
http://shop.appcheck.com/sitemap/sitemap_testfile.txt
http://shop.appcheck.com/landing/signout.html
http://shop.appcheck.com/accounts/o8/id
http://shop.appcheck.com/sitemap/sitemap_testfile.txt
http://shop.appcheck.com/landing/signout.html
http://shop.appcheck.com/accounts/o8/id
http://shop.appcheck.com/sitemap/sitemap_testfile.txt
http://shop.appcheck.com/test.exe
http://shop.appcheck.com/met_virus_sig.exe

36

 4.16. SUBDOMAIN TAKEOVER AUDIT

CVSS Score: N/A CVSS Vector: N/A Impact/Probability: N/A

Affected: See table

External resources were audited for Subdomain and Service Take over vulnerabilities. This finding lists the audited domains that were assessed during this scan.

Subdomain Takeover Background

A 'Subdomain Takeover' vulnerability typically arises when a resource such as a JavaScript is loaded from an external domain which becomes publicly available (often
unexpectedly) and can be hijacked by another party. There are two different classes of Subdomain Takeover, each with a different underlying cause. The following
scenarios describe the most common cases:

CNAME / DNS Takeover

A Web site with a domain name of appcheck.com uses a CNAME record to another domain, for example:

static.appcheck.com CNAME cndserver.otherdomain.com

At some point in time, otherdomain.com expires and is available for registration by anyone. Since the CNAME record is not removed from then appcheck.com DNS zone,
anyone who registers otherdomain.com has full control over shop.appcheck.com until the DNS record is updated.

External Service / CDN Takeover

Modern web applications often make use of Content Delivery Networks (CDN) and thrid-party service provides in order to deploy static content, integrate services,
improve bandwidth efficiency and provide protection against DDoS attacks. Since the CDN or service resides on a different domain, most providers offer the ability to
delegate via CNAME. For example, consider a website with the address www.appcheck.com has an integrated shop provided by Shopify at
https://appcheckshop.myshopify.com. To allow users to deploy services with a more friendly recognisable name, Shopify (and many others) allow their services to be
accessed by creating a CNAME record that points to the hosted service. For example:

shop.appcheck.com CNAME appcheckshop.myshopify.com

Now the user is able to access the resource at https://shop.appcheck.com which Shopify is configured to recognise as the shop configured at
appcheckshop.myshopify.com.

A vulnerability can arise is the hosted service expires, is deleted or was not correctly configured correctly allowing a malicious attacker to register the service and hijack
the domain.

4.16.1. REMEDIATION

Review the audit output. Vulnerabilities are also reported individually with more verbose technical detail.

http://www.appcheck.com/

37

4.16.2. TECHNICAL ANALYSIS

4.16.3. CNAME CHECKS

The table below lists links to external resources that have a CNAME record pointing to a host in another domain. For each resource, the CNAME record is checked to
determine if the parent domain is currently registered.

Discovery URL External Resource CNAMEs Vulnerable

http://shop.appcheck.com/shoes/ http://deletedbucket.pentesting.us/file3.js deletedbucket.pentesting.us ->
d233da7fg936sj.cloudfront.net

False

http://shop.appcheck.com/shoes/ https://www.appcheck.com www.appcheck.com -> appcheck.com False

http://shop.appcheck.com/shoes/ https://code.jQuery.com/jQuery-3.3.1.js code.jQuery.com ->
cds.s5x3j6q5.hwcdn.net

False

4.16.4. EXTERNAL SERVICE CHECKS

Discovery URL External Resource Service Vulnerable

http://shop.appcheck.com/shoes/ http://deletedbucket.pentesting.us/file3.js Amazon S3 via Cloudfront

deletedbucket.pentesting.us ->
d233da7fg936sj.cloudfront.net

True

4.16.5. CHECKED EXTERNAL HOSTNAME DOMAINS (A RECORD & WHOIS)

Discovery URL External Resource Parent Domain Vulnerable

http://shop.appcheck.com/shoes/ http://www.w3.org/1999/xhtml w3.org False

http://shop.appcheck.com/shoes/ https://code.jQuery.com/jQuery-3.3.1.js jQuery.com False

http://shop.appcheck.com/shoes/ https://www.appcheck.com appcheck.com False

http://shop.appcheck.com/shoes/ http://deletedbucket.pentesting.us/file3.js pentesting.us False

http://shop.appcheck.com/shoes/
http://deletedbucket.pentesting.us/file3.js
http://shop.appcheck.com/shoes/
http://www.appcheck.com/
http://www.appcheck.com/
http://shop.appcheck.com/shoes/
http://shop.appcheck.com/shoes/
http://deletedbucket.pentesting.us/file3.js
http://shop.appcheck.com/shoes/
http://www.w3.org/1999/xhtml
http://shop.appcheck.com/shoes/
http://shop.appcheck.com/shoes/
http://www.appcheck.com/
http://shop.appcheck.com/shoes/
http://deletedbucket.pentesting.us/file3.js

38

 5. EXTENDED INFORMATION

Please review the following open ports. You should ensure there are no unnecessary ports or services open.

Host Port Service Version
catalog.appcheck.com 80 http Microsoft IIS/8.0

shop.appcheck.com 80 http Microsoft IIS/8.0

5.1. PORT SCAN

