

Per- and Polyfluoroalkyl Substances (PFAS) in Garden Produce: A Local Case Study from New Hampshire

Jonathan Petali, PhD, DABT Toxicologist

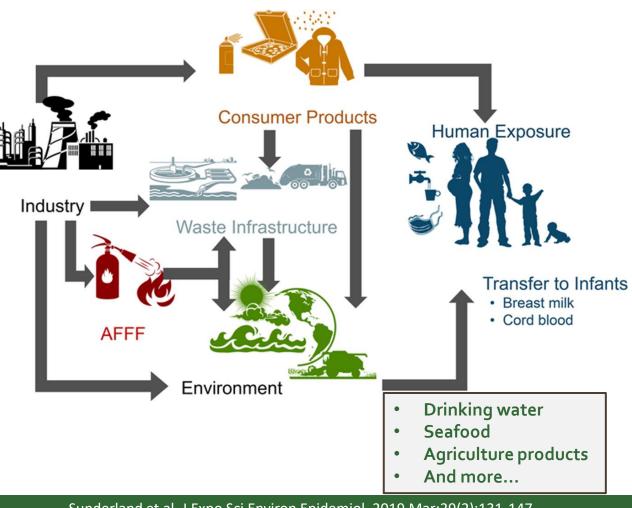
Environmental Health Program New Hampshire Department of Environmental Services

2023 NH ENVIRONMENTAL HEALTH CONFERENCE OCTOBER 26, 2023 | CONCORD, NH

Acknowledgements

Faculty at NHTI

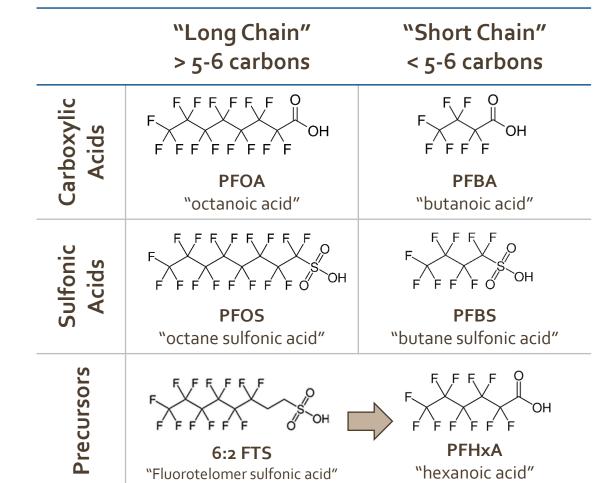
Tracey Lesser and Veronica Thibodeau Carter for their collaboration, technical support and willingness to work with NHDES.


Staff at the New Hampshire Department of Environmental Services (NHDES)

Amy Rousseau, Anthony Drouin, Kate Emma Schlosser, Jeff Marts, Karen Craver

Problematic Lifecycle of Per- and Polyfluoroalkyl Substances (PFAS)

- **Bioaccumulative** in people and wildlife.
- Importantly, certain PFAS can accumulate to toxic levels in people.


NEW HAMPSHIRE

Services

'Environmental

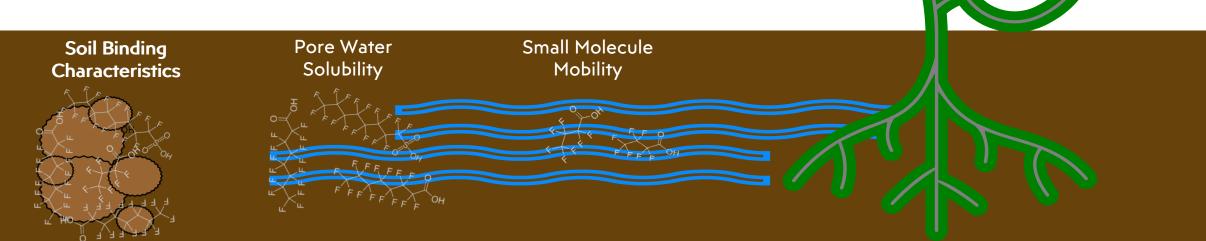
Per- and Polyfluoroalkyl Substances (PFAS): The Long and Short of It

- **Persistent** & **mobile** in the environment.
- **Bioaccumulative** in people and wildlife.
- Importantly, certain PFAS can accumulate to toxic levels in people.
- These features are **influenced by the chemistry** of specific PFAS.

NEW HAMPSHIRE

Services

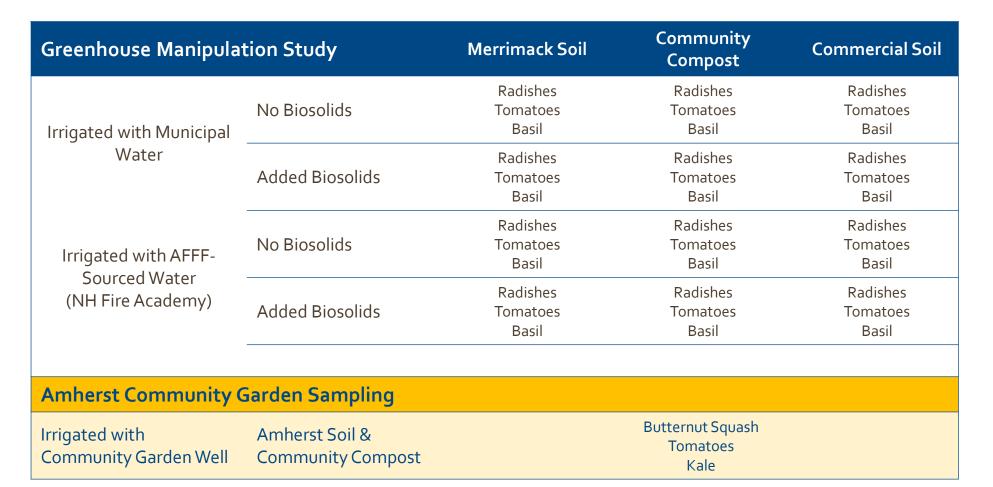
Environmental



What about PFAS Uptake in Plants?

What controls PFAS uptake into plants?

- 1. Binding to soil matter reduces root uptake
- 2. Solubility in "pore" water increases root uptake
- 3. Shorter "chain length" increases root uptake
- 4. Certain plants may have "selective uptake"
- 5. All of this is likely **concentration dependent**

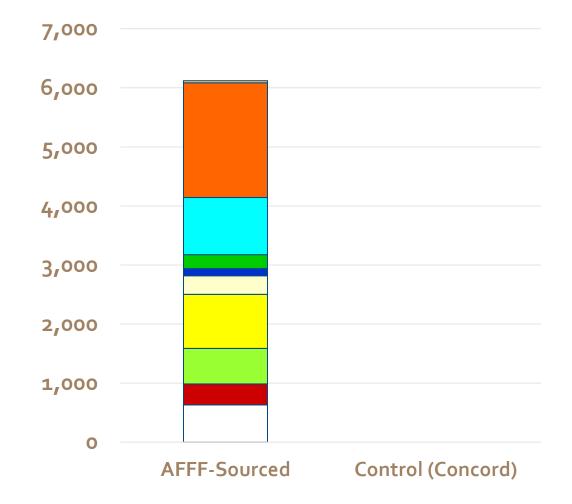


Question: What are the effects of soil, irrigation source and amendments on PFAS uptake in common garden produce?

NEW HAMPSHIRE DEPARTMENT OF

Services

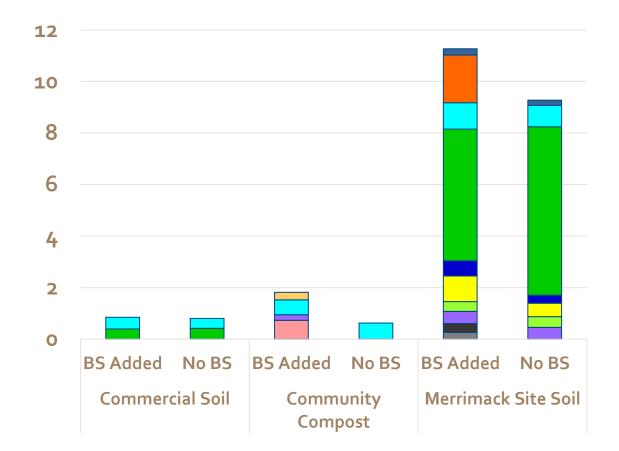
'Environmental



Average PFAS Concentrations (ng/L or ppt) Water Treatments for NHTI Study

- Water treatments consisted of two types:
 - **Control water** was City of Concord public water.
 - Aqueous film forming foam (AFFF)sourced water was from a monitoring well at the NH Fire Academy.
- Analyzed by Alpha Analytical for 23 PFAS analytes.

 "Short" Chain		"Long" Chain		Precursor
 PFAS		PFAS		PFAS
PFBA		PFHpA		6:2 FTS
PFBS		PFHpS		PFEESA
PFPeA		PFOA		N-EtFOSA
PFPeS		PFOS		N-MeFOSA
PFHxA		PFNA		
PFHxS		PFDA		
		PFUnA		
		PFDoA		
		PFTrDA		


PRELIMINARY DATA ANALYSIS – DO NOT CITE

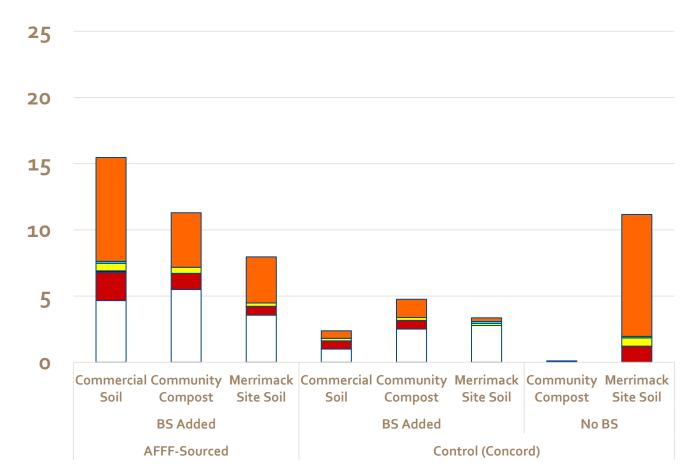
Average PFAS Concentrations (ng/g or ppb) in Soil Treatments for NHTI Study

- Analyzed by Alpha Analytical for 23 PFAS analytes.
- Only 13 PFAS above detection limits.
- Additional soil parameters collected for this study.
 - % carbon content, soil texture, pH, nutrient content, calcium, etc.

 "Short" Chain PFAS		"Long" Chain PFAS		Precursor PFAS	
PFBA		PFHpA		6:2 FTS	
PFBS		PFHpS		PFEESA	
PFPeA		PFOA		N-EtFOSA	
PFPeS		PFOS		N-MeFOSA	
PFHxA		PFNA			
PFHxS		PFDA			
		PFUnA			
		PFDoA			
		PFTrDA			

Plant Sampling & Analyses

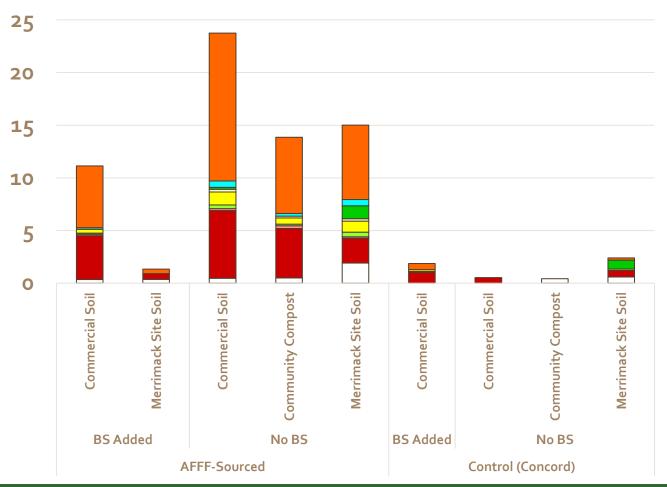
Greenhouse Manipul	ation Study	Merrimack Soil	Community Compost	Commercial Soil
Irrigated with Municipal	No Biosolids	Radishes Tomatoes Basil	Radishes Tomatoes Basil	Radishes Tomatoes Basil
Water	Added Biosolids	Radishes Tomatoes Basil	Radishes Tomatoes Basil	Radishes Tomatoes Basil
Irrigated with AFFF-	No Biosolids	Radishes Tomatoes Basil	Radishes Tomatoes Basil	Radishes Tomatoes Basil
Sourced Water	Added Biosolids	Radishes Tomatoes Basil	Radishes Tomatoes Basil	Radishes Tomatoes Basil
		Grown and sampl	ed	Failed to grow


Sample sizes of 2-11 for each available plant in each treatment combination.

Average PFAS Concentrations (ng/g) in Tomato Fruit from NHTI Study

- Analyzed by SGS AXYS for 39 types of PFAS analytes.
- Predominantly short chain and precursor PFAS.
- None exceed <u>current</u> screening levels.

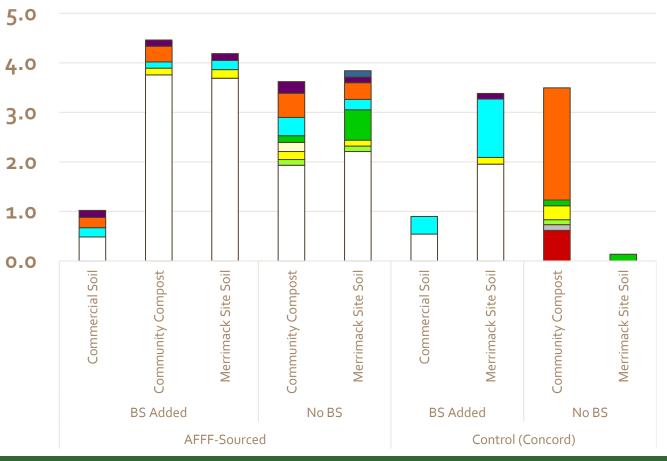
"Short" Chain PFAS		"Long" Chain PFAS		Precursor PFAS
	PFBA	PFHpA		6:2 FTS
	PFBS	PFHpS		PFEESA
	PFPeA	PFOA		N-EtFOSA
	PFPeS	PFOS		N-MeFOSA
	PFHxA	PFNA		
	PFHxS	PFDA		
		PFUnA		
		PFDoA		
		PFTrDA		

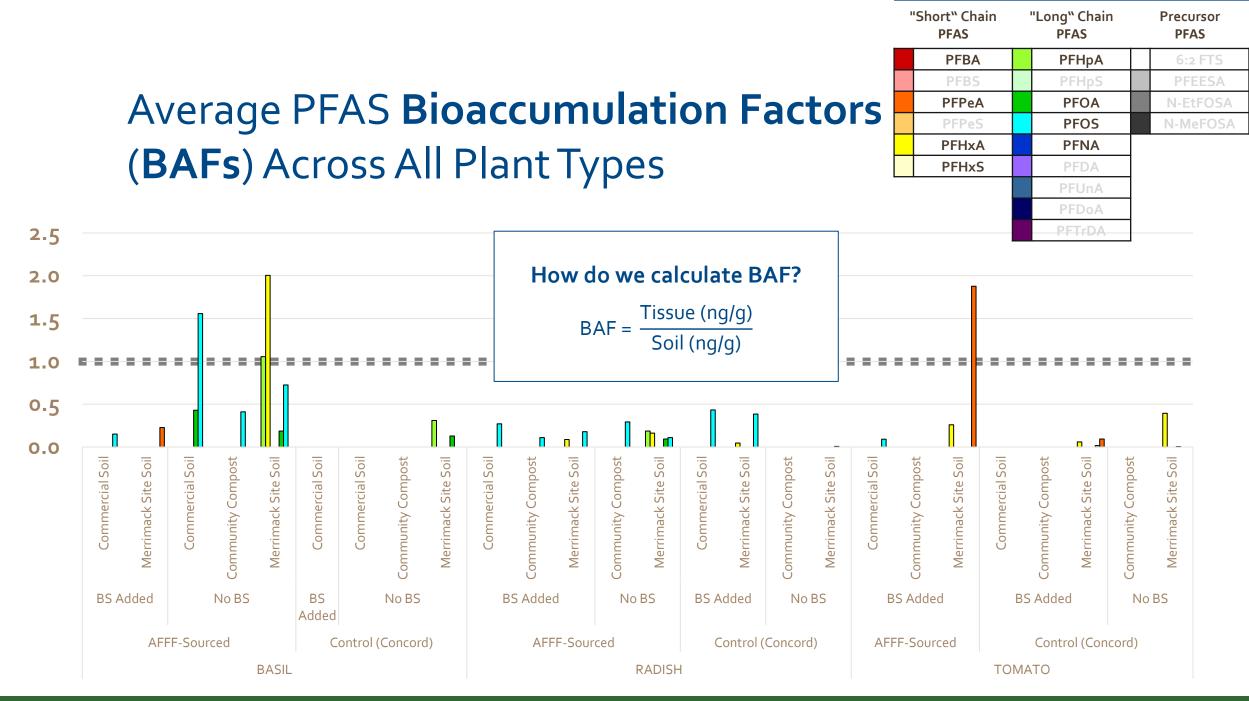


Average PFAS Concentrations (ng/g) in Basil Leaves from NHTI Study

- Analyzed by SGS AXYS for 39 types of PFAS analytes.
- Predominantly short chain and precursor PFAS.
- None exceed <u>current</u> screening levels.

"Short" Chain PFAS		'	"Long" Chain PFAS		Precursor PFAS	
	PFBA		PFHpA		6:2 FTS	
	PFBS		PFHpS		PFEESA	
	PFPeA		PFOA		N-EtFOSA	
	PFPeS		PFOS		N-MeFOSA	
	PFHxA		PFNA			
	PFHxS		PFDA			
			PFUnA			
			PFDoA			
			PFTrDA			

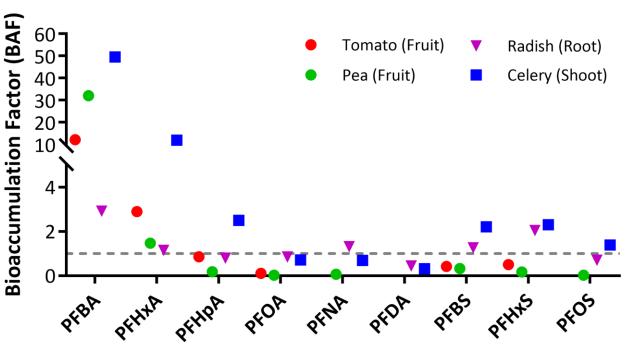




• *NOTEY-AXIS SCALE CHANGE*

- Analyzed by SGS AXYS for 39 types of PFAS analytes.
- More long chain PFAS present than basil or tomato samples.
- None exceed *current* screening levels.

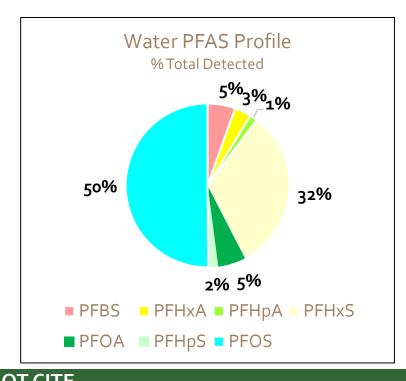
"Short" Chain PFAS		'	"Long" Chain PFAS		Precursor PFAS
	PFBA		PFHpA		6:2 FTS
	PFBS		PFHpS		PFEESA
	PFPeA		PFOA		N-EtFOSA
	PFPeS		PFOS		N-MeFOSA
	PFHxA		PFNA		
	PFHxS		PFDA		
			PFUnA		
			PFDoA		
			PFTrDA		



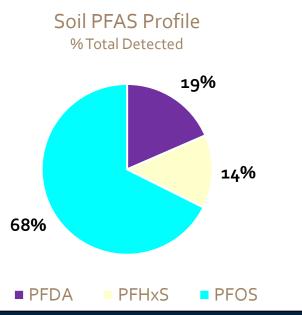
Considering PFAS BAFs from other studies in similar garden produce

Current Study								
PFAS	Basil	Tomato	Radish					
6:2 FTS	*	*	*					
PFBS	*	*	*					
PFBA	*	*	*					
PFPeA*	n.do.23	0.09-1.88	*					
PFHxA*	n.d-2.00	0.06-0.39	0.06-0.16					
PFHpA	0.31-1.06	*	n.d0.19					
PFOA	0.13-0.43	*	0.01-0.09					
PFNA	*	*	*					
PFOS	0.09-1.56	0.005-0.092	0.01-0.43					

Figure of PFAS BAFs Identified by ITRC

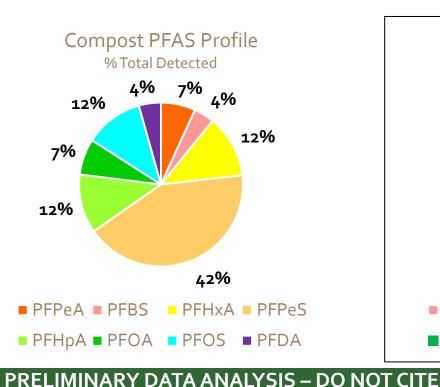

Data for this Figure are from the Interstate Technology & Regulatory Council's (ITRC) PFAS Guidance Document (Table 5-2; <u>https://pfas-1.itrcweb.org/</u>) and Blaine, et al. 2014. Perfluoroalkyl Acid Distribution in Various Plant Compartments of Edible Crops Grown in Biosolids-Amended Soils. Environ. Sci. Technol. 48: 7858-7865.

What about the findings from sampling the Amherst Community Garden?



WATER

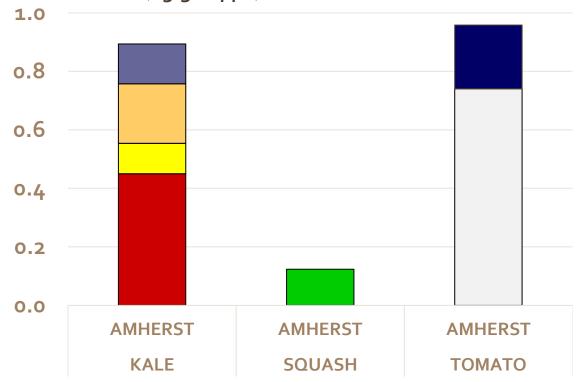
Sum of <u>Measurable</u> Concentrations = 129.51 ng/L or parts-per-trillion (ppt)


SOIL Sum of <u>Measurable</u> Concentrations = 3.95 ng/g or parts-per-billion (ppb)

PFAS that were NOT DETECTED in any samples: PFBA, PFNA, PFUnA, PFDoA, NMeFOSE, NEtFOSAA, PFOSA, NMeFOSAA, 4:2 FTS, 6: FTS, 8:2 FTS, 5:3 FTCA, 7:3 FTCA

Sum of <u>Measurable</u> Concentrations = 6.27 ng/g or parts-per-billion (ppb)

What about the findings from the Amherst Community Garden?


- *NOTEY-AXIS SCALE*
- Analyzed by SGS AXYS for 39 types of PFAS analytes.
- Fewer PFAS and lower concentrations than simulated scenarios.
- None exceed *current* screening levels.

"Short" Chain		"Long" Chain		Precursor
 PFAS		PFAS		PFAS
PFBA		PFHpA		6:2 FTS
PFBS		PFHpS		PFEESA
PFPeA		PFOA		N-EtFOSA
PFPeS		PFOS		N-MeFOSA
PFHxA		PFNA		
PFHxS		PFDA		
		PFUnA		
		PFDoA		
		PFTrDA		

Average PFAS Concentrations (ng/g or ppb) in Edible Plant Tissues

Environmental

Services

Study Limitations & Uncertainties

1. Statistical significance of treatment groups and their effects on PFAS uptake.

- There is an obvious effect of irrigation water, but analysis is needed to determine if other factors (e.g., soil types) were significant.
- Additional soil parameters were collected (composition, organic carbon content, nutrient, etc.), and are likely co-variates for plant uptake.

2. Addressing non-detect results for assessing BAFs.

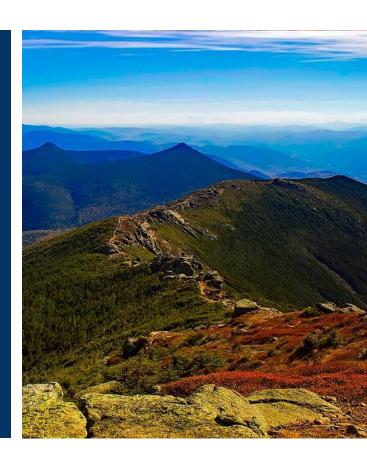
• Assuming "zero" underestimates bioaccumulation, ½ the DL may overestimate bioaccumulation, and there is uncertainty about the role and presence of precursors.

3. Relevance to farm-scale agriculture.

• The study prepared soil mixtures recommended for home gardeners or community gardens, following common guidance from UNH Extension and local garden centers.

What are the next steps?

- Analyze the effect(s) of soil features on PFAS bioconcentration, including organic carbon content.
- Continue the risk assessment of various PFAS in produce items.
 - *Current toxicity factors* indicate minimal risk except for heavy consumption of certain plants grown in heavily contaminated soil, with impacted amendments and AFFF-containing water.
 - Evaluate using localized consumption data where available.
- Look for opportunities to improve the limited available scientific literature.
 - e.g., grant applications, academic partnerships, extension specialists, affected communities



Contact Information

Jonathan Petali, PhD, DABT Toxicologist Environmental Health Program Phone | (603) 271-1359 Email | jonathan.m.petali@des.nh.gov

