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ABSTRACT

We approach the issue of robust machine vision by presenting a novel deep-learning architecture,
inspired by work in theoretical neuroscience on how the primate brain performs visual feature
binding. Feature binding describes how separately represented features are encoded in a relationally
meaningful way, such as an edge composing part of the larger contour of an object. We propose that
the absence of such representations from current models might partly explain their vulnerability to
small, often humanly-imperceptible distortions known as adversarial examples. It has been proposed
that adversarial examples are a result of ‘off-manifold’ perturbations of images. Our novel architecture
is designed to approximate hierarchical feature binding, providing explicit representations in these
otherwise vulnerable directions. Having introduced these representations into convolutional neural
networks, we provide empirical evidence of enhanced robustness against a broad range of Lo, L, and
Lo, attacks, particularly in the black-box setting. While we eventually report that the model remains
vulnerable to a sufficiently powerful attacker (i.e. the defense can be broken), we demonstrate that
our main results cannot be accounted for by trivial, false robustness (gradient masking). Analysis of
the representational geometry of our architectures shows a positive relationship between hierarchical
binding, expanded manifolds, and robustness. Through hyperparameter manipulation, we find evidence
that robustness emerges through the preservation of general low-level information alongside more
abstract features, rather than by capturing which specific low-level features drove the abstract
representation. Finally, we propose how hierarchical binding relates to the observation that, under

appropriate viewing conditions, humans show sensitivity to adversarial examples.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

a lower-dimensional manifold than the input (e.g. pixel) space.
Such a data manifold describes a region where samples are

Adversarial examples are images modified by small (L, norm
constrained) perturbations that cause machine vision systems to
catastrophically misclassify objects (Szegedy et al., 2014). Since
their discovery, various efforts have been made at both explaining
their existence, and conferring resistance to them (Gilmer et al,,
2018; Goodfellow et al.,, 2015; Ilyas et al,, 2019; Madry et al,,
2018; Schott et al., 2019; Stutz et al., 2019). This includes argu-
ments that adversarial examples represent perturbations of the
input off of the data manifold (Khoury & Hadfield-Menell, 2018;
Stutz et al,, 2019; Tanay & Griffin, 2016), and in particular that
the vulnerability of a model is associated with the presence of
many such directions being available to the attacker (Khoury &
Hadfield-Menell, 2018).

Both biological and artificial means of object recognition typ-
ically propose that object classes can be effectively described by
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concentrated, and the dimensions of the manifold represent class-
preserving changes to the object representation (such as increas-
ing its size, or rotating it). Moving between object manifolds
would generally correspond to low-density regions with po-
tentially no associated object class, such as an image of white
noise (Bengio et al., 2013; DiCarlo & Cox, 2007).

We argue that part of the phenomenon of adversarial ex-
amples is that architectural choices often assume object mani-
folds that are too low-dimensional. While this is sufficient for
classification on a standard data-set, where samples off of the
data manifold are sparse, many adversarial examples can exploit
this assumption by moving orthogonal to the concentrated sub-
space (Khoury & Hadfield-Menell, 2018; Stutz et al., 2019; Tanay
& Griffin, 2016). Given that humans are (in most cases by defini-
tion) robust, this implies that adversarial examples exist on the
manifolds that underlie human classification of objects, and that
these are therefore of higher dimension. One approach is there-
fore to augment the data manifold, such as by adding noise during
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training (Ford et al., 2019; Rusak et al., 2020; Zantedeschi et al.,
2017), in order to more faithfully sample from the data manifold
of images that a human would classify as a particular object. We
argue however that typical convolutional neural network (CNN)
architectures are constrained in their ability to practically model
the spectrum of variation that an object can undergo. In partic-
ular, typical architectures result in the loss of low-level spatial
details in order to promote invariance and linear separability
of classes. We propose that a model that maintains standard
classification abilities while modeling objects more faithfully in
high-dimensional space should enable greater robustness. This
representational expressiveness of a model can be measured as
the extent of an object’s manifold in the neural state space of the
model, the neural manifold.

Assuming a higher-dimensional manifold underlies human
perception, and that a model can capture this, many adversaries
could be viewed as on-manifold adversarial examples, after which
robustness is a case of standard generalization (Gilmer et al,,
2018; Stutz et al., 2019). We introduce a novel architecture
that, through hierarchical feature binding (defined below), cap-
tures low-level features alongside lower-dimensional, invariant
representations. The difficulty then is learning a useful deci-
sion boundary and sampling sufficiently in this high-dimensional
space. For this reason, we complement our approach with reg-
ularization and data-augmentation with noise. The geometric
intuition for our approach is summarized in Fig. 1. We note
that our defense operates not by guaranteeing the absence of
any vulnerable regions in the decision boundary, but by reduc-
ing the number of directions in which such regions are found.
Indeed, in our discussion we suggest that, given a sufficiently
powerful attack method, the network is as vulnerable as a model
without our defense (i.e. the defense can be broken). However,
our improvements to the classifier’s decision boundary provides
robustness against a variety of methods for generating adver-
sarial attacks, including several black-box methods that rely on
these vulnerable directions being present, and which represent
the primary methods that could be plausibly leveraged against
humans.

Many proposed adversarial defenses have shortcomings or
can be entirely circumnavigated under the appropriate attack,
a notorious issue in the literature that has grown increasingly
apparent, and a reality affecting the vast majority of published
defenses (Croce & Hein, 2020; Tramer, Carlini et al., 2020). One
of the only methods known to consistently improve robustness
independent of the attack-method is adversarial training (Madry
et al., 2018), or variants of it (Gowal et al., 2020), although it can
suffer from issues such as over-fitting to particular distance met-
rics used in training (Laidlaw et al., 2021; Schott et al., 2019), and
a loss in classification accuracy on clean, unaltered data (Tsipras
et al.,, 2019).

Despite the seemingly intractable nature of adversarial exam-
ples, humans are, by definition, robust to them under normal
conditions. Similar to the approach taken by recent defenses on
breaking certain attacks (Xiao et al., 2020), rather than defending
against any possible attacker, we demonstrate a defense method
with utility against a variety of black-box attacks, including naive
brute-force attacks based on noise. Our defense is notable due to
its (a) connection to the growing geometric view of adversarial
examples, (b) ability to generalize across multiple distance met-
rics, a stumbling block for many adversarial defenses (Laidlaw
et al, 2021; Schott et al., 2019) and (c) relevance to experimental
results on the perception of adversarial examples in humans.
Importantly, the connection we establish between our approach
and the geometry of a neural network’s representations lends the
defense to future extensions that might enable models that are
fundamentally robust to all attackers.

Our contributions are as follows:
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e We present a mechanism to preserve and utilize information
about which lower-level features play an important role in
driving a CNN’s higher-level, abstract representation at a
succeeding layer. Our novel architecture is loosely inspired
by work predicting the existence of neurons in the primate
brain that encode the hierarchical binding relationships be-
tween visual features at different spatial scales (Eguchi et al.,
2018), and our findings offer a possible explanation for
the sensitivity of humans to adversarial examples under
appropriate viewing conditions.

e We present empirical results showing the robustness of
these augmented networks to a variety of adversarial at-
tacks, following the use of techniques to ensure a useful
decision boundary. These results are complemented with
findings from a brute-force noise attack that support the
connection between the observed robustness and our geo-
metric framing of the defense.

e We analyze the geometric properties of our networks’ repre-
sentations, finding that the neural manifolds in hierarchical
binding networks are of higher dimension and radius, quan-
tified by the manifold extent. We further observe that, while
neither necessary nor sufficient for resistance to adversarial
attacks, greater neural manifold extent is associated with
increased adversarial robustness.

e We additionally use iterative adjustments of a key hy-
perparameter (the y-proportion) to demonstrate that the
observed robustness is primarily a consequence of the low-
level representations that hierarchical binding preserves,
rather than the explicit encoding of binding relations. Hi-
erarchical binding in the primate brain might thereby serve
a variety of computational functions, with one of its bene-
fits being robustness through the preservation of low-level
information.

2. Related work

Binding Feature binding describes the ability of the visual
brain to perceive, represent and reason about the relationships
between separately encoded features of objects (such as the color
and shape that jointly describe a yellow triangle) (Gray, 1999;
Treisman, 1998; Von Der Malsburg, 1999). For example, when
we look at an alphabetical letter T, we can see the vertical and
horizontal bars that comprise the letter as distinct elements, as
well as the fact that these constituent elements are part of the
letter T itself. Such hierarchical binding captures the causal rela-
tions between multiple scales of abstraction, e.g. that a particular
vertical bar feature is part of a T and not an L nearby (Eguchi
et al.,, 2018; Treisman, 1996). Low-level features carry meaningful
spatial information due to their small receptive fields and high
dimension, and hierarchical binding can thereby encode class-
preserving transformations of the object — note in our example
that it is not simply the abstract concept of a vertical bar that
is bound to the T, but the specific representation localized in
space. We emphasize that this framing does not discount the
importance of invariant features; rather the goal is to capture a
continuum of abstraction jointly. Previous work has been done in
encoding binding-like representations (Bear et al., 2020; Burgess
et al., 2019; Greff et al., 2016; Locatello et al., 2020; Reichert &
Serre, 2014; Schlag et al., 2019; Whittington et al., 2020), albeit
using different mechanisms to those discussed here, and without
an investigation of its relevance to adversarial robustness.

Eguchi et al. (2018) proposed a mechanism by which the
brain might capture hierarchical binding, encoding the relations
between low-level and high-level features throughout the vi-
sual processing stream. An example of such a possible binding
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Fig. 1. The effect of hierarchical binding on the decision boundary. Red and blue represent two different object manifolds (e.g. cats and dogs). Adversarial perturbations
(light-blue arrows) for the red class move the input beyond the decision boundary into a region where it is classified as blue. (a) A common approach for classification is
to assume low-dimensional representations of objects are sufficient, as these support linear decision boundaries that accurately separate the objects. Unfortunately, the
learned decision boundary can be unpredictable off the manifold. Given the high-dimensional embedding space (e.g. pixel-space), there may be many such directions
vulnerable to small perturbations. Here, an idealized 2D manifold is used to depict the data distribution typically assumed when designing model architectures. (b)
We argue that there are additional, class-preserving dimensions of variation to the manifold, where the shown manifold represents all examples a human would
classify as a given object (here depicted as a 3D solid). We suggest that these dimensions are impractical to model with typical convolutional neural network (CNN)
architectures. Adding hierarchical binding enables the network to explicitly represent these features alongside the more abstract dimensions, potentially aligning
the representation more closely with the basis of human perception. Despite this modification, the sparsity of samples in high dimensions (particularly in standard
data-sets) means that further steps are required for a robust decision boundary. (c) Introducing regularization such as label smoothing means that even sparse data
points can inform a more useful decision boundary. (d) Complementing label smoothing with noise during training helps sample more densely from the manifold
underlying human perception, providing a more robust decision boundary against a variety of adversarial attacks. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

representation that has been identified in neurophysiological ex- Perceptual processing in primates accesses such low/mid-level in-
periments is border-ownership cells, which have been identified formation, such as local border ownership (Kim & Feldman, 2009).
in the V1, V2, and V4 regions of the primate visual cortex. These Thus the representations we explore are consistent with “vision
cells have a small classical receptive field, similar to bar/edge with scrutiny”, rather than coarse object recognition (Hochstein
detecting ‘simple cells’. Unlike a classical simple cell however, & Ahissar, 2002).
their response is modulated by what side of an object they Preserving Low-Level Information in Computer Vision Many
form an edge of. In particular, border-ownership cells encode methods exist to preserve low-level information in deep neural
when a particular low-level feature is part of a specific side of networks (He et al., 2016; Huang et al., 2017; Jacobsen et al.,
a high-level object, rather than simply that a low—levgl feature 2018; Ronneberger et al, 2015; Srivastava et al, 2015), spa-
is present (Zhou et al, 2000). Eguchi et al. (2018) predicted that  i3]ly enrich feature representations (Hinton et al., 2018; Sabour
the t.emp.oral coincidence detection afforded by the sp1ke—t1mmg et al, 2017) or encourage the encoding of additional factors
9f biological neurons apd the lateral and FOP'dOV,Vn connect'lv— of variation (Cheung et al.,, 2015). Our architecture is novel in
gi’ ol;§e£l\(ed n tl;f b.ram }NOUld tl?e lessetnhtlal for 1mpio.3ment1r;§ that it captures which low-level neurons causally drove the

1S Dinding mechanism. in particuiar, these properties cou network’s high-level representation, and explicitly encodes such
enable spiking neurons or assemblies of spiking neurons to fire . . - - . e .
. . . . information as layers in their own right for classification. This
if and only if a particular low-level feature was causally driving a .. A

. . - . . explicit encoding is important for down-stream read-out of the
higher-level representation. Rather than simulate these biological . . . .

representations. In contrast, architectures using skip connec-

elements, we use a non-local algorithm to approximate such i tvoicall bine inf tion f ) d hich level
representations at the computational level (Marr, 1982) within 1ons Yplca y cgm ne in qrma ton from low an . 1gh leve
layers in an additive operation (He et al., 2016); this can ob-

an adapted CNN architecture. We also use a simplified form of . - e
the full hierarchical binding formulation proposed in Eguchi et al. scure the respective contributions of features and makes classifier
read-out of the low-level details more challenging. Furthermore,

(2018) in order to constrain the computational cost of the archi- . vs - ’
tecture, enabling us to explore the significance of the proposed our architecture specifically combines low-level features with
representations for robust object classification. a high spatial resolution (i.e. cross-wise dimension) alongside

It is clear that many aspects of primate vision rely primarily more abstract representations with coarser spatial information.
on abstract, low-dimensional representations, which is consistent ~ Where skip connection-architectures concatenate features, such
with our proposal here, and that vision can be impoverished a preservation of spatially detailed and coarse features is not per-
e.g. outside of attention. What we are describing here however  formed (Huang et al., 2017). In summary, our approach is related
is the primate perception of “objects along with their detailed  to the motivation for (and biological evidence of) disentangled

features” (Lu et al., 2018). For example, even in the periphery, hu- representations (Higgins et al., 2021) — our architecture is biased
mans are sensitive to low-level image changes when these impact so as to “disentangle as many factors as possible, discarding as
scene-like content as opposed to textures (Wallis et al.,, 2019). little information about the data as is practical” (Bengio et al,,
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2013). This motivation is important as disentangled represen-
tations are associated with more sample-efficient learning (van
Steenkiste et al., 2019), while learning a robust decision boundary
is a sample inefficient problem (Gilmer et al,, 2018; Khoury &
Hadfield-Menell, 2018).

Adversarial Examples While there is a large literature on
adversarial examples (see e.g. Yuan et al. (2019) for a review),
we focus on those papers that are most relevant to the cur-
rent work. The concept of adversarial examples as manifold fail-
ures has inspired several defenses (Jalal et al., 2017; Jang et al,,
2020; Samangouei et al., 2018; Schott et al., 2019; Song et al.,
2018). Stutz et al. (2019) showed that typical adversarial exam-
ples move orthogonal to the data’s low-dimensional manifold,
and Khoury and Hadfield-Menell (2018) provided evidence in
synthetic data-sets that a greater number of directions normal
to the data manifold is associated with increasing vulnerability.
This appears to be because the decision boundary can be arbitrary
off of the manifold (Khoury & Hadfield-Menell, 2018), and may
indeed lie very close to it (Tanay & Griffin, 2016).

Related to our defense, previous work on extracting hierar-
chical interpretations for the predictions of neural networks has
shown that these interpretations themselves can be resistant to
adversarial attacks (Singh et al., 2019), although this work did not
relate to the issue of robust object classification.

3. Model description

CNN Fundamentals A typical CNN architecture consists of
convolution operations and a down-sampling operation such as
max-pooling (see Lecun et al. (2015) for an overview). Convolu-
tions apply a linear transformation at local regions across space,
where this weighted sum serves as a feature detector, such as
for the presence of an edge or an ear. If the activity within this
local region and the learned weights match well, then a large
activation will be output, suggesting the presence of that feature.
Using the assumption that features in one part of visual space
may also appear at another, the same convolutions are applied
repeatedly across space, making efficient re-use of parameters.
Several different convolutions can be applied at any given level
of the network in order to detect multiple different features.

Max-pooling serves to provide the model with translation in-
variance, by taking the largest activation within a given receptive
field, and up-projecting that activation value alone. When applied
to the output of feature detectors, this can be thought of as
evaluating, for example, if an ear was present anywhere in a
given region of the image, without any concern for its precise
location. Subsequent feature detectors can take advantage of this
invariance by applying a convolution to the outputs of max-
pooled values; this convolution (say for detecting the presence
of a cat), will be less sensitive to the spatial particularities of the
features of the cat, and should in principle be more capable of
generalization.

Fig. 2a includes a demonstration of what a typical convolution
and max-pooling operation might look like. Fig. 3a shows how a
typical CNN architecture implements successive convolution and
max-pooling operations, alongside our additional operations of
unpooling and gradient unpooling (introduced below). While the
successive use of convolutions and max-pooling are not without
their limitations (see e.g. comparisons of CNNs to bag-of-feature
detectors (Brendel & Bethge, 2019), and their insensitivity to
global shape (Baker et al., 2018)), they capture the key principles
that are believed to operate in the primate brain — that is feature
detection and invariance.

Implementing Hierarchical Binding To capture which low-
level features causally drove max-pooled representations, we use
the operation known as unpooling. Maxpooling determines the
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maximum value of each type of feature over a local spatial re-
gion as a way of achieving a location invariant representation of
that feature. However, such an operation loses potentially useful
information about the location of that feature within the spatial
region. Unpooling is used here to recover and preserve such
location information, by the addition of a sub-layer of unpooled
feature activations. The unpooling operation identifies which lo-
cations had maximal activations (i.e. survived max-pooling), and
preserves these activations at their locations in the new sub-layer
of unpooled feature activations, while the activations for that
feature which did not take maximal values are set to zero (Badri-
narayanan et al., 2017; Zeiler & Fergus, 2014). This procedure
is illustrated in the top right of Fig. 2a. A modified version of
unpooling, termed ‘ratio unpooling’, has previously been em-
ployed in a mixed bottom-up and top-down network as a means
of preserving spatial information (Xu et al., 2019). Importantly
however, this modified form of unpooling does not capture what
lower-level features causally drove higher-level features (i.e. hi-
erarchical binding), consistent with this not being the motivation
of the authors.

To capture which simple features contributed to abstract rep-
resentations, we introduce what we term ‘gradient unpooling’
(Fig. 2a). Capturing how every feature in a lower layer (de-
noted L¥) contributes to a feature in a succeeding layer (L*t1)
preserves full information about these hierarchical binding re-
lations (Eguchi et al., 2018), but is computationally unappealing
due to the number of required binding representations. This is
particularly problematic if this information is fed into a fully-
connected layer for learning decision boundaries in a classifier.
As such, we propose a computationally more feasible approach
where we treat the high-level representation as distributed, and
assume that only one object is ever represented in this distributed
activity at a time (a valid assumption for the data-sets we use).
Our aim is then to capture what low-level features contributed to
this distributed representation.

To do so, we assume that the partial derivative of a high-level
activation within a hierarchical network, taken w.r.t. to a low-
level activation, carries some information about the significance
of the contribution of that low-level feature. This is therefore our
primary signal for causal influence, and this principle of using gra-
dients is an established approach to attributing the significance
of a feature, for example where the partial derivative of a class
score is taken w.r.t. pixel inputs (Simonyan et al., 2014). As we
are interested in the contribution of the low-level feature neuron
to the distributed representation in the higher layer, we use the
sum of the partial derivatives across the high-level layer. Finally,
as the scalar value of a low-level neuron’s activation provides
information about its presence in the image (and therefore its
likelihood of having contributed to higher-level representations),
we include this in the final gradient unpooling values.

We now describe gradient unpooling in detail. Our first aim
is to use the proposed gradients to approximate the significance
of a low-level unit a; with the measure m;. Specifically let agk) be
the activation of an ith unit in the lower-level layer L¥), and a](.kJr")
in the higher-level layer L**™, where n > 1. The measure units
m; form a tensor of the same dimension as L®), where each unit’s
value is given by:

an(I<+n)

m; =
aaﬁ")

(1)
J

This sum is taken over the activations aj(-k+") in L&, As the
gradient is taken over the entire max-pooling layer, a proportion
y of the largest gradients are then selected with the intent of
capturing the most important driving neurons. Here y is a hy-
perparameter between 0 and 1. The winning gradients are used
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Fig. 2. Implementing hierarchical binding in a convolutional neural network. (a) ‘Conv.’ is a convolution operation with stride of 2 (that is, the weight matrix is shifted
by 2 units after every convolution). Our depicted representation of gradient unpooling is simplified for the sake of intuition, as the max-pooling layer in the figure
consists of only a single neuron; in reality, we take the gradient of each low-level activation w.r.t. the entire max-pooled layer and only use the proportion y of
the largest gradients to apply a Boolean mask to the activations. (b) A toy diagram to demonstrate the connection to hierarchical binding. The desire is to capture
which low-level features (such as a vertical bar or a minimally invariant ‘T" neuron) causally drove the more invariant representation of a ‘T". Arrows indicate that a
node participated in activating a representation, rather than simply the existence of a connection. These hierarchical binding representations are then made available,

alongside the invariant representations, to higher layers.

a)

I convy, ReLu
- MaxPool 2x2

[ ] Fully-Connected

B unpool
[23) 1
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Fig. 3. Integration of unpooling and gradient unpooling in a hierarchical binding CNN. The diagram shows the architectures used for (a) MNIST and Fashion-MNIST,
based on the LeNet-5 CNN and (b) CIFAR-10, based on a VGG-style CNN. Note that as it is not necessary to use unpooling or gradient-unpooling representations from
every layer, deeper architectures can select intermittent representations to use for unpooling or gradient-unpooling, avoiding an excessive growth in parameters.

to generate a Boolean mask applied to the activations of the low-
level layer. Denoting our approximation of a layer k unit’s causal
role with cl.(k), the final sub-layer of gradient-unpooling values are
then given by

(2)

k) agk), where m; € top-proportion,,(m)
i 7)o, otherwise
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The sub-layer c¥) is then up-projected alongside the unpooling
sub-layer. Intuitively, a neuron might have a large activation, but
if many of the high-level neurons with which it shares a large
weight did not survive max-pooling (i.e. it did not successfully
drive them), then its summed gradient m; is likely to be smaller
than that of other neurons. The unit is thus unlikely to survive
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the y cut-off and have its activation preserved in the gradient un-
pooling sub-layer. On the other hand, a neuron with large learned
weights to the higher-level features that survived max-pooling is
more likely to survive the y cut-off. Up-projecting the activation
value itself then provides some additional measure of how likely
the low-level neuron was to have genuinely contributed to the
abstract representation in the higher layer.

Our approach seeks to capture the low-level neurons that
contributed to the distributed representation in the higher layer,
although it is only an approximation of the actual causal relations
between them. We also explored alternative mathematical for-
mulations, such as including the activity of the low-level neuron
in deriving the Boolean mask. That is, using

PR
=9 Y
J

i 3)
BaEk)

in place of Eq. (1). This offered comparable performance, but
was more difficult to implement in the libraries we leveraged,
and therefore Eq. (1) was used. Better measures of the impor-
tance of a low-level neuron to a higher-level representation exist
(see e.g. Dhamdhere et al. (2019)), but we use our method due
to its computational efficiency (Simonyan et al., 2014). In our
networks, we concatenate the results of unpooling and gradient-
unpooling along-side the max-pooled activations in the feed-
forward stream. This serves to provide both invariant and spa-
tially detailed representations jointly.

In Fig. 2b, we show how these operations relate to hierarchical
feature binding, as described in Eguchi et al. (2018) and Isbister
et al. (2018). Note that while these prior works proposed captur-
ing every binding relationship between successive layers k and
k + n, we seek only to preserve information about how low-level
neurons have participated in driving distributed representations
in the higher layer. As we demonstrate later, this additional
information appears sufficient to enable a more robust object
representation when targeted by adversarial attacks.

Model Architectures Both the unpooling and gradient un-
pooling computations can be introduced into standard CNN ar-
chitectures, potentially at multiple levels. This work covers its
use for CNNs used on the MNIST (Lecun et al., 1998), Fashion-
MNIST (FMNIST) (Xiao et al,, 2017), and CIFAR-10 (Krizhevsky,
2009) data-sets, which consist of hand-written digits, grey-scale
images of clothing, and color images of objects such as horses
and airplanes respectively. The CNNs used for MNIST and FMNIST
are based on the LeNet-5 architecture (Lecun et al., 1998). In our
Hierarchical Binding CNN (HBCNN), the LeNet-5 architecture is
augmented with one unpooling and one gradient unpooling sub-
layer (Fig. 3a). The models used for CIFAR-10 are based on a
deeper CNN using a VGG-like architecture (Simonyan & Zisser-
man, 2015) (Fig. 3b). For each architectural variant (including the
control models without hierarchical binding), hyperparameter
tuning for adversarial robustness was performed on a cross-
validation data-set (10k examples held out from the original
training data-set). To provide an unbiased measure of the effect
on robustness, 30 randomly generated networks for each archi-
tectural variant were then trained on the full training data-set and
evaluated on the test data-set, with the median performance re-
ported in all following results. Further model details are provided
in Appendix A.

Regularization Regularization is a means of preventing a
network from over-fitting data with a highly complex decision
boundary that generalizes poorly to data not seen during training.
To perform regularization, we introduce label-smoothing to some
of our models, a method that reduces over-confident predictions
by replacing the typical one-hot label vector (where the ground-
truth class label is associated with a probability of 1, and all other
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class labels a probability of 0) with a ‘one-warm’ vector (Pereyra
et al., 2019; Szegedy et al., 2016). Specifically, consider the prob-
ability distribution of the ground truth labels for a class y where
p(y) = 1 and p(k) = 0 for all other classes k # y. To perform label
smoothing, a smoothing parameter § and the number of classes
K are used to assign the probabilities for incorrect classes as

8
k =— 4
plk#y) = (4)
The target probability of the correct label is assigned as
8
p(y) +ty (5)

Thus if the label smoothing parameter was set to 0.1 (the value
we use in all our models), the distribution over a total of 10
labels for the first class would change from [1.0,0.0,...,0.0]
to [0.91,0.01, ..., 0.01]. Label smoothing therefore models the
concept that the data labels may contain errors, and that the
system should be discouraged from creating an overly complex
decision boundary to classify these (Goodfellow et al., 2016).

We use label smoothing as it is a widely implemented regu-
larization technique for enhancing adversarial robustness (Chen
et al, 2021; Pang et al.,, 2021; Shafahi et al,, 2019; Summers
& Dinneen, 2019; Warde-Farley & Goodfellow, 2016). We note,
however, that recent research has identified that it can, under
certain circumstances, contribute to gradient masking (Lee et al.,
2021). This result appears to depend on the precise training
details and hyperparameters in question (Chen et al., 2021; Pang
et al,, 2021), generally being associated with, for example, larger
values of label smoothing (Lee et al., 2021). Nevertheless, it is
clear that label smoothing can also contribute to genuine in-
creases in adversarial robustness to gradient-free attacks (Chen
et al.,, 2021; Pang et al., 2021). This is consistent with its original
motivating use in the literature, namely regularization to improve
the quality of a network’s predictions. Similarly, subsequent work
has established connections between label smoothing and both
other forms of regularization such as weight decay, and improved
decision boundaries (Lukasik et al., 2020). We note that in our
work, we use a small value of label smoothing (0.1), and take
several steps to examine for the prevalence of gradient masking
(as advised in e.g. Pang et al. (2021)), highlighting it wherever any
evidence exists.

With the exception of the ‘vanilla’ model described later, we
also use weight decay in the VGG models to further regularize the
decision boundaries. This form of regularization punishes large
weights in the network by adding a penalty term to the cost
function of the classifier based on the sum of the squares of the
network’s weights (Ng, 2004). Details on the use of weight decay
in the VGG networks is provided in Appendix A.

4. Methods
4.1. Adversarial attacks

Adversarial attacks are a means of producing images that are
misclassified by machine vision systems, with the aim that the
new image is as close to the original as possible. As measuring
how large the modification is perceived to be by a human is
challenging, optimization methods are generally used to create an
adversarial image that minimizes a measured distance between
the original image and the adversary. This distance is typically
quantified by the Ly, L, or Ly, norm. In one threat setting, the
attack method has extensive access to the model being attacked
(such as the gradients of its outputs w.r.t the pixels of the in-
put), in which case it is termed a ‘white-box attack’. In settings
where the optimization process has limited knowledge about the
model being attacked (such as only being able to query how it
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classifies any given image), the attack is known as a ‘black-box’
method (Brendel et al., 2018).

Inspired by the thorough evaluation of adversarial robustness
in Schott et al. (2019), we evaluate our model against a broad
range of black-box and white-box methods, covering Ly, L, and
L., norm measured attacks, described below. All attacks were
evaluated using FoolBox v2.4 (Rauber et al., 2017). As in Schott
et al. (2019), our main result is the median distance of adver-
saries, as this is less affected by outliers than the mean, and unlike
when reporting accuracy, is not vulnerable to over-fitting on an
arbitrary threshold. For completeness, we also report the accuracy
against adversaries bounded by a particular perturbation thresh-
old e. All results presented are based on adversaries generated
from a subset of 512 images from the test data-sets. Below, we
describe the main attacks used and their core intuition; in Ap-
pendix B, we provide additional details such as hyperparameters
for the attacks used.

Gradient-Based Attacks In typical training, one performs gra-
dient descent of the loss w.r.t to the model’s weights, where the
loss is the term that measures the mismatch of the model’s pre-
dictions to the ground-truth labels. Intuitively, a basic gradient-
based attack can use knowledge of the model to perform gradient
ascent of the loss with respect to the input pixels. As a result,
pixels can be modified so as to cause the model to misclassify
inputs, with the assumption that the modification to the pixels
(if sufficiently small) will not have changed the ground-truth
label as determined by a human. The Fast Gradient Sign Method
(FGSM) (Goodfellow et al., 2015) uses this principle to construct
adversarial examples as follows. Let J(6, X, y) be the cost func-
tion used to train the classifier with parameters 6, input x, and
targets y. Defining 5 as the adversarial perturbation added to an
image, and scaling with parameter ¢, then one can generate an
adversarial perturbation as follows:

1 = €(sign(VyJ(0, X, y)))

where the adversarial image is then provided by

(6)

(7)

Given the privileged access to the model’s gradients these
methods have, these are a form of white-box attacks. Various
methods have been developed within this class that can be used
to minimize either the L, or L., norm of the adversarial pertur-
bation; as in the Schott et al. (2019) evaluation protocol, we use
the Fast Gradient Method (FGM), FGSM (Goodfellow et al., 2015),
L, and L., Basic Iterative Method (BIM) (Kurakin et al., 2019),
L, and L., DeepFool (Moosavi-Dezfooli et al.,, 2016), and Mo-
mentum Iterative Method (MIM) (Dong et al., 2018). For MNIST
and FMNIST, these attacks are also repeated with numerically
estimated gradients, using the same method leveraged in Schott
et al. (2019). Unlike in their study, we also include Projected
Gradient Descent (PGD, closely related to BIM) for MNIST, using
multiple random starts (Madry et al., 2018).

Decision-Based Attacks These rely only on the decision out-
put of the network, and are therefore a form of black-box attack.
A particularly powerful method is the Boundary Attack (Brendel
et al., 2018); intuitively, an image is first perturbed by noise until
it is misclassified, after which the Boundary Attack iteratively
moves the adversary closer to the original image while ensuring
it remains misclassified. By taking small steps, it can treat the de-
cision boundary as approximately linear and move along it. Note
that the Boundary Attack therefore requires that at a sufficiently
small step size, the decision boundary behaves linearly. If this
does not hold, then it can fail to operate as intended, which we
later discuss as an issue when it is leveraged against our own
HBCNN model.

X=n+Xx
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Another decision-based attack is the Pointwise attack. This
method adds salt-and-pepper noise until an image is misclas-
sified, then returns as many pixels to their original values as
possible, whilst ensuring the image remains misclassified (Schott
et al,, 2019).

Finally, one can simply add increasing levels of noise (such
as salt-and-pepper, uniform, or Gaussian noise) until an image is
misclassified. As in Schott et al. (2019), we include the Boundary
Attack, their Ly and L, Pointwise Attack, the Salt&Pepper Noise
attack and the Gaussian Noise attack. We also include the Blended
Uniform noise attack, which blends the image with uniform noise
until the input is misclassified (Rauber et al., 2017).

Transfer Attacks Transfer attacks leverage the empirical ob-
servation that adversaries generated for one network (called the
‘surrogate’) can often transfer to other networks, even those
with different architectures. The intuition is that the decision
boundaries of different systems trained to perform the same task
often align, and thus share vulnerable decision regions (Paper-
not et al., 2016; Tramer et al, 2017). Robustness to transfer
attacks as well as decision-based attacks provides evidence that
a model’s robustness is not simply a result of ‘gradient masking’.
In gradient masking, some aspect of the network makes the
gradients inaccessible or otherwise less useful for carrying out the
optimization steps performed by gradient-based attacks. Often
unintentionally introduced by architectural modifications, gradi-
ent masking is a common but less desirable method of adversarial
robustness, given its ineffectiveness against alternative methods
of generating adversaries, and thus the false sense of security it
provides (Athalye et al., 2018; Papernot et al., 2017).

In keeping with the above, transfer attacks are most often
used to determine whether a particular model displays gradient
masking. The presence of such gradient masking can result in
the telltale finding that transfer attacks are more effective than
white-box methods. However, transfer attacks are weaker than
white-box attacks when no gradient masking exists, and they are
less effective when it is difficult to craft attacks on the surrogate
models used to generate the transfer attacks. They thus they do
not represent a gold-standard measure for a model’s absolute
robustness (Tramer, Carlini et al., 2020).

In spite of this, robustness to transfer attacks represents its
own interesting research question (Tramer et al., 2017). In partic-
ular, our defense is proposed to operate by reducing the number
of directions in which the model has sub-optimal decision bound-
aries, and in which it is therefore vulnerable to adversaries.
Transfer attacks exploit the shared dimensions of models with
vulnerable decision boundaries (Tramer et al., 2017), and as such,
robustness to transfer attacks would support the geometric mo-
tivation behind our defense. Furthermore, as we elaborate in our
discussion, transfer attacks are the only method that has been
leveraged against humans, and therefore the nature of models
robust to transfer attacks (even when vulnerable to white-box
attacks), is relevant to understanding the settings under which
humans may display sensitivity to adversarial examples. For this
reason, transfer attacks form an emphasis of our results, and
we take steps to leverage a particularly broad transfer attack
designed to identify multiple adversarial directions.

To develop this broad transfer attack, our main addition to
the assessment protocol in Schott et al. (2019) is that we derive
transfer attacks from multiple surrogate networks, including ones
with our proposed architecture. This is to ensure that transfer
attack robustness is not simply a result of the HBCNN having
an exotic architecture, or being difficult to generate transfers
from Tramer, Carlini et al. (2020), while still being fundamen-
tally vulnerable. Specifically, adversaries are generated using the
FGSM, L., BIM, FGM, and L, BIM attacks. For FMNIST and CIFAR-
10, these are leveraged against both a standard surrogate network
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and one augmented with binding. For MNIST, we use a particu-
larly sophisticated transfer attack, where we use surrogates that
represent multiple versions of the target architecture, as well
as the architecture it is being compared to for robustness. For
each one of these variants, we use two independent surrogates,
such that for any given target architecture, we generate transfer
attacks from eight surrogate models. In addition to these, we
generate transfer attacks from a ninth surrogate model that has
been adversarially trained (note this is a different model from
the one we evaluate later), as adversarially trained networks
can often produce powerful transfer attacks (Carlini et al., 2019).
When attacking a network, all of these adversarial candidates (18
per distance metric) are leveraged. Using the same line-search
from Schott et al. (2019), images are iteratively perturbed from
the baseline image until they are misclassified, and the minimally
perturbed, successfully adversarial transfer image is used in all
distance and accuracy measures. Further details on our surrogate
models are provided in Appendix B.

4.2. Geometrical measures

Measuring Manifold Geometry A manifold in neural state
space represents the set of all points of activity that correspond
to the same object, where the activity is determined in response
to variations of the input, such as different object details, changes
to scale, etc. (Chung et al., 2018). Note the distinction to the data
manifold, i.e. the manifold describing the concentration of exam-
ple images in the embedding (e.g. pixel) space. To distinguish
the two, we will refer to the first as the neural manifold. We
have argued that the data manifold corresponding to all objects a
human would classify as a given object is higher dimensional than
often assumed, and that an architecture which can more faith-
fully represent the additional dimensions of variation (i.e. with
a more extensive neural manifold) could support a more robust
decision boundary. We are therefore interested in quantifying the
geometrical properties of the neural manifolds in the networks
we study. To do so, we apply the techniques developed in Chung
et al. (2018) and Cohen et al. (2020). This work used statistical
mechanical theory to develop a novel measure of the extent of
a neural manifold, a measure influenced by both a manifold’s
dimension and radius.

In brief, these measures are developed from the structure of
the hyperplane that separates manifolds in binary classification.
Comparing any given manifold (e.g. the neural responses to cats)
against another, there will be a particular point (the ‘anchor
point’) on the cat manifold that will uniquely define a separating
hyperplane to the other manifold. Multiple anchor points will
exist for a given manifold to define its separation from other
objects, and statistical measures can then be applied to this set
of anchor points to estimate geometric properties. Of relevance
to our work, the authors derived a measure of manifold radius
(Ruy), dimension (Dy), and extent (Ry+/Dy). Ry captures the
total variance of the anchor points, normalized by the average
distance between manifold centers, while Dy, captures the spread
of the anchor points along the different manifold axes. Finally,
Ry +/Dy combines these measures to characterize the manifold’s
total extent, and we use this quantity as our primary measure of
manifold geometry.

To define these concretely, a manifold in neural state space can
be defined as having D 4+ 1 dimensions; one coordinate defines
the center of the manifold, while the other coordinates define the
axes of variation. This manifold is embedded in the neural activity
space of dimension N, where D < N, and the activity response to
any given image is represented by the vector X. The bold notation
of x indicates that it is a vector in RV. The set S is the (in this
case finite) set of data sample points that define the manifold.
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As any given point on the puth manifold M* lies in the lower,
D + 1-dimensional linear sub-space, it can be parameterized as

D+1

I
i=1

Here, uﬁ‘ are a set of orthonormal bases of the manifold’s linear
subspace, and like X, these are N dimensional. The D + 1 scalars
S; then represent the coordinates of x* within the manifold’s
subspace, and the vector of coordinates is constrained to be in
the set S € S. Note th_a)t unlike the bold notation for x and u;,
the arrow notation for S indicates that it is a vector in RP*1,

With these variables defined, recall that of interest is the
separating hyperplane that enables classification of the objects,
where there are total of P objects/manifolds. In particular, the aim
is to identify a hyperplane that provides the maximum separation
capacity, given a separating margin of «. The separating weight
vector is then defined by up to P anchor points, that is, w
ZZ:1 Ay X", where A, is a multiplier satisfying A, > 0, y* is
the binary label, and X* € conv(M*), where X* is the anchor point
(denoted by tilde) in the convex hull of M*.

To characterize the geometry of the anchor points, they are
first projected onto a lower D + 1-dimensional subspace (where
D is determined by the number of data samples per manifold,
here 250). Using this projection of each anchor point X (denoted
S), one can now define the measures of manifold geometry. In
particular, the effective radius and dimension are defined in terms
of §S = (S — So0)/11So|l. Here, 5S represents the projection of X
onto the D + 1-dimensional subspace, relative to the manifold’s
center, So. The variation of these points is further normalized by
the manifold center norm. For each measure defined below, (...)=

(8)

represents an average over random vectors 7) of dimension D+1,
and with i.i.d normally distributed components T; ~ N(0, 1). This
statistical component is important, as the anchor points depend
on the random orientations of the other object manifolds, and
henceon T . Bringing this together, the manifold radius is defined
as the total variance of the normalized anchor points:

Iz (9)

The effectlve dimension, Dy, is defined as the angular spread

between 8T = T — Ty (where Ty is the projection of T onto Sp)
and the anchor point 85(T)

= (I8S(T

- A=
Dy = (8T - 85(T))*)7 (10)

Here §S is a unit vector in the direction of §S. Note that Dy <
D. As noted earlier, the manifold extent is then given by Ry +/Dy.
Readers interested in additional mathematical details of these
measures, including the determination of a given manifold’s an-
chor points, are advised to refer to Chung et al. (2018) and Cohen
et al. (2020).

We sample a total of 200 _T) in our analyses, as advised
in the code-base of the implementation used — https://github.
com/schung039/neural_manifolds_replicaMFT (Stephenson et al.,
2019), and we use a margin value of « 1 for determining
anchor points.

Eigenspectrum Analysis We also apply the eigenspectrum
analysis described in Stringer et al. (2019) and Nassar et al.
(2020). Specifically, given the covariance matrix ) of a network’s
layer, we analyze its eigenspectrum, denoted by the descending
eigenvalues A1y > A, > > An. The covariance matrix is
derived from activity sampled across multiple image presenta-
tions (here 750 examples per class in the MNIST test set). We
then performed a linear fit to the eigenspectrum in log-log space,
as described in Stringer et al. (2019), and implemented in the
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code-base for Nassar et al. (2020) available at https://github.com/
josuenassar/power_law. This linear fit provides an estimate of the
power-law exponent, «, which quantifies the decay of the eigen-
values (i.e. amount of described variance) as a function of the
eigenvalue’s rank. As we discuss further in our results, Stringer
et al. (2019) observed that neural activity in mouse visual cortex
approximately followed a power law such that the nth eigenvalue
(principal component) scaled as 1/n, i.e. ¢ = 1.

As in Stringer et al. (2019), we limit the range of eigenvalues
used for this fit; in our case, we limit the eigenvalues to 10 to
350, as our baseline architecture has a total of 400 eigenvalues,
while the lower bound of 10 was used in Stringer et al. (2019), as
it was above this eigenvalue that they observed the power-law.

5. Experiments

In the following section, we begin by demonstrating that sim-
ply introducing hierarchical binding is insufficient for an im-
proved decision boundary, but that additional steps of regu-
larization (through label smoothing), and noise in the training
data provide a more robust model. After describing the settings
in which we observe improved robustness, we use additional
analyses to clarify the role that the expanded manifold due to
hierarchical binding plays in this observed effect.

5.1. Hierarchical binding alone

Our opening assumption is that the true manifold representing
objects is higher dimensional than typically assumed when de-
signing CNNs, and that capturing this would improve robustness.
In particular, the HBCNN architecture affords the possibility of
learning better decision boundaries along additional dimensions
of variation. Importantly however, the data in a typical data-set
such as MNIST will often be concentrated on a lower-dimensional
manifold than is likely to underlie human perception. Further-
more, decision boundaries in high dimension are challenging to
learn due to the sampling complexity (i.e. the chance of sampling
along a particular dimension becomes vanishingly small, and so
the amount of information available to learn the decision bound-
ary in these dimensions is limited). We begin by discussing our
results in the context of the HBCNN (LeNet-5 variant) leveraged
on the MNIST data-set.

Given the above, what then is the effect of introducing bind-
ing representations without any additional modifications? Given
the sparse sampling in the high-dimensional space, we would
expect the augmented model’s decision boundary to have limited,
if any improvement (Fig. 1b), as it attempts to fit to the few
data-points available. These decision boundaries however have
a chance of covering directions that are otherwise vulnerable
to transfer attacks, and consistent with this, we observe some
enhanced robustness to L, transfer attacks (Table 1). This is
notable, as the inclusion of hierarchical binding alone appears
to cause minimal, if any, gradient masking (demonstrated by
the effectiveness of the gradient-based PGD attack in Fig. 4). As
such, there is nothing to prevent the creation of effective transfer
attacks from our surrogates (Tramer, Carlini et al.,, 2020). This
suggests that across the variety of directions that an image can
be perturbed to fool a classifier (including our own model), these
are on average more effective against an undefended model.

In addition to the enhanced L, transfer attack resistance, some
enhanced robustness to white-box attacks that use estimated
gradients is seen (Table 1), likely as a result of a less smooth
loss-landscape caused by the gradient unpooling and unpooling
operations, similar to the effect in Xiao et al. (2020). Unlike
in Xiao et al. (2020) however, the effects are minimal and suf-
ficiently small so as to not impact white-box attacks with direct
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access to gradients. The thresholding that our gradient unpooling
and unpooling operations introduce also increases resistance to
the Boundary Attack, although this is only due to a failure of its
ability to operate in its normal regime, rather than an indication
of genuinely enhanced robustness. In particular, as the Boundary
Attack attempts to navigate the decision boundary, it frequently
becomes stuck in local minima and encounters regions where it
must decrease its step size for the boundary to behave linearly.

The above results demonstrate an improvement on L, transfer
attacks, and that elements of the architecture can inadvertently
compromise the optimization techniques of some attacks. How-
ever, it was also predicted that, in the absence of additional
samples, the model would be unable to learn a particularly useful
decision boundary. Consistent with this, the trend is that hier-
archical binding alone does not enhance robustness across the
majority of attacks, and in fact some attacks are more successful
against the LeNet-5 variant of the HBCNN than against an unal-
tered LeNet-5 model (Table 1); clearly the decision boundaries
are not yet very useful and can in fact be worse than those of a
standard model.

5.2. Hierarchical binding with regularization

To improve the decision boundary, we regularize with label-
smoothing. Without such regularization, there is a risk that the
model will over-fit to the sparse samples in the high-dimensional
space, and fail to form a good approximation of the true decision
boundary that would generalize to unseen data. Thus its introduc-
tion should promote a more representative (and thereby robust)
decision boundary (Fig. 1c). We also apply label-smoothing to
the standard CNN so as to ensure a fair control. As expected, we
observe an improvement on a range of attacks for both architec-
tures (Table 1), although much of this improvement could also
be accounted for by moderate gradient masking. The HBCNN also
appears more vulnerable to certain attacks following the addition
of label smoothing; without noisy training data (introduced in the
next section), the regularized decision boundary can sit close to
clean examples and be worse than that of a standard model.

5.3. Hierarchical binding with regularization and noisy training data

To better sample the high-dimensional data manifold corre-
sponding to human perception, we introduce Gaussian (o
0.3) and salt-and-pepper (120/784 pixels perturbed) noise during
training (Fig. 1d). This is motivated by previous work where
training with noise has been associated with increased robustness
to adversarial attacks, measured either by the average adversary
distance or the accuracy at a fixed-threshold perturbation (Ford
et al, 2019; Rusak et al., 2020; Zantedeschi et al., 2017). For
both the control model and the HBCNN, we also increase the
dimension of the fully connected layers to 256 and 128, and train
for longer, as cross-validation data suggested this better modeled
the more complex data-set in both cases, and further enhanced
robustness.

As shown in Table 2, this creates a network (‘HBCNN+S+N’
in the table) with enhanced robustness to virtually all attacks
relative to the main control model. This result supports the notion
that introducing hierarchical binding can support developing a
more robust model.

As we do not perform adversarial training in our models, we
cannot guarantee that any particular model will have developed
a robust decision boundary. As such, we observe that our mod-
els follow a distribution in robustness, and in addition to the
tabular results, we present distortion curves (Fig. 5) and his-
tograms (Fig. 6) of model robustness for several key attacks. Fig. 5
in particular reveals that the primary robustness benefit of the
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Fig. 4. Distortion-accuracy curves for the vanilla and fully augmented (label smoothing and noisy training data) models. The y-axis shows the accuracy of the model as
the allowable distortion for the attack increases. (a) Ly, PGD attack, (b) L, PGD attack. Accuracy above chance (horizontal gray line) on the Ly, PGD attack beyond
a distortion of 0.5 (vertical gray line) provides evidence of gradient masking. S = label smoothing; N = Gaussian and Salt-and-pepper noise added to the images
during training. Shaded areas indicate 95% confidence interval of the mean across the 30 sample networks for each architecture.

Table 1
MNIST results (Part 1).
Vanilla-CNN Vanilla-HBCNN CNN+S HBCNN+S

Clean accuracy 99.25 99.13 99.17% 99.08%
L,-metric (¢ = 1.5)

Transfer m 2.4 (84%) 6 (86%) 2.8 (85%) 8 (87%)
Uniform Noise ® 9.0 (99%) 7 (99%) 7.3 (98%) 1 (99%)
Gaussian Noise B 7.1 (98%) 9 (98%) 6.8 (98%) 5 (98%)
Boundary ® 1.6 (57%) 2 (98%) 1.5 (50%) 3 (96%)
Pointwise W 3.4 (96%) 9 (93%) 3.4 (95%) 7 (93%)
FGM 3.0 (82%) 8 (78%) 8.1 (89%) 8 (91%)
FGM w/GE 3.3 (82%) 6 (91%) 7.9 (89%) 10.1 (95%)
DeepFool 1.4 (46%) 4 (39%) 4.5 (82%) 5.5 (84%)
DeepFool w/GE 1.7 (59%) 6 (54%) 6.5 (88%) 4.8 (86%)
BIM 1.3 (37%) 3 (34%) 2.4 (67%) 3.2 (73%)
BIM w/GE 1.2 (34%) 5 (51%) 2.4 (67%) 3.1 (77%)
PGD 1.0 (13%) 0 (12%) 1.3 (41%) 1.6 (54%)
All L, 1.0 (12%) (12%) 1.1 (29%) 1.5 (52%)
L.,-metric (¢ = 0.3)

Transfer m 0.21 (13%) 0.21 (9%) 0.23 (28%) 0.23 (20%)
FGSM 0.18 (15%) 0.18 (20%) 0.46 (70%) 0.46 (73%)
FGSM w/GE 0.23 (38%) 0.40 (54%) 0.46 (72%) 0.46 (74%)
DeepFool 0.12 (0%) 0.12 (0%) 0.37 (60%) 0.43 (67%)
DeepFool w/GE 0.14 (0%) 0.13 (1%) 0.59 (75%) 0.44 (65%)
BIM 0.10 (0%) 0.10 (0%) 0.19 (37%) 0.29 (48%)
BIM w/GE 0.10 (9%) 0.11 (29%) 0.18 (35%) 0.29 (48%)
MIM 0.10 (0%) 0.10 (0%) 0.21 (37%) 0.30 (50%)
MIM w/GE 0.10 (9%) 0.13 (27%) 0.21 (37%) 0.30 (50%)
PGD 0.08 (0%) 0.08 (0%) 0.09 (6%) 0.11 (4%)
All Lo, 0.08 (0%) 0.08 (0%) 0.09 (4%) 0.11 (4%)
L,-metric (¢ = 12)

Pointwise x10 ® 9 (28%) 7 (14%) 8 (23%) 6 (6%)
Salt&Pepper Noise W 56 (93%) 22 (73%) 48 (92%) 17 (67%)
All Ly 9 (28%) 7 (14%) 8 (23%) 6 (6%)

Results are presented from leveraging a variety of attacks against architectures of interest evaluated on the MNIST
data-set; note that the main MNIST results are split across two tables (this table and Table 2) due to page-width
constraints. The main numerical results shown here are the median L, distances of a successful adversary for the
different attacks (rows), provided as the median performance across 30 networks for each model condition (columns).
In parentheses is the median accuracy, at a given thresholded perturbation ¢, taken across 30 networks. The All-Lo,
All-L, and All-L., distances show the minimal adversarial distance across all attacks of that distance-metric for
each image. Bold indicates the best performance between the networks with noise added to the training images;
blue indicates the best performance across all networks in both tables. ‘Clean’ refers to the accuracy on the test
data-set without adversarial perturbations; ‘Vanilla’ indicates the absence of the modifications (regularization with
label smoothing or noise in training data) introduced later; HBCNN = Hierarchical Binding-CNN (LeNet-5 variant);
S = label smoothing; N = Gaussian and Salt-and-pepper noise added to the images during training; w/GE = with

Gradient Estimation; W

= black-box attack.
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Fig. 5. Distortion-accuracy curves for the fully augmented (label smoothing and

noisy training data) models on black-box attacks. The y-axis shows the accuracy of

the model as the allowable distortion for the attack increases. The digits displayed under Blended Uniform and Gaussian noise indicate example adversaries that
successfully fooled the HBCNN+S+N model, providing both their L, distance, as well as the change in classification. For the Gaussian Noise attack, the attempted
additive noise does not extend beyond an L, distance of 11. The plots expanded from the Pointwise attacks show zoomed in views of the distortion curves. The
shaded regions indicate the 95% confidence interval of the mean across the 30 sample networks for each architecture.

HBCNN+S+N emerges at higher values of distortion. We include
example images that the HBCNN+S+N has misclassified at varying
amounts of noise to demonstrate that the improved robustness is
not associated with (implausible) super-human performance.
The robustness we observe to such a wide range of black and
white-box attacks suggests that gradient masking alone cannot
explain our results. Furthermore, our distortion-accuracy plot
in Fig. 4 demonstrates that with an L., perturbation budget of
0.5 (sufficient to change every pixel-value to gray), the accu-
racy of the HBCNN models reassuringly reach that of random
guessing (Carlini et al., 2019). Despite this, some of our white-
box attack results suggest that in both the control (‘LeNet+S+N’
in Table 2) and HBCNN+S+N, a degree of gradient-masking is
present. This appears to be an unintended consequence of label

smoothing (see our Methods), as well as the discontinuities intro-
duced by the thresholding operation in unpooling and gradient-
unpooling (Xiao et al., 2020). We emphasize that the interesting
result is the broad range of enhanced robustness seen, in par-
ticular to black-box attacks, and across multiple L, norms. With
the exception of the Boundary Attack, these black-box attacks
rely on sampling directions from the input to find an adversarial
region, and the improved robustness points to the effectiveness
of hierarchical binding in reducing the vulnerability of these
directions.

We note that the transfer attack robustness, while small in
magnitude, is particularly significant given that we leverage such
a broad transfer attack against the MNIST-trained models, and
given the relationship of transfer attacks to our opening geomet-
ric intuition. Many transfer attack evaluations in the literature use
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Fig. 6. Distributions of the median performance of networks. Shown are the distributions of the median performance of networks (30 for each condition). Blue
indicates results for the HBCNN (LeNet-5 or VGG variant as appropriate for the data-set) + label smoothing (S) + noise in the training data (N); red represents the
LeNet-5/VGG+S+N as appropriate for the data-set; yellow indicates the Size-controlled CNN+S+N (2 fully connected layers). The x-axis for each distribution indicates
the distance between the original image and the adversary, using the distance measure appropriate for that attack. Note that we do not show results for every
attack leveraged, but select those we deemed particularly important such as black-box attacks and the ‘All’ attacks evaluations. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

a single model, or even one with a different architecture to gener-
ate the transfer images. We use a total of 9 surrogate models and
18 adversarial candidates for each attack, including surrogates
that have been adversarially trained and independent equivalents
of the architecture being attacked. Using so many candidates
in our evaluation is important, as our defense is proposed to
reduce the number of directions in which our HBCNN architecture
and other models share vulnerable decision boundaries, which
transfer attacks are otherwise designed to exploit (Tramer et al.,
2017). The observed improvement in robustness therefore lends
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evidence to our opening claim that, while a sufficiently pow-
erful attacker can break our defense, these directions are more
challenging to find in the HBCNN than in a standard model.

5.4. Comparisons to additional models on MNIST

To control for the possibility that the greater number of pa-
rameters in the HBCNN simply enables it to fit the noisy training
data better, we also train two larger CNNs with an equivalent
number of parameters to the HBCNN (results in Table 2). The
first version has a single fully connected layer, as is common in
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Table 2
MNIST results (Part 2).
CNN+S+N HBCNN Sized-1FC Sized-2FC CNN+AT
+S+N +S+N +S+N

Clean accuracy 99.10% 99.05% 99.43 99.45% 98.40%
Ly-metric (e = 1.5)
Transfer m 3.1 (89%) 3.2 (89%) 3.0 (92%) 2 (92%) 3.7 (95%)
Uniform Noise W 6.6 (99%) 11.3 (99%) 6.2 (99%) (100/)) 8.7 (98%)
Gaussian Noise ® 10.0 (99%) 10.5 (99%) 9.7 (99%) 9 (99%) 5.3 (97%)
Boundary W 2.5 (88%) 92 (98%) 2.1 (84%) 3 (88%) 1.4 (42%)
Pointwise W 4.4 (96%) 5 (97%) 42 (97%) 4 (97%) 1.9 (73%)
FGM 8.4 (92%) 7 (93%) 9.8 (94%) 6 (96%) oo (95%)
FGM w/GE 8.2 (92%) (9"’/) 9.6 (94%) 3 (96%) 00 (95%)
DeepFool 7.3 (91%) 1 (93%) 3.6 (89%) 3 (96%) 9.4 (94%)
DeepFool w/GE 7.3 (93%) (94/1,) 46 (91%) (96/0) 9.5 (94%)
BIM 3.6 (84%) 0 (86%) 3.0 (85%) 6 (92%) 49 (93%)
BIM w/GE 3.6 (84%) 0 (87%) 3.1 (84%) 5 (92%) 4.5 (93%)
PGD 2.5 (77%) 8 (79%) 1.9 (71%) 7 (8 m) 2.8 (86%)
All L, 2.1 (75%) 5 (78%) 1.8 (69%) 1 (81%) 1.4 (39%)
L.,-metric (¢ = 0.3)
Transfer ® 0.29 (43%) 0.33 (60%) 0.26 (33%) 0.28 (41 {,) 0.39 (94%)
FGSM 0.48 (76%) 0.62 (82%) 0.50 (76%) 0.46 (73%) 0.44 (95%)
FGSM w/GE 0.50 (78%) 0.63 (383%) 0.51 (76%) 0.47 (79%) 00 (95%)
DeepFool 0.83 (81%) 1.0 (85%) 0.32 (54%) 1.0 (94%) 0.46 (94%)
DeepFool w/GE 1.0 (86%) 1.0 (86%) 0.45 (73%) 1.0 (95%) 0.71 (94%)
BIM 0.34 (56%) 0.44 (66%) 0.25 (31%) 0.45 (63%) 0.36 (93%)
BIM w/GE 0.34 (57%) 045 (67%) 0.25 (31%) 0.45 (62%) 0.63 (954,)
MIM 0.32 (54%) 0.42 (66%) 0.25 (33%) 0.41 (59%) 0.34 (93%)
MIM w/GE 0.35 (56%) 0.44 (68%) 0.26 (38%) 0.42 (60%) 0.44 (94%)
PGD 0.22 (28%) 0.24 (33%) 0.15 (0%) 0.30 (49%) 0.33 (91%)
All Lo, 0.20 (20%) 0.22 (25%) 0.15 (0%) 0.23 (25%) 0.33 (91%)
Ly-metric (¢ = 12)
Pointwise x10 m 13 (53%) 14 (56%) 12 (46%) 13 (52%) 4 (0%)
Salt&Pepper Noise B 142 (97%) 135 (97%) 156 (98%) 150 (98%) 14 (57%)
All L, 13 (53%) 14 (56%) 12 (46%) 13 (52%) 4 (0%)

Results are presented from leveraging a variety of attacks against architectures of interest evaluated on the MNIST
data-set; note that the main MNIST results are split across two tables (this table and Table 1) due to page-width
constraints. The main numerical results shown here are the median L, distances of a successful adversary for
the different attacks (rows), provided as the median performance across 30 networks for each model condition
(columns). In parentheses is the median accuracy, at a given thresholded perturbation ¢, taken across 30 networks.

The All-Lo, All-L, and All-L

distances show the minimal adversarial distance across all attacks of that distance-

metric for each image. Bold indicates the best performance between the networks with noise added to the training
images; blue indicates the best performance across all networks in both tables. ‘Clean’ refers to the accuracy on the
test data-set without adversarial perturbations; HBCNN = Hierarchical Binding-CNN (LeNet-5 variant); Sized-nFC =
size-controlled CNN with either n = 1 or 2 fully-connected layers; AT = adversarial training; S = label smoothing;
N = Gaussian and Salt-and-pepper noise added to the images during training; w/GE = with Gradient Estimation;

B = black-box attack.

adversarially robust benchmark CNNs, such as the adversarially
trained model in Madry et al. (2018). The second has two fully
connected layers, like the baseline CNN and the HBCNN model.
The performance of both architectures is in general not compa-
rable, and in some cases, the larger models are more vulnerable
than the smaller, baseline architecture. For the stronger, size-
controlled CNN with two fully connected layers, this is the case
for several important black-box attacks we evaluate, including the
transfer L,, Boundary, and additive Gaussian noise attacks. These
results indicate that arbitrarily adding parameters can increase
the vulnerability of a model.

The primary exception to the enhanced vulnerability of the
Size-controlled CNN+S+N (2 fully connected layers) model is the
results of several gradient-based attacks, and the transfer L, at-
tack. Regarding gradient based attacks, this difference is likely
a consequence of a significant increase in gradient masking in
the size-controlled model, an uninteresting defense. Evidence of
gradient masking in this model includes that a distortion budget
of Lo = 0.5 is insufficient to bring accuracy to chance levels
(Fig. 4). This is significant, as the convergence plots of the PGD
attacks in Fig. B.13 demonstrate that the PGD is as well optimized
as possible. The existence of considerable gradient masking is fur-
ther supported by the observation that the PGD attacks perform
worse than the equivalent transfer attacks for this model, and
the significantly better performance of the Boundary Attack in
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comparison to PGD (Table 2). For the transfer L, result, we high-
light that the size-controlled models were not used as surrogate
models when generating attacks for transfer (owing, in part, to
the significant gradient masking), and so it is promising that the
HBCNN still at least matches the robustness of the deeper size-
controlled model under this setting. More importantly, in spite
of this limited transfer attack against the size-controlled model
in comparison to the HBCNN model, the HBCNN model is con-
siderably more robust on transfer L., attacks. In summary, these
results support the inductive bias in our architecture that abstract
and low-level features should be represented in their own right; it
is not a question of simply adding more free parameters to attain
robustness.

In terms of why the Size-controlled CNN+S+N (2 fully con-
nected layers) model displays gradient masking, this is likely an
unintended consequence of label smoothing, and its complex in-
teractions with the properties of any specific model. We highlight
that other established defenses may, in a similar manner, con-
tribute to both a degree of genuine robustness, as well as gradient
masking. For example, the well known use of adversarial training
(discussed below) may contribute to gradient masking (Khoury
& Hadfield-Menell, 2018; Tramer & Boneh, 2019), which would
be consistent with the finding that many black-box attacks can
outperform strong gradient-based attacks against adversarially
trained models (Schott et al., 2019).
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We now compare our results to models that have undergone
adversarial training. Adversarial training (AT) is a process of op-
timizing the parameters of a network given both clean training
examples and adversarial images generated for that network. This
process continues in an iterative fashion, with new adversaries
generated as the model attempts to develop a robust decision
boundary, and this remains one of the strongest methods for
defending classifiers (Madry et al., 2018). We highlight that our
‘HBCNN+S+N’ model beats adversarial training on several black-
box attacks, the All L, metric, and the All Ly metric. These results
are consistent with the observation that adversarial training can
reduce robustness to noise (Dapello et al., 2020; Rusak et al,,
2020), and black-box attacks more generally (Schott et al., 2019).
We emphasize that the adversarially trained model from Madry
et al. (2018) uses many more parameters; whereas our method
has around 850,000 parameters, the AT model is nearly four times
as large with approximately 3,275,000 trainable parameters. De-
spite our method achieving comparable or better robustness on
several metrics using significantly fewer parameters, we also ob-
serve higher classification accuracy on the clean data-set (99.05%
for our model vs 98.40% for the AT model).

We do not include the robust Analysis by Synthesis (ABS)
model (Schott et al., 2019) due to the computational resources
required to run it (around three orders of magnitude more time
for a forward pass on our GPUs in comparison to the HBCNN).
Comparing the results in Table 1 of Schott et al. (2019), with
those of the ‘HBCNN+S+N’ model in our Table 2, our network
outperforms their non-binary ABS model’s state-of-the-art (SOTA)
All L, result (median distance 2.3 for ABS vs median distance
2.5 for ours), and achieves similar results on Gaussian noise and
Transfer Ly, attacks. Our results are thus in keeping with SOTA
robustness on MNIST according to the All L, evaluation, however
we do not make any such claim due to the difficulties of a fair,
head-to-head comparison, and limitations of our defense that we
raise in the discussion.

5.5. Geometric measures of network representations

Manifold Extent and Robustness We have suggested that vul-
nerability to adversarial examples can be reduced by developing
models that more faithfully represent the high-dimensional man-
ifolds that underlie human perception. We therefore proposed
an architecture with the intent of better modeling additional
degrees of low-level variation. We subsequently trained with
noise, in the hope of sampling more densely from the data man-
ifold that corresponds to human representations of hand-written
digits, as opposed to the more constrained data manifold found
in the original MNIST training set. While these modifications
were associated with enhanced robustness, it is important to
determine whether our modified architecture does indeed model
greater degrees of object variation, and the degree to which this
is associated with robustness.

To measure the geometry of the neural manifolds in our differ-
ent architectures, we apply the techniques of Chung et al. (2018)
and Cohen et al. (2020). In particular, these enable us to evaluate
the average dimension (Dy), radius (Ry), and extent (Ry~/Dy)
of the neural manifolds for the object classes. Based on our
opening proposal, we would expect the neural manifolds in the
hierarchical binding network’s layer immediately proceeding the
fully connected layers of the network to be higher dimensional
than in the other architectures. Furthermore, we would expect
the HBCNN to be better able to model the natural variation
of objects across these dimensions, which would manifest as a
larger average manifold radius. The manifold extent captures (and
is proportional to) both of these metrics, and should therefore
also be increased under our opening proposal. Consistent with
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this, we observe that all of these measures are elevated in the
HBCNN relative to the other architectures in the layer imme-
diately proceeding the fully connected parts of the networks
(Fig. 7).

Furthermore, our proposal suggests that expanded neural man-
ifolds would be associated with robustness to the measures we
are most interested in, namely robustness to black-box attacks.
We therefore estimate the manifold extent in the layer of activity
immediately proceeding the fully connected layers, and compare
this to our measures of robustness. As predicted, across all of
these attacks, and importantly across all three metrics of Ly, L,
and Ly adversaries, we observe a positive relationship between
manifold extent and robustness (Fig. 8). This provides evidence
that, not only does the introduction of hierarchical binding ex-
pand the neural manifold, but that this modification is associated
with the improvement in robustness observed in the HBCNN.

It is also worth highlighting that, although expanding the
manifold is associated with a more robust decision boundary,
it does not actually guarantee the robustness of said boundary.
For example, it is clear from our results that even models with
small manifold extents can occasionally be robust. Our results
therefore do not support that expanded manifolds are necessary,
nor sufficient, for robustness in the setting that we explore.
Importantly however, there is a clear association between models
with expanded manifolds and robustness.

It is also interesting to note that, comparing the two size-
controlled CNN architectures, the network with two-fully con-
nected layers appears less constrained to rapidly minimize its
manifold radius, dimension, and extent across the layers (Fig. 7),
and this might partly explain some of its greater robustness.
This is noteworthy, as many CNNs in the adversarial examples
literature, such as the robust model in Madry et al. (2018), or the
baseline control models in Nassar et al. (2020) and Schott et al.
(2019), use a single fully connected layer.

As an additional point of interest, it is worth examining where
the adversarially trained model from Madry et al. (2018) sits in
these evaluations. With only one sample, and robustness mea-
sures that are significant outliers, we mark the location of the
model on our scatter plots with a vertical gray line (Fig. 8). We
note that the manifold extent is above virtually all of the non-
HBCNN models, a finding that is consistent with the positive
relationship we observe between manifold extent and robustness.

Power Law Scaling of Variance Following on from the above
analysis, it is interesting to compare our proposal to another
possible connection between the nature of neural manifolds and
robustness. In Stringer et al. (2019), it was observed that the
neural responses in mouse visual cortex were high-dimensional,
and that the variance of the nth dimension scaled according to
the power law n™%, where « = 1. Stringer et al. (2019) proposed
that the brain maintains a high-dimensional representation of
the input, while ensuring that it decays sufficiently quickly that
the underlying manifold is smooth. If the representation decayed
more slowly, then the manifold would be non-differentiable,
which could manifest in sudden changes in responses given small
shifts in the input space. For this reason, they proposed that a
power law decay with « ~ 1 could support robustness, including
to adversarial examples. In Nassar et al. (2020), this proposal
was directly tested in deep neural networks by implementing a
form of regularization that explicitly promoted the eigenspectra
of neural responses to satisfy « = 1. They observed that the
introduction of such regularization promoted robustness to both
white-box attacks and general noise corruption, suggesting that
this could partially explain the robustness of biological vision.

It is reasonable to wonder whether the introduction of hier-
archical binding results in a similar change as the regularization
term used in Nassar et al. (2020). If it does, this would be a wel-
come outcome, as the regularization term in Nassar et al. (2020)
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Fig. 7. Manifold properties as a function of layer. Presented is the average neural manifold (a) radius, (b) dimension, and (c) extent as a function of layer for the
architectures we evaluate on MNIST. Note that the Size Controlled+S+N (2 FC) model has no result for its first layer, owing to insufficient GPU memory for determining
this. Values represent the mean across 5 sample networks, while shaded regions indicate the 95% confidence interval. Conv = post convolution and ReLU operation;
MaxP = post max-pool operation; FC = post fully-connected weights and ReLU operation. For the non-binding models, the Pre-FC layer is equivalent to MaxP. S
= label smoothing; N = Gaussian and Salt-and-pepper noise added to the images during training; (n FC) refers to the number of fully connected layers in the

size-controlled models.

is computationally intensive to implement, which limited their
approach to MNIST. Furthermore, it is not clear how this power
law spectrum would manifest naturally in the brain (i.e. without
artificially punishing representations with a regularization term).
We therefore used the same approach applied in Stringer et al.
(2019) to fit an « exponent to the eigenspectrum of each of our
networks, using the layer of activity immediately proceeding the
fully connected layers. Some example eigenspectra are provided
in Fig. 9. Interestingly, the « exponent is indeed closer to 1 in the
HBCNN (mean 1.27 &+ 0.02, 95% CI) vs. the baseline LeNet model
(mean 1.5740.01, 95% CI), or (included for comparison), the base-
line CNN architecture used in Nassar et al. (2020) (1.46, result
from a single model). However, this is not unique to the HBCNN,
and in general, the o exponent appears, if anything, closer for
our two size-controlled models, the size-controlled CNN with
a single fully-connected layer (mean 1.24 £ 0.02, 95% CI), and
with two fully connected layers (mean 1.245 4 0.005, 95% CI).
Consistent with this, we do not observe an obvious relationship
across the architecture types between the o exponent and any of
our primary black-box robustness metrics (Fig. 10). While some
of the scatter plots, such as for the Gaussian noise attack, suggest
possible correlations within a given architecture, these do not
appear to be in consistent directions. In summary, and unlike
the measure of manifold extent related to our opening proposal,
there is no evidence that a power-law spectrum might explain
the robustness changes seen across our architectural variants.
We noted earlier that the adversarially trained model in gen-
eral has an elevated manifold extent compared to typical net-
works. It is interesting to therefore wonder where the estimated
o exponent of the adversarially trained model from Madry et al.
(2018) sits. Curiously, we find that the model actually has a larger
o exponent than any of the other models (Fig. 10), where we
once again mark the adversarially trained model with a gray
line. This may seem counter-intuitive given the result in Nassar
et al. (2020) suggesting that standard architectures have larger o
exponents, and that regularizing them to fall closer to 1 improves
robustness. It is, however, consistent with the original proposal
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in Stringer et al. (2019) that a larger o exponent would result in
a smoother (and therefore a potentially more robust) manifold,
albeit at a potential cost in the efficiency of the neural code.

5.6. Understanding the contribution of hierarchical binding

We have argued that (a) the binding representations would
enable robustness by augmenting the low-dimensional represen-
tations already present in a typical CNN architecture, (b) these
representations are meaningful because they capture the low-
level features that causally drive higher-level features, and (c)
hierarchical binding reduces the number of directions in which
the decision boundary is vulnerable to potential attacks. In the
following, we provide results exploring these claims.

To address (a) and (b), we first perform an analysis where
we vary a key hyperparameter, the y proportion, in our MNIST
models. While our main results in the previous section supported
point (c), effects from inadvertent gradient masking, which can
also affect the successful creation of transfer attacks (Tramer,
Carlini et al., 2020), makes unequivocally demonstrating this ef-
fect challenging. We therefore also perform an analysis with a
magnitude-constrained Gaussian attack, demonstrating that hier-
archical binding significantly reduces the probability of sampling
and identifying a region with an incorrect decision boundary.

5.6.1. The importance of binding dimension and causality

The y hyperparameter in our model determines the propor-
tion of largest gradients that are used to mask the low-level fea-
ture activations that will be up-projected. We implemented this
as a means of approximating which of these low-level features
were most important in driving the higher representation, with
the prediction that the most causally important neurons would
be the most useful to augment the other-wise low-dimensional
manifold. To explore this, we systematically vary y, and ob-
serve the effect on the robustness of a network. This analysis
demonstrates:
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type. The dashed gray-line indicates the Ry+/Dy value of the adversarially trained model from Madry et al. (2018), which is not displayed as a point due to its
significant outlier values for robustness. S = label smoothing; N = Gaussian and Salt-and-pepper noise added to the images during training; (n FC) refers to the
number of fully connected layers in the size-controlled models.

e The benefit of increasing the dimension (i.e. number) of
low-level binding representations available. More informa-
tion about the low-level features alongside the abstract,
high-level features is generally associated with greater ro-

bustness.

e A benefit even without masking (i.e. up-projecting all low-
level activations of a layer rather than selecting only a
proportion). Thus hierarchical binding’s benefit appears to
primarily be from the preservation of low-level information
alongside high-level features, rather than specifically encod-
ing which low-level features causally drove the high-level
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representation. The result also provides further evidence
against gradient masking as a main effect.

e The benefit of the selected binding representations having
played a larger causal role in the representation at the
higher level. If only a sub-proportion of low-level features
are up-projected, it is generally better to up-project the
most causally significant representations.

Fig. 11 shows that, as the proportion of largest gradients used
is increased (using larger values of y), the network shows a rapid
rise in its robustness, presumably as the key causally important
dimensions are captured. If y is too small (e.g. y = 0.1), one
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in the size-controlled models.

would expect that not all of the important low-level features are
being included and up-projected, and as such there are fewer
representations available for informing decision boundaries along
the high-dimensional manifold. With an even smaller value (y =
0.01), it appears that the representations may be too labile to
be useful, and that they can in fact be harmful to robustness.
Interestingly, there is a rapid rise as y increases, but this benefit
then largely plateaus. This result suggests that while the pri-
mate brain might implement hierarchical feature binding for a
variety of computational purposes, we observe that the primary
influence this has on robustness is from the preservation of low-
level features along-side more abstract features, rather than the
additional encoding of which low-level features causally drove
more abstract representations. This finding is consistent with
our proposed connection between hierarchical binding, manifold
geometry, and robustness, where the preservation of low-level
features alone should provide a more expressive neural manifold.

When y reaches 1.0, we are simply up-projecting all the
low-level features alongside those of max-pooling (i.e. without
any masking). The benefit in spite of no masking procedure
demonstrates that our main effect cannot be explained by our
gradient-unpooling operation introducing discontinuities as has
been found in high-sparsity regimes of k-Winner-Take-All (Xiao
et al.,, 2020). While we noted above that a higher y appears useful
for several attacks, this is not universally the case, and in partic-
ular a higher y drastically reduces the robustness of the classifier
to the Boundary Attack by making the decision boundary more
linear and amenable to attack. We tuned y in our networks for
robustness across the range of attacks leveraged, while capturing
the notion of sparseness embodied in our opening, biological
motivation. In the case of MNIST, results from the cross-validation
data suggested that a value of 0.4 was optimal.

Fig. 11 also shows that using the same algorithm for gener-
ating the gradient unpooling representations, but with the y-
smallest gradients to derive the binding information instead, gen-
erally confers less benefit until virtually all activations are up-
projected. This supports the notion that our implementation of
gradient-unpooling is capturing some information about which
low-level representations are most useful for supporting robust
decision boundaries.

Note that we do not claim that the implementation we use
is necessarily the best possible for preventing adversarial attacks,

274

and machine-learning focused approaches might want to deviate
from our sparse choice of y. It may be for example that a network
using the largest gradients with y = 1.0, or a network using
the smallest gradients and y = 0.9 might be better for certain
attacks, such as the Pointwise attack. Rather we aim to demon-
strate that our biologically motivated process of up-projecting a
sparse representation of the hierarchical binding features con-
fers robustness, and that this generally performs better when
the most important (by our approximate measure) features are
up-projected, rather than the least important. The noisiness of
the trends in Fig. 11 may partly relate to the ultimate failure
of our gradient unpooling operation to perfectly capture which
low-level neurons were causally important to the more abstract
representation.

Note that we do not show results for the y-smallest gradients
on the L., transfer attack, for which additional surrogates would
be required, nor any results from the L, transfer attack, where
the trend is more noisy, and interestingly, the unpooling layer
(here ablated) appears to play an important role in robustness.
Unpooling was ablated in these experiments to remove the con-
found of any sparsity in the up-projected representation, and
the results suggest that gradient unpooling can be sufficient for
preventing many of the vulnerable regions leveraged in attacks
such as Gaussian and uniform noise. We comment again on the
significance of this ablation in the next sub-section.

5.6.2. Hierarchical binding reduces the probability of finding vulner-
able decision regions

To provide additional evidence that the decision boundary of
the model augmented with hierarchical binding is fundamentally
more challenging to attack in a black-box setting, i.e. that it
is more difficult to identify vulnerable regions, we leverage a
magnitude constrained attack with Gaussian noise. Unlike the
additive Gaussian Noise Attack used in our main results which
iteratively increases the amount of noise until misclassification is
successful, we now add noise sampled from a fixed distribution
(u =0, 0 = 0.35, i.e. Gaussian noise of greater magnitude than
used during training). This attack is repeated up to 50,000 times
for each image, and in Fig. 12, we show the proportion of images
that have been misclassified as the number of attempts increases.

As we have noted, our method cannot guarantee the absence
of vulnerable regions in the decision boundary, however we
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would expect these regions to be sampled randomly with very
low probability. Whether using a method such as a transfer
attack, the Pointwise attack, or indeed brute force noise, one is
less likely to arrive in these regions for the hierarchical binding
model owing to its improved decision boundary. Consistent with
this, we observe that it is much harder to find such regions
through random sampling in the HBCNN+S+N than the standard
CNN+S+N or size-controlled models (Fig. 12). It is interesting to
note that, consistent with our earlier results, the size-controlled
CNNs appear to be more vulnerable than the standard CNN+S+N.
This finding supports that naively adding parameters, rather than

striving for representations that reflect the manifold of the un-
derlying data, can be harmful for robustness. It is once again
noteworthy that this is particularly the case for the shallower
size-controlled CNN with only one hidden layer, despite this
being a common motif in models assessed (Nassar et al., 2020;
Schott et al., 2019) or designed (Madry et al., 2018) for adversarial
robustness.

Fig. 12 also shows the results of two ablations. During and
after training, we either always set to O the activations of the
representations conveying more invariant, abstract information
(max-pooling and unpooling, the former after gradient unpooling
has been performed), or more low-level information (gradient
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unpooling). Gradient unpooling appears to provide the majority
of the benefit for Gaussian noise leveraged in this manner, while
unpooling alone offers little benefit alongside max-pooling. On
the other hand, we noted from the ablated networks in the
previous section that unpooling appears important for transfer L,
robustness. We suspect that the directions which unpooling helps
the network cover are exceedingly rare to sample randomly, and
as such, we see limited benefits in Fig. 12; indeed we know from
our main results that there are many vulnerable regions within
the space that we sample in this sub-section, and yet clearly these
are very difficult to find with brute-force noise.

Finally, the ablations in Fig. 12 show that gradient unpool-
ing is itself not sufficient to explain the benefit for robustness.
If it is not paired with the more abstract representations pro-
vided by unpooling and max-pooling, then the network performs
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worse than the standard CNN+S+N. Once again, this supports
our opening motivation of combining these representations for
a robust model, rather than gradient-unpooling e.g. introducing
an unusual non-linearity that is the source of robustness.

5.7. Performance on other data-sets

To determine whether the observed robustness generalizes
to a more complex setting, we apply the same LeNet-5 based
architectures to FMNIST, albeit with the gradient-unpooling pa-
rameter ¥y = 0.3 rather than 0.4, and implement a VGG style
HBCNN for the CIFAR-10 data-set with y = 0.1 (model details
in Appendix A). Broadly speaking, the model architectures and
training protocol for FMNIST is the same as that used for MNIST,
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including the amount of Gaussian and salt-and-pepper noise. In
order to preserve clean classification accuracy on CIFAR-10, our
noise-augmented training regime uses Gaussian noise an order
of magnitude smaller (o = 0.03 vs 0.3), and no salt-and-pepper
noise. With the exception of the ‘vanilla’ model described in the
results table, we also use weight decay (Ng, 2004) in the VGG
models to further regularize the decision boundaries. We note
that the optimal weight-decay value was tuned for robustness for
both the control and the binding-augmented models separately.
Given our observation on MNIST that the size-controlled archi-
tectures generally resulted in greater vulnerability to adversarial
attacks on meaningful metrics, we do not include any in these
analyses.

Our results for FMNIST and CIFAR-10 are presented in Tables 3
and 4 respectively. While there are a few attacks where we fail
to generalize the effect of the HBCNN being stronger than the
robust control on FMNIST (Gaussian noise, Pointwise L,, DeepFool
attacks, All Ly,) and CIFAR-10 (Pointwise L, MIM, All Ly), the
trend of enhanced robustness above the control model and across
multiple attacks is observed. As such, it appears that some of
the benefits of hierarchical binding can generalize to different
architectures and data-sets, although the current approach does
not result in as strong an effect as we observe in MNIST. Once
again, we pair our tabular results with distributions in Fig. 6 of
model performances across several key attacks.

Interestingly, the HBCNN (LeNet-5 variant) surpasses the clean
accuracy of the control model on FMNIST (where the control is
the ‘CNN+S+N’ model in Table 3). This is not a fair comparison,
as the HBCNN has more parameters, but it supports the pro-
posal that when binding representations are included, adversarial
robustness becomes a question of on-manifold generalization
error, making robustness compatible with clean classification ac-
curacy (Stutz et al., 2019), rather than an orthogonal objective.
Finally, we note that on CIFAR-10, while the observed improve-
ment is broad-spectrum, it does not match the highly established
method of adversarial training.
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6. Discussion

We have demonstrated the implementation of a novel CNN
architecture, inspired by recent work in theoretical neuroscience
(Eguchi et al., 2018; Isbister et al., 2018). This architecture ap-
proximates hierarchical binding representations by capturing the
causal relations between lower-level features and the higher-
level representation of an object. Within the framework of ad-
versarial examples as off-manifold perturbations, we presented
empirical evidence of enhanced robustness to a variety of attack
methods, following the introduction of these representations.
We measured geometric properties of the representations in our
HBCNN and standard architectures, observing a relationship be-
tween manifold extent and robustness, consistent with our open-
ing premise. The additional analysis of a brute-force noise attack
complemented our main results to further demonstrate that the
observed robustness aligns with our geometric view of the de-
fense. Further below, we discuss how hierarchical binding repre-
sentations could help explain the apparent sensitivity of humans
to adversarial examples under specific experimental conditions.

One interesting finding of our work is that, while hierarchical
binding was implemented as a biologically-inspired defense, the
results in Section 5.6.1 suggest that the primary observed benefit
was due to the preservation of low-level features alongside more
abstract, high-level features. As we discussed under our Methods,
we designed our architecture to implement a simplified version of
the hierarchical binding proposed in Eguchi et al. (2018); without
such constraints, the model would face significant computational
challenges owing to the number of features. It may be that
future architectures can more faithfully capture this proposed
form of hierarchical binding. Under such a setting, the precise
preservation of hierarchical binding relations might provide addi-
tional benefits to robustness beyond the preservation of low-level
information achieved by the currently presented model.

A key strength of the proposed approach is the broad range
of attack types against which adversarial robustness is enhanced,
particularly to black-box attacks across Ly, Lo, and L, metrics.
Many adversarial defenses result in a trade-off in robustness on
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Table 3
Fashion-MNIST results.

Vanilla-CNN CNN+S+N HBCNN+S+N CNN+AT
Clean accuracy 90.87% 87.38% 88.26% 88.46%
L,-metric (¢ = 1.5)
Transfer W 1.7 (55%) 3.7 (78%) 4.2 (81%) 3.1 (80%)
Uniform Noise B 3.4 (78%) 5.1 (87%) 5.6 (87%) 3.9 (89%)
Gaussian Noise B 2.9 (76%) 8.4 (86%) 8.1 (86%) 3.9 (87%)
Boundary m 0.4 (7%) 16 (52%) 4.5 (84%) 0.9 (23%)
Pointwise W 2.3 (70%) 4.0 (83%) 4.0 (82%) 1.7 (59%)
FGM 1.2 (45%) 2.5 (62%) 2.9 (65%) 4.5 (72%)
FGM w/GE 1.2 (44%) 2.5 (62%) 4.5 (76%) 48 (72%)
DeepFool 0.4 (12%) 1.6 (52%) 1.6 (52%) 2.3 (66%)
DeepFool w/GE 0.5 (1%) 2.1 (58%) 1.9 (56%) 2.3 (65%)
BIM 0.3 (1%) 1.0 (36%) 1.1 (39%) 1.8 (58%)
BIM w/GE 0.3 (8%) 1.0 (35%) 1.3 (46%) 1.8 (57%)
All L, 0.3 (0%) 1.0 (32%) 1.1 (38%) 0.9 (21%)
L.,-metric (¢ = 0.1)
Transfer m 0.09 (45%) 0.22 (77%) 0.23 (78%) 0.18 (87%)
FGSM 0.04 (24%) 0.13 (57%) 0.15 (60%) 0.24 (80%)
FGSM w/GE 0.05 (30%) 0.13 (58) 0.16 (62%) 0.32 (80%)
DeepFool 0.03 (2%) 0.13 (58%) 0.12 (56%) 0.26 (79%)
DeepFool w/GE 0.03 (2%) 0.16 (62%) 0.13 (57%) 0.27 (79%)
BIM 0.02 (1%) 0.07 (37%) 0.08 (41%) 0.15 (76%)
BIM w/GE 0.02 (9%) 0.07 (36%) 0.08 (42%) 0.16 (76%)
MIM 0.02 (1%) 0.07 (38%) 0.08 (41%) 0.15 (76%)
MIM w/GE 0.02 (8%) 0.08 (38%) 0.09 (46%) 0.16 (76%)
All Ly 0.02 (0%) 0.07 (35%) 0.07 (39%) 0.15 (76%)
Lo-metric (¢ = 12)
Pointwise W 8 (32%) 24 (69%) 26 (68%) 4 (17%)
Salt&Pepper Noise W 23 (63%) 167 (85%) 133 (84%) 16 (54%)
All Ly 8 (32%) 24 (69%) 26 (68%) 4 (17%)

Results are presented from leveraging a variety of attacks against architectures of interest evaluated
on the Fashion-MNIST data-set. The main numerical results shown here are the median L, distances
of a successful adversary for the different attacks (rows), provided as the median performance
across 30 networks for each model condition (columns). In parentheses is the median accuracy,
at a given thresholded perturbation ¢, taken across 30 networks. The All-Ly, All-L, and All-Ly,
distances show the minimal adversarial distance across all attacks of that distance-metric for each
image. Bold indicates the best performance between the networks with noise added to the training
images; blue indicates the best performance across all networks in both tables. ‘Clean’ refers to
the accuracy on the test data-set without adversarial perturbations; ‘Vanilla’ indicates the absence
of the modifications (regularization with label smoothing or noise in training data) introduced
later; HBCNN = Hierarchical Binding-CNN (LeNet-5 variant); AT = adversarial training; S = label
smoothing; N = Gaussian and Salt-and-pepper noise added to the images during training; w/GE =
with Gradient Estimation; B = black-box attack.

one metric (such as to L., attacks) for either minimal robustness
to attacks that minimize another distance metric, or even en-
hanced vulnerability to them (Laidlaw et al., 2021; Schott et al.,
2019). Note for example, the enhanced vulnerability to Ly attacks
seen in the adversarially trained model in Table 2. Particularly in
the MNIST setting, our architecture appears to defy this typical
trade-off, except for low-risk attack settings that require large
changes to the input, such as brute-force salt-and-pepper noise.
The method also maintains much of its accuracy on clean, unmod-
ified images, with these benefits coming at relative computational
and parameter efficiency compared to other leading defenses on
MNIST.

Nevertheless, we must highlight some notable limitations of
this work. The proposed architecture adds a hyperparameter (the
y-proportion) that for optimal performance requires tuning, with
a general trade-off for different attacks. We found that a more
complex data-set appears to benefit from a smaller proportion
(MNIST y = 0.4, FMNIST y = 0.3, CIFAR-10 y = 0.1). Further-
more, in the setting of FMNIST and CIFAR-10, the effect size vs.
the control was more subtle, and for CIFAR-10, the robustness
was not comparable to adversarial training. Finally, the adver-
sarial examples that fool the HBCNN do not appear, on average,
to be more meaningful than for the robust control model (Ap-
pendix C), and as we discuss below, the model remains vulnerable
to a sufficiently capable attacker. Notwithstanding these limita-
tions, our analysis indicates that the hierarchical representations
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described herein could be an important feature to developing
fundamentally robust models. We discuss this in further detail
below.

6.1. Models that are difficult to fool, vs. models that are impossible
to fool

We have noted that our proposed architecture does not guar-
antee the absence of vulnerable decision regions, and that a
sufficiently powerful attacker may be able to find these. Con-
sistent with this, we have conducted exploratory experiments,
requiring re-implementing the architecture in a different deep-
learning library (PyTorch), and version of the adversarial attack
library (Foolbox 3) in order to leverage newer attacks. While
these are provisional results (Foolbox 3 required untested mod-
ifications to accept a model such as ours that uses gradients at
inference), they suggest that newer attacks such as the Bren-
del (Brendel et al., 2019) and DDN (Rony et al., 2019) attack may
be able to find adversarial sub-spaces that are shared for a stan-
dard CNN+S+N and a HBCNN+S+N model, resulting in the same
apparent vulnerability given a sufficiently powerful attacker.

This suggests that, given sufficient optimization, the defense
can be broken; it may be harder to find vulnerable regions by
chance or when leveraging directions effective against other net-
works, but in such a high-dimensional space, there will still
be many pockets that can be found by a sufficiently powerful
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Table 4
CIFAR-10 results.

Vanilla-VGG VGG+S+N HBCNN+S+N ResNet+AT
Clean accuracy 86.51% 86.43% 86.07% 87.25%
Ly-metric (¢ = 1.5)
Transfer m 0.68 (26%) 0.99 (36%) 1.03 (38%) 6.23 (80%)
Uniform Noise W 3.18 (80%) 5.16 (85%) 5.40 (85%) 7.64 (86%)
Gaussian Noise B 2.31 (69%) 3.89 (80%) 4.12 (79%) 7.50 (82%)
Boundary 0.27 (3%) 0.42 (5%) 4.81 (84%) 1.11 (36%)
Pointwise B 1.60 (53%) 1.91 (60%) 1.88 (60%) 2.11 (62%)
FGM 0.26 (21%) 0.39 (26%) 0.47 (30%) 1.06 (42%)
DeepFool 0.17 (0%) 0.44 (14%) 0.49 (14%) 0.97 (35%)
BIM 0.14 (1%) 022 (1%) 0.23 (2%) 0.66 (21%)
Al L, 0.14 (0%) 0.22 (0%) 0.23 (1%) 0.66 (20%)
Lo, -metric (¢ = 8/255)
Transfer m 0.19 (34%) 0.030 (48%) 0.031 (50%) 0.153 (82%)
FGSM 0.07 (17%) 0.010 (26%) 0.012 (30%) 0.037 (5 4%)
DeepFool 0.005 (1%) 0.013 (28%) 0.015 (28%) 0.039 (56%)
BIM 0.004 (1%) 0.006 (4%) 0.007 (5%) 0.028 (46%)
MIM 0.004 (1%) 0.007 (4%) 0.007 (6%) 0.029 (47%)
All Lo, 0.004 (0%) 0.006 (3%) 0.007 (5%) 0.028 (46%)
Ly-metric (e = 12)
Pointwise W 7 (35%) 9 (42%) 10 (43%) 11 (45%)
Salt&Pepper Noise W 15 (53%) 21 (57%) 21 (57%) 27 (57%)
All Ly 7 (34%) 9 (42%) 9 (43%) 11 (45%)

Results are presented from leveraging a variety of attacks against architectures of interest evaluated on the CIFAR-
10 data-set. The main numerical results shown here are the median L, distances of a successful adversary for the
different attacks (rows), provided as the median performance across 30 networks for each model condition (columns).
In parentheses is the median accuracy, at a given thresholded perturbation ¢, taken across 30 networks. The All-L,
All-L, and All-L., distances show the minimal adversarial distance across all attacks of that distance-metric for
each image. Bold indicates the best performance between the networks with noise added to the training images;
blue indicates the best performance across all networks in both tables. ‘Clean’ refers to the accuracy on the test
data-set without adversarial perturbations; ‘Vanilla’ indicates the absence of the modifications (regularization with
label smoothing or noise in training data) introduced later; HBCNN = Hierarchical Binding-CNN (VGG variant); AT
= adversarial training; S = label smoothing; N = Gaussian and Salt-and-pepper noise added to the images during
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training; w/GE = with Gradient Estimation; @ = black-box attack.

attack. This is consistent with the results of Gilmer et al. (2018).
On a synthetic data-set of 500-dimensional spheres, even with
enormous training data and sufficient expressive capacity to per-
fectly separate the class manifolds, a model will learn a decision
boundary that significantly deviates from the ground-truth deci-
sion boundary, and is therefore vulnerable to adversarial attacks.
The intuition is that if the dimensionality is sufficiently high, a
model can be ‘statistically’ perfect (in their case 100% accuracy on
20,000,000 test examples), even if there are many regions where
the decision boundary extends into the wrong manifold.

In short, we have presented our architecture so as to ad-
dress an issue of expressive power for learning an appropriate
decision boundary, but it cannot fully resolve the inherent chal-
lenges of learning these decision boundaries in high-dimensional
spaces. As such, low-probability vulnerable regions clearly still
exist, which sufficiently powerful attacks are capable of finding.
This raises the question of what additional steps could address
this persistent challenge. It is possible that unsupervised pre-
training (Chen et al., 2020; Hénaff et al., 2020) would be useful,
and indeed techniques based on self-supervised learning have
recently been leveraged with success on improving adversarial
robustness (Gowal et al., 2021).

As is clear from the results of Gilmer et al. (2018) however,
more data alone is unlikely to be sufficient. A complementary
approach would be to address how the model generalizes to
unseen data. Typical neural networks have unfavorable prop-
erties in this regard, such as forming polytopes that classify
with high probability regions extending into infinity (Hein et al,,
2019). The favorable geometric behaviors of methods such as k-
Nearest Neighbor have been noted before as being potentially
useful, although these often come at a severe cost in expressive
power (Khoury & Hadfield-Menell, 2018; Schott et al., 2019). Ar-
chitectures designed to enable robust invariance, such as Capsule
Networks (Sabour et al., 2017), may be important in combination
with the modifications we have presented in this work.
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6.2. Other methods that preserve low-level information

It is worth clarifying the relationship of our work to other
methods of preserving low-level information. The importance of
hierarchical binding for a more robust decision boundary is that
the low-level features are represented explicitly in the late stages
of the network, with their own activations and thereby unique
learned weights projecting to the decision part of the network.
Furthermore, this preservation of information is constructed so
as to jointly capture a spectrum of feature abstraction. Thus the
architecture is designed to avoid more entangled representations
of detailed and abstract features as would be found in ResNets (He
et al, 2016) and related architectures that can preserve all in-
formation about the input, such as i-RevNet (Jacobsen et al,,
2018).

In particular, we emphasize that even with y 1.0, our
network does not equate to current CNNs with skip connections.
In networks such as ResNets, the cross-wise dimension (essen-
tially the spatial resolution of the representation) is progressively
decreased throughout the layers of the network through methods
such as using convolutions and skip connections with a stride
of 2. This results in transforming from a feature map of di-
mension such as 56 x 56 to 7 x 7 (He et al, 2016). In our
network, the activity is concatenated alongside the representa-
tions in the higher layer, rather than added via a skip connection,
and as such, the low-level activations maintain their cross-wise
dimension/resolution. Furthermore, these up-projected represen-
tations have their own, unique learned weights projecting to
the final layers of the network. Similarly, in DenseNets, max-
pooling between blocks progressively decreases the feature-map
dimension, resulting in lost spatial resolution. Within a block,
the channel-wise concatenation of features does not capture the
same motif as hierarchical binding of combining low-resolution,
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abstract features alongside higher resolution, low-level features,
as the feature-map dimensions are constant (Huang et al., 2017).
In summary, our architecture represents a novel method of com-
bining low-level and abstract features, even when y = 1.0.

Returning to our initial proposal and Fig. 1, the simpler read-
out of the features that motivates our architecture is impor-
tant for enabling sufficient representational capacity, as well as
amenable features, so as to efficiently learn decision bound-
aries along all dimensions that constitute class-preserving trans-
formations of the object. The results from our size-controlled
CNNs support the importance of this inductive bias built into
our architecture — i.e. that low and high-level representations
should be represented separately while being conserved up to the
decision-level of the network.

In summary, the desire is not to preserve all information in
the image through an entangled representation (which deep-
invertible networks do perfectly (Jacobsen et al., 2018)), but to
promote a robust decision boundary by providing a classifier dis-
tinct representations of both the abstract and low-level features
of an object. This is thus distinct from the general advantages of
skip connections, which can provide benefits such as supporting
learning in deeper architectures (He et al., 2016).

6.3. Adversarial examples and human perception

Is it possible to connect our biologically-motivated model
back to the experimental literature on the robustness of primate
vision? Perceptually, adversarial examples in humans might man-
ifest as misclassifying a briefly presented object (Elsayed et al.,
2018), or guessing at above chance levels what the adversarial
perturbation will induce in machines (Zhou & Firestone, 2019).
Such effects might be achieved by either randomly adding noise
in the hope of finding an adversarial example, or leveraging
transfer attacks from machine learning models (Elsayed et al,,
2018).

Humans without time-constraints do not appear to be sen-
sitive to adversarial perturbations (note e.g. recent limitations
identified by Dujmovic et al. (2020) regarding Zhou and Firestone
(2019)), and as such the only experimental evidence for human
sensitivity to adversarial examples is from Elsayed et al. (2018).
They used transfer attacks created from an ensemble of CNNs
to determine whether these would impact human accuracy in
a two alternative forced choice task (e.g. cat vs. dog). While
the effect on classification was not comparable to the dramatic
shift seen in machine vision systems, they measured statistically
significant drops in accuracy when humans were constrained to
view adversarial images for a very short duration (around 60-
70 ms) followed by masking intended to limit recurrent and
top-down processing.

The CORNet-S architecture is a CNN variant that makes use of
recurrent activity to better match the primate ventral stream (Ku-
bilius et al., 2019). Together with additional modifications in the
form of a front-end that better matches the processing seen in
V1, Dapello et al. (2020) demonstrated its enhanced robustness
above a CNN without recurrence. Without this modified front-
end however, CORNet-S appears to be more vulnerable than
a typical CNN without recurrence, such as AlexNet, to white-
box adversarial examples, making it unclear what the specific
contribution of recurrence to robustness might be. In addition,
the evaluation in Dapello et al. (2020) did not include transfer
attacks, the method used in Elsayed et al. (2018). The exclusion
of transfer attacks may have been based on the challenges of
creating an appropriate surrogate, however it remains an open
question to what extent recurrence in of itself can account for
the experimental results in the latter study. Similarly, in Huang
et al. (2020), the value of recurrent feedback for robustness to ad-
versarial examples was demonstrated, although the evaluation of
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black-box attack methods such as transfer attacks was limited to
versions of their model that had undergone adversarial training.
As noted in our introduction, it has been predicted that top-down
and lateral activity in a spiking neural network would be needed
to implement the proposed hierarchical binding algorithm in
a biological system, and so the disruption of such processing
provides a possible basis for the observed effect in Elsayed et al.
(2018).

More generally, there have been several valuable contributions
to explain human robustness to adversarial examples, but we feel
these still leave important questions unanswered. Vuyyuru et al.
(2020) demonstrated the effect on robustness of non-uniform
retinal sampling and varying receptive field sizes with eccentric-
ity, but their effect was specific to small perturbations, and the
evaluation of black-box attacks did not assess whether transfer
attack robustness was greater for the proposed model vs. an
undefended one. Tadros et al. (2020) examined the effect of
sleep-like algorithms on robustness, and again while this might
account for some of the difference between humans and artificial
systems, their method actually increased the vulnerability of the
model on MNIST to the Boundary Attack (see their Table 1),
with no evaluation of other black-box methods such as transfer
attacks or the Pointwise attack. Nassar et al. (2020) examined
whether regularizing representations to follow the 1/n power-
law observed in Stringer et al. (2019) could explain the benefits
of biological neurons displaying such characteristics. While their
results suggested that this might indeed partly explain robustness
in biological vision, our own results suggest that this also has
limited explanatory power across diverse architectures. A similar
approach proceeding Nassar et al. (2020) was taken in Li et al.
(2019), where the representations of a ResNet were encour-
aged to align with responses from the mouse visual system. This
promising work demonstrated robustness to both noise and a va-
riety of L, metrics, although it remained unclear what the specific
mechanism was for this robustness. In summary, we believe our
work helps address an explanatory gap regarding human robust-
ness to adversarial examples, in particular to transfer attacks —
the one method that has been leveraged against humans (Elsayed
et al., 2018), and a threat setting where our method consistently
enhances robustness. We emphasize that the absence of transfer
attacks from some of the above studies does not imply incom-
plete evaluations, but rather highlights a unique contribution
of our work in making a direct connection between a biologi-
cally inspired defense and adversarial sensitivity vs. robustness
in humans.

An additional relevance of our results to the human percep-
tion of adversarial examples is the question of a robustness vs.
accuracy trade-off. Some theoretical results have suggested that
adversarial robustness and accuracy on unmodified, clean data-
sets are mutually incompatible objectives and that robustness
necessarily comes at a cost to clean accuracy (Tsipras et al., 2019).
This notion, however, is counter-intuitive given the observation
that humans are both accurate generally, and robust to adver-
sarial examples. We noted that our method results in either a
limited drop (or in the case of Fashion-MNIST improvement) in
clean classification accuracy, suggesting that these objectives are
not in fact mutually exclusive. More specifically, the modest drop
in clean accuracy we see on MNIST is less than for other robust
models, yet our model uses either fewer parameters (cf Madry
et al. (2018)), or less compute time (cf Schott et al. (2019)) than
these. We have argued that when hierarchical binding captures
additional dimensions that describe the true, underlying manifold
of the object, a robust decision boundary becomes a case of on-
manifold generalization (Gilmer et al., 2018; Stutz et al., 2019),
and rapid classification can proceed as normal. In summary, our
approach combines robustness (at least to attacks that can be
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Table A.5

Number of trainable parameters in the primary models.
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CNN (LeNet-5 variant)

# of parameters

# input/output

1st Conv. 156 1/6 ¢

2nd Conv. 2,416 6/16 ¢

1st FC 102,656 400/256 u
2nd FC 32,896 256/128 u
Output 1,290 128/10 u
Total 139,414

HBCNN (LeNet-5 variant)

1st Conv. 156 1/6 ¢

2nd Conv. 2,416 6/16 ¢

1st FC 813,312 400+1600+1176/256 u
2nd FC 32,896 256/128 u
Output 1,290 128/10 u
Total 850,070

Size-controlled CNN (1 FC)

1st Conv. 832 1/32 ¢

2nd Conv. 51,264 32/64 c

1st FC 819,712 1600/512 u
Output 5,632 512/10 u
Total 877,440

Size-controlled CNN (2 FC)

1st Conv. 1,404 1/54 ¢

2nd Conv. 145,908 54/108 ¢
1st FC 691,456 2700/256 u
2nd FC 32,896 256/128 u
Output 1,290 128/10 u
Total 872,954

CNN+AT from Madry et al. (2018)

1st Conv. 832 1/32 ¢

2nd Conv. 51,264 32/64 c

1st FC 3,212,288 3136/1024 u
Output 11,264 1024/10 u
Total 3,275,648

Summary of the number of parameters that can be optimized during learning for the primary models leveraged
on MNIST. Abbreviations: Conv. = convolution; FC = fully connected; ¢ = channels; u = units; AT = adversarial

training.

plausibly leveraged against humans), efficiency (both parameter
and compute-wise) and persistent clean accuracy. We believe
this provides additional evidence that the basis of adversarial
examples and robustness that we explore is well aligned with
what distinguishes vision in artificial systems and primates.

7. Conclusion

The work presented in this paper provides evidence for the
hypothesis that the preservation of low and high-level visual
features at different spatial scales is important for robust object
recognition, whether through hierarchical feature binding in the
primate brain or in artificial systems. While our strongest results
are on MNIST, robustness on this simplest of image data-sets
remains far from solved (Mu & Gilmer, 2019; Nassar et al., 2020;
Schott et al.,, 2019; Trameér, Behrmann et al., 2020). Future sys-
tems that better preserve hierarchical binding information and
make use of it may be important to generalizing the observed
robustness to more complex settings, such as the ImageNet (Rus-
sakovsky et al., 2015) data-set of natural images.
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Appendix A. Additional model details

All models are implemented in TensorFlow 1.14 (Abadi et al.,
2016), and used the Rectified Linear Unit (ReLU) activation func-
tion (Nair & Hinton, 2010). At the time of publication, code for
creating our models and sample model check-points will be made
available at https://github.com/nielsleadholm/CNN_Binding_Tens
orFlow

The LeNet-5 model used as the vanilla and label smoothing
control for MNIST consists of two convolution (6 and 16 channels,
kernel size (5, 5)) and two max-pooling layers, followed by two
fully connected layers of size 120 and 84. This baseline model
was initially chosen as the starting point for our HBCNN, as the
limited number of channels and use of two (rather than one)
fully connected layers would help limit the increase in parameter
numbers as binding was introduced. When we introduce noise
in training, we use two fully connected layers of dimension 256
and 128, as this offered better performance for both the LeNet-5
and HBCNN (LeNet-5 variant), consistent with this representing
a more complex data-set to fit. For the HBCNN (LeNet-5 variant),
the unpooling layer is applied to the last max-pooling layer, while
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Fig. B.13. Convergence of PGD attacks nested in binary search over hyperparameters. The y-axis shows the accuracy of the model as the total number of inference calls
increases, where accuracy is provided at a threshold of € = 1.5 for the L, PGD attack (a), and € = 0.3 for the L, PGD attack (b). Each PGD attack is associated with
20 random starts, of which the best result for each image is used. For each random start, a binary search with k = 20 steps is performed to optimize the step-size
and € value of the PGD attack, minimizing the final perturbation of a successful adversary. Each binary search iteration is associated with a budget of PGD iterations
(n = 40, 250, or 500). Thus, excluding the initial model queries to establish a starting point for the binary search, there are a total of n x k possible inference calls
for a given optimization process. We show the convergence of the optimization process given different PGD budgets, where each setting has the flexibility to tune
the hyperparameters of the attack. While increasing the possible number of PGD iterations from a typical value of 40 to 250 provides a marked benefit, doubling
this to 500 does not. We therefore choose a value of 250, which also enables us to run the PGD attack across many seeds without a prohibitive computational cost.

The error bars represent the 95% confidence interval across 5 random seeds.

the gradient-unpooling sub-layer is between the last max-pooling
layer and the pre-convolution activations proceeding it (Fig. 3a).
For FMNIST, we used the same architectures as for MNIST with
the larger fully connected layers.

We also evaluate two non-binding CNNs for MNIST with an
equivalent number of free parameters to our HBCNN (LeNet-5
variant). The first of these has one fully connected layer, as this is
a common architectural choice in adversarial example research,
such as the robust model in Madry et al. (2018), and the baseline
models in Schott et al. (2019) and Nassar et al. (2020). This
size-controlled model has two convolutions with channel sizes
32 and 64, and a fully connected layer of dimension 512, for a
combined 877,440 parameters vs 850,070 in the HBCNN (LeNet-
5 variant) — see Table A.5. The second size-controlled model has
two fully connected layers, as in the case of the LeNet-5 and
HBCNN (LeNet-5 variant) models. It has two convolutions with
channel sizes 54 and 108, and fully connected layers of dimension
256 and 128, for a combined 872,954 parameters.

The two other architectures included in our MNIST results
are the base-line CNN used in Nassar et al. (2020), and the
adversarially trained CNN from Madry et al. (2018). The former
consists of two convolution (16 and 32 channels, kernel size
(3, 3)) and two max-pooling layers, followed by a single fully
connected layer of dimension 1000. When training this network,
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we use the same hyperparameters as outlined in Nassar et al.
(2020). The adversarially trained CNN consists of two convolution
(32 and 64 channels, kernel size (5, 5)) and two max-pooling
layers, followed by a single fully connected layer of dimension
1024. Unlike the main CNNs leveraged in MNIST, note that this
architecture uses ‘same’ padding for both convolutions, resulting
in a larger (7 x 7 rather than 5 x 5) cross-section when feeding
into the fully connected layer. This contributes to the much larger
number of parameters (Table A.5).

For the VGG architectures leveraged on CIFAR-10 (Fig. 3b),
we used three blocks, each containing two convolutions and one
max-pooling (channel dimensions 32, 32, 64, 64, 128, 128, kernel
sizes (3, 3) throughout), followed by two fully connected layers
of dimension 120 and 84, so as to once again constrain the
growth in free parameters following the introduction of binding.
For the HBCNN (VGG variant) we used two un-pooling sub-layers
(corresponding to the 2nd and 3rd blocks), and two gradient
unpooling sub-layers (from the 3rd max-pooling layer to the 1st
and 2nd max-pooling layers respectively) (Fig. 3b).

All of our models were regularized with dropout (Srivastava
et al, 2014) of 0.25 and, where used, label smoothing of 0.1.
Training of a network’s parameters was performed using the
Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.001
(MNIST and FMNIST) and 0.0005 (CIFAR-10), and a batch-size of
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HB-CNN

Control

Control HB-CNN

Fig. C.14. Cherry-picked, semantically meaningful adversaries. The annotation shows the original class followed by the prediction of the network following the adversarial
perturbation. Shown are adversaries for the control (LeNet-5) and HBCNN (LeNet-5 variant) networks with label smoothing and noisy training data.

128. Training was performed for 45 epochs (vanilla MNIST model,
and LeNet-based models with smoothing), 90 epochs (all other
LeNet-based models, except for the 2-fully connected layers, size-
controlled CNN, which showed considerable improvement on
cross-validation data when trained for 180 epochs), and 500
epochs (all VGG models). For VGG models, we also augmented
the training data with random shifts and horizontal flipping of
the image.

For VGG models with smoothing and noise in the training data,
we used L, regularization of 103 (standard) or 10> (HBCNN)
for the weights from the final max-pooled layer, and 1073 for the
unpooling and gradient unpooling representations.

Our evaluation includes adversarially trained models for MNIST
and CIFAR-10 loaded from the MadryLab Challenge reposito-
ries (https://github.com/MadryLab/mnist_challenge) and (https:
//github.com/MadryLab/cifar10_challenge), the latter of which is
based on a Wide ResNet architecture (Zagoruyko & Komodakis,
2016). These were generated by the original authors of Madry
et al. (2018), and use the adversarial training with the Projected
Gradient Descent (PGD) attack described therein. An adversari-
ally trained model for FMNIST was loaded from the repository
from Croce et al. (2020) (https://github.com/max-andr/provable-
robustness-max-linear-regions); these were trained using PGD
attacks (40 iterations), with 50% adversarial images, and 50%
clean images in each batch, for 100 epochs.

Appendix B. Hyperparameters for adversarial attacks

For PGD we used 20 random starting points for the adver-
sary, followed by 250 iterations with an initial step-size of 0.01,
selecting the best adversary of the 20 for each image. For BIM
we used 10 iterations with an initial step-size of 0.05. MIM was
applied with 10 iterations, an initial step-size of 0.06, and a
decay factor of 1.0. For PGD, BIM, and MIM, the step-size and
epsilon were automatically adapted in Foolbox using a binary
search. For MNIST, we combine 10 runs of the Pointwise L-0
attack, as performed in Schott et al. (2019), taking the minimal
adversary. For the Boundary attack we used 1000 iterations,
a step-adaptation size of 1.5, and initial adversaries generated
with the Blended Uniform Noise attack; for the Boundary attack
we also evaluated the performance against one of the HBCNN
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(LeNet-5 variant) networks using 25,000, 100,000, and 1,000,000
iterations (tuning the step adaptation size for each), but this did
not result in any notable improvement in its performance, and it
remained uncompetitive against the HBCNN model in comparison
to other attacks.

For Fashion-MNIST and CIFAR-10, surrogate models for cre-
ating transfer attacks were based on the respective standard
and HBCNN architectures with label smoothing, but not noise,
with the intent that these would be easier for the gradient-
based methods to attack and generate adversaries from than
the fully augmented architecture. Thus for these data-sets, each
transfer attack was based on two surrogate models. For MNIST,
the surrogate models for all attacks were based on : standard
CNN+S, HBCNN+S, standard CNN+S+N, HBCNN+S+N, and CNN+AT
models where two of each of these formed surrogates, with the
exception of CNN+AT where only one was used, for a total of 9
surrogates. The two exceptions on MNIST to this was (a) when
targeting the vanilla CNN and HBCNN models, where vanilla CNN
and HBCNN models replaced the standard CNN+S and HBCNN+S
models and (b) when targeting the ablated models for Fig. 11,
where any surrogates with the hierarchical binding architecture
also had unpooling removed.

Appendix C. Cherry picked examples

From among 300 MNIST adversarial examples for the 30 mod-
els of the standard CNN and HBCNN (LeNet-5 variant) networks
with label smoothing and noisy training data, we selected what
we thought to be (in our potentially biased view) the 10 most
semantically convincing adversaries generated by the BIM L,
attack for each model (Fig. C.14). We feel there are convincing
examples for both models, with no obvious systematic difference.

References

Abadi, M., Barham, P., Chen, ], Chen, Z., Davis, A., Dean, ], Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P,, ... Zheng, X.
(2016). TensorFlow: A system for large-scale machine learning. In Proceedings
of the 12th USENIX symposium on operating systems design and implementation.

Athalye, A., Carlini, N., & Wagner, D. (2018). Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples. In 35th
international conference on machine learning. MIT.


https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/cifar10_challenge
https://github.com/MadryLab/cifar10_challenge
https://github.com/MadryLab/cifar10_challenge
https://github.com/max-andr/provable-robustness-max-linear-regions
https://github.com/max-andr/provable-robustness-max-linear-regions
https://github.com/max-andr/provable-robustness-max-linear-regions
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb1
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb1
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb1
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb1
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb1
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb1
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb1
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb1
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb1
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb2
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb2
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb2
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb2
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb2

N. Leadholm and S. Stringer

Badrinarayanan, V., Kendall, A., & Cipolla, R. (2017). SegNet: A deep convolutional
encoder-decoder architecture for image segmentation. [EEE Transactions on
Pattern Analysis and Machine Intelligence, 39(12), http://dx.doi.org/10.1109/
TPAMIL.2016.2644615.

Baker, N., Lu, H., Erlikhman, G., & Kellman, P. ]J. (2018). Deep convolutional
networks do not classify based on global object shape. PLoS Computational
Biology, http://dx.doi.org/10.1371/journal.pcbi.1006613.

Bear, D. M,, Fan, C.,, Mrowca, D., Li, Y., Alter, S., Nayebi, A., Schwartz, ]., Fei-
Fei, L., Wu, J., Tenenbaum, J. B., & Yamins, D. L. (2020). Learning physical
graph representations from visual scenes. In Advances in neural information
processing systems, Vol. 2020-December.

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review
and new perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, http://dx.doi.org/10.1109/TPAMI.2013.50.

Brendel, W., & Bethge, M. (2019). Approximating CNNs with bag-of-local-features
models works surprisingly well on ImageNet. In International conference on
learning representations.

Brendel, W., Rauber, J., & Bethge, M. (2018). Decision-based adversarial at-
tacks: Reliable attacks against black-box machine learning models. In 6th
international conference on learning representations.

Brendel, W., Rauber, ]., Kimmerer, M., Ustyuzhaninov, I, & Bethge, M. (2019).
Accurate, reliable and fast robustness evaluation. In Advances in neural
information processing systems, Vol. 32.

Burgess, C. P., Matthey, L., Watters, N., Kabra, R., Higgins, I, Botvinick, M.,
& Lerchner, A. (2019). MONet: Unsupervised scene decomposition and
representation. arXiv preprint arXiv:1901.11390.

Carlini, N., Athalye, A., Papernot, N., Brendel, W., Rauber, ]., Tsipras, D., Goodfel-
low, 1., Madry, A., & Kurakin, A. (2019). On evaluating adversarial robustness.
[ISSN: 23318422].

Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020). A simple framework
for contrastive learning of visual representations. In Proceedings of the 37th
international conference on machine learning. URL http://arxiv.org/abs/2002.
05709.

Chen, T., Zhang, Z., Liy, S., Chang, S., Wang, Z., & Ima, T. (2021). Robust overfitting
may be mitigated by properly learned smoothing. In ICLR.

Cheung, B., Livezey, ]. A., Bansal, A. K,, & Olshausen, B. A. (2015). Discovering
hidden factors of variation in deep networks. In 3rd international conference
on learning representations.

Chung, S., Lee, D. D., & Sompolinsky, H. (2018). Classification and geometry of
general perceptual manifolds. Physical Review X, 8(3), http://dx.doi.org/10.
1103/PhysRevX.8.031003.

Cohen, U,, Chung, S. Y., Lee, D. D., & Sompolinsky, H. (2020). Separability and ge-
ometry of object manifolds in deep neural networks. Nature Communications,
11(1), http://dx.doi.org/10.1038/s41467-020-14578-5.

Croce, F., Andriushchenko, M., & Hein, M. (2020). Provable robustness of
relu networks via maximization of linear regions. In AISTATS 2019 - 22nd
international conference on artificial intelligence and statistics.

Croce, F., & Hein, M. (2020). Reliable evaluation of adversarial robustness with
an ensemble of diverse parameter-free attacks. In Proceedings of the 37th
international conference on machine learning.

Dapello, J., Marques, T., Schrimpf, M., Geiger, F., Cox, D., & DiCarlo, J. (2020).
Simulating a primary visual cortex at the front of CNNs improves robustness
to image perturbations. In 34th conference on neural information processing
systems.

Dhamdhere, K, Yan, Q. & Sundararajan, M. (2019). How important is a
neuron? In 7th international conference on learning representations.

DiCarlo, ]. J., & Cox, D. D. (2007). Untangling invariant object recognition. Trends
in Cognitive Sciences, http://dx.doi.org/10.1016/j.tics.2007.06.010.

Dong, Y., Liao, F, Pang, T., Su, H., Zhy, J.,, Hu, X, & Li, ]. (2018). Boosting
adversarial attacks with momentum. In Proceedings of the IEEE computer
society conference on computer vision and pattern recognition. http://dx.doi.
org/10.1109/CVPR.2018.00957.

Dujmovié, M., Malhotra, G., & Bowers, J. S. (2020). What do adversarial images
tell us about human vision? ELife, 9, http://dx.doi.org/10.7554/ELIFE.55978.

Eguchi, A, Isbister, J. B.,, Ahmad, N., & Stringer, S. (2018). The emergence of
polychronization and feature binding in a spiking neural network model of
the primate ventral visual system. Psychological Review, http://dx.doi.org/10.
1037/rev0000103.

Elsayed, G. F., Papernot, N., Shankar, S., Kurakin, A., Cheung, B., Goodfellow, I.,
& Sohl-Dickstein, J. (2018). Adversarial examples that fool both computer
vision and time-limited humans. In Advances in neural information processing
systems, Vol. 2018-December.

Ford, N., Gilmer, ]., Carlini, N., & Cubuk, E. D. (2019). Adversarial examples are
a natural consequence of test error in noise. In 36th international conference
on machine learning, Vol. 2019-June.

Gilmer, J., Metz, L., Faghri, F., Schoenholz, S. S., Raghu, M., Wattenberg, M.,
Goodfellow, I, & Brain, G. (2018). The relationship between high-dimensional
geometry and adversarial examples. ArXiv:1801.00634.

284

Neural Networks 155 (2022) 258-286

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

Goodfellow, I, Schlens, J., & Szegedy, C. (2015). Explaining and harnessing
adversarial examples. In International conference on learning representations.

Gowal, S., Huang, P.-S., van den Oord, A., Mann, T., & Kohli, P. (2021). Self-
supervised adversarial robustness for the low-label, high-data regime. In
International conference on learning representations.

Gowal, S., Qin, C,, Uesato, J.,, Mann, T., & Kohli, P. (2020). Uncovering the limits
of adversarial training against norm-bounded adversarial examples. ArXiv.

Gray, C. M. (1999). The temporal correlation hypothsis of visual feature
integration: Still alive and well. Neuron, 24, 31-47.

Greff, K., Srivastava, R. K., & Schmidhuber, J. (2016). Binding via reconstruction
clustering. In 4th international conference on learning representations. URL
http://arxiv.org/abs/1511.06418.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE computer society conference on com-
puter vision and pattern recognition, Vol. 2016-December (pp. 770-778). IEEE
Computer Society, http://dx.doi.org/10.1109/CVPR.2016.90.

Hein, M., Andriushchenko, M., & Bitterwolf, J. (2019). Why relu networks yield
high-confidence predictions far away from the training data and how to
mitigate the problem. In Proceedings of the IEEE computer society conference
on computer vision and pattern recognition, Vol. 2019-June. http://dx.doi.org/
10.1109/CVPR.2019.00013.

Hénaff, O. ], Srinivas, A., De Fauw, ]., Razavi, A., Doersch, C.,, Eslami, S. M. A,,
& Oord, A. v. d. (2020). Data-efficient image recognition with contrastive
predictive coding. In Proceedings of the 37th international conference on
machine learning. URL http://arxiv.org/abs/1905.09272.

Higgins, I, Chang, L., Langston, V., Hassabis, D., Summerfield, C., Tsao, D.,
& Botvinick, M. (2021). Unsupervised deep learning identifies seman-
tic disentanglement in single inferotemporal face patch neurons. Nature
Communications, 12(1), http://dx.doi.org/10.1038/s41467-021-26751-5.

Hinton, G., Sabour, S., & Frosst, N. (2018). Matrix capsules with EM routing. In
6th international conference on learning representations.

Hochstein, S., & Ahissar, M. (2002). View from the top: Hierarchies and reverse
hierarchies in the visual system. Neuron, 36(5), http://dx.doi.org/10.1016/
S0896-6273(02)01091-7.

Huang, Y., Gornet, ], Dai, S., Yu, Z., Nguyen, T., Tsao, D., & Anandkumar, A. (2020).
Neural networks with recurrent generative feedback. In 34th conference on
neural information processing systems.

Huang, G., Liu, Z, Van Der Maaten, L, & Weinberger, K. Q. (2017). Densely
connected convolutional networks. In Proceedings - 30th IEEE conference on
computer vision and pattern recognition. http://dx.doi.org/10.1109/CVPR.2017.
243.

Ilyas, A., Santurkar, S., Tsipras, D., Engstrom, L., Tran, B.,, & Madry, A. (2019).
Adversarial examples are not bugs, they are features. In Neural information
processing systems.

Isbister, J. B., Eguchi, A., Ahmad, N., Galeazzi, ]., Buckley, M., & Stringer, S. (2018).
A new approach to solving the feature binding problem in primate vision.
Interface Focus, 8.

Jacobsen, J. H., Smeulders, A., & Oyallon, E. (2018). I-RevNet: Deep invertible
networks. In 6th international conference on learning representations.

Jalal, A, llyas, A., Daskalakis, C., & Dimakis, A. G. (2017). The robust manifold
defense: Adversarial training using generative models. arXiv preprint arXiv:
1712.09196.

Jang, U, Jah, S., & Jah, S. (2020). On the need for topology-aware generative
models for manifold-based defenses. In International conference on learning
representations.

Khoury, M., & Hadfield-Menell, D. (2018). On the geometry of adversarial
examples. arXiv preprint arXiv:1811.00525.

Kim, S. H., & Feldman, J. (2009). Globally inconsistent figure/ground relations
induced by a negative part. Journal of Vision, 9(10), http://dx.doi.org/10.1167/
9.10.8.

Kingma, D. P, & Ba, J. L. (2015). Adam: A method for stochastic optimization.
In 3rd international conference on learning representations.

Krizhevsky, A. (2009). Learning Multiple Layers of Features from Tiny Images.
Science Department, University of Toronto, Tech..

Kubilius, J., Schrimpf, M., Kar, K., Rajalingham, R., Hong, H., Majaj, N. ], Issa, E.
B., Bashivan, P., Prescott-Roy, J., Schmidt, K., Nayebi, A., Bear, D., Yamins, D.
L., & DiCarlo, J. J. (2019). Brain-like object recognition with high-performing
shallow recurrent ANNSs. In Advances in neural information processing systems,
Vol. 32.

Kurakin, A., Goodfellow, I. J., & Bengio, S. (2019). Adversarial examples in the
physical world. In 5th international conference on learning representations.
Laidlaw, C., Singla, S., & Feizi, S. (2021). Perceptual adversarial robustness:
Defense against unseen threat models. In International conference on learning

representations.

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature.


http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1371/journal.pcbi.1006613
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb5
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb5
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb5
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb5
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb5
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb5
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb5
http://dx.doi.org/10.1109/TPAMI.2013.50
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb7
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb7
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb7
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb7
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb7
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb9
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb9
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb9
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb9
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb9
http://arxiv.org/abs/1901.11390
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb11
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb11
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb11
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb11
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb11
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2002.05709
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb13
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb13
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb13
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb14
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb14
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb14
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb14
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb14
http://dx.doi.org/10.1103/PhysRevX.8.031003
http://dx.doi.org/10.1103/PhysRevX.8.031003
http://dx.doi.org/10.1103/PhysRevX.8.031003
http://dx.doi.org/10.1038/s41467-020-14578-5
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb17
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb17
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb17
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb17
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb17
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb20
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb20
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb20
http://dx.doi.org/10.1016/j.tics.2007.06.010
http://dx.doi.org/10.1109/CVPR.2018.00957
http://dx.doi.org/10.1109/CVPR.2018.00957
http://dx.doi.org/10.1109/CVPR.2018.00957
http://dx.doi.org/10.7554/ELIFE.55978
http://dx.doi.org/10.1037/rev0000103
http://dx.doi.org/10.1037/rev0000103
http://dx.doi.org/10.1037/rev0000103
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb25
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb25
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb25
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb25
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb25
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb25
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb25
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb26
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb26
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb26
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb26
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb26
http://arxiv.org/abs/1801.00634
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb28
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb29
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb29
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb29
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb30
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb30
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb30
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb30
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb30
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb31
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb31
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb31
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb32
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb32
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb32
http://arxiv.org/abs/1511.06418
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2019.00013
http://dx.doi.org/10.1109/CVPR.2019.00013
http://dx.doi.org/10.1109/CVPR.2019.00013
http://arxiv.org/abs/1905.09272
http://dx.doi.org/10.1038/s41467-021-26751-5
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb38
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb38
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb38
http://dx.doi.org/10.1016/S0896-6273(02)01091-7
http://dx.doi.org/10.1016/S0896-6273(02)01091-7
http://dx.doi.org/10.1016/S0896-6273(02)01091-7
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb40
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb40
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb40
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb40
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb40
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CVPR.2017.243
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb42
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb42
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb42
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb42
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb42
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb43
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb43
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb43
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb43
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb43
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb44
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb44
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb44
http://arxiv.org/abs/1712.09196
http://arxiv.org/abs/1712.09196
http://arxiv.org/abs/1712.09196
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb46
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb46
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb46
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb46
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb46
http://arxiv.org/abs/1811.00525
http://dx.doi.org/10.1167/9.10.8
http://dx.doi.org/10.1167/9.10.8
http://dx.doi.org/10.1167/9.10.8
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb49
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb49
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb49
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb50
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb50
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb50
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb51
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb51
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb51
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb51
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb51
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb51
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb51
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb51
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb51
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb52
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb52
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb52
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb53
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb53
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb53
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb53
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb53
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb54

N. Leadholm and S. Stringer

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning
applied to document recognition. In Proceedings of the IEEE (November), (pp.
1-46). http://dx.doi.org/10.1109/5.726791.

Lee, H., Bae, H, & Yoon, S. (2021). Gradient masking of label smoothing in
adversarial robustness. IEEE Access, 9, http://dx.doi.org/10.1109/ACCESS.2020.
3048120.

Li, Z., Brendel, W., Walker, E. Y., Cobos, E., Muhammad, T., Reimer, ]J., Bethge, M.,
Sinz, F. H., Pitkow, X., & Tolias, A. S. (2019). Learning from brains how to
regularize machines. In Advances in neural information processing systems, Vol.
32.

Locatello, F., Weissenborn, D., Unterthiner, T., Mahendran, A., Heigold, G.,
Uszkoreit, ]J., Dosovitskiy, A., & Kipf, T. (2020). Object-centric learning with
slot attention. In 34th conference on neural information processing systems.
URL http://arxiv.org/abs/2006.15055.

Ly, Y., Yin, ], Chen, Z, Gong, H., Liu, Y., Qian, L, Li, X, Liu, R, Andolina, I
M., & Wang, W. (2018). Revealing detail along the visual hierarchy: Neural
clustering preserves acuity from V1 to V4. Neuron, 98(2), http://dx.doi.org/
10.1016/j.neuron.2018.03.009.

Lukasik, M., Bhojanapalli, S., Menon, A., & Kumar, S. (2020). Does label smoothing
mitigate label noise? In Proceedings of the 37th international conference on
machine learning.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2018). Towards
deep learning models resistant to adversarial attacks. In 6th international
conference on learning representations.

Marr, D. (1982). Vision: A Computational Investigation Into the Human
Representation and Processing of Visual Information. MIT Press.

Moosavi-Dezfooli, S. M., Fawzi, A., & Frossard, P. (2016). DeepFool: A simple
and accurate method to fool deep neural networks. In Proceedings of the
IEEE computer society conference on computer vision and pattern recognition.
http://dx.doi.org/10.1109/CVPR.2016.282.

Mu, N., & Gilmer, J. (2019). MNIST-C: A robustness benchmark for computer
vision. In ICML 2019 workshop on uncertainty and ro- bustness in deep learning.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted
Boltzmann machines. In ICML 2010 - proceedings, 27th international conference
on machine learning.

Nassar, J., Sokol, P., Chung, S. Harris, K., & Park, 1. (2020). On 1/n neural
representation and robustness. In 34th conference on neural information
processing systems.

Ng, A. Y. (2004). Feature selection, L1 vs. L2 regularization, and rotational
invariance. In Proceedings, twenty-first international conference on machine
learning. http://dx.doi.org/10.1145/1015330.1015435.

Pang, T., Yang, X., Dong, Y., Su, H., & Zhu, J. (2021). Bag of tricks for adversarial
training. In ICLR.

Papernot, N., McDaniel, P. D., & Goodfellow, 1. J. (2016). Transferability in
machine learning: from phenomena to black-box attacks using adversarial
samples. arXiv preprint arXiv:1605.07277.

Papernot, N., McDaniel, P., Goodfellow, I, Jha, S., Celik, Z. B.,, & Swami, A.
(2017). Practical black-box attacks against machine learning. In Proceedings
of the 2017 ACM on asia conference on computer and communications security.
http://dx.doi.org/10.1145/3052973.3053009.

Pereyra, G., Tucker, G., Chorowski, J., Kaiser, L., & Hinton, G. (2019). Regular-
izing neural networks by penalizing confident output distributions. In 5th
international conference on learning representations.

Rauber, ]., Brendel, W., & Bethge, M. (2017). Foolbox: A python toolbox to
benchmark the robustness of machine learning models. In Reliable machine
learning in the wild workshop, 34th international conference on machine
learning. URL http://arxiv.org/abs/1707.04131.

Reichert, D. P., & Serre, T. (2014). Neuronal synchrony in complex-valued deep
networks. In 2nd international conference on learning representations.

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks
for biomedical image segmentation. In Lecture notes in computer science
(including subseries lecture notes in artificial intelligence and lecture notes in
bioinformatics). http://dx.doi.org/10.1007/978-3-319-24574-4{_}28.

Rony, J., Hafemann, L. G., Oliveira, L. S., Ben Ayed, I., Sabourin, R., & Granger, E.
(2019). Decoupling direction and norm for efficient gradient-based 12 ad-
versarial attacks and defenses. In Proceedings of the IEEE computer society
conference on computer vision and pattern recognition, Vol. 2019-June. http:
//dx.doi.org/10.1109/CVPR.2019.00445.

Rusak, E., Schott, L., Zimmermann, R. S., Bitterwolf, J., Bringmann, O., Bethge, M.,
& Brendel, W. (2020). A simple way to make neural networks robust against
diverse image corruptions. In Lecture notes in computer science, Vol. 12348
LNCS.

Russakovsky, O., Deng, J., Su, H. Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C, & Fei-Fei, L. (2015).
ImageNet large scale visual recognition challenge. International Journal of
Computer Vision, 115(3), http://dx.doi.org/10.1007/s11263-015-0816-y.

Sabour, S., Frosst, N., & Hinton, G. E. (2017). Dynamic routing between capsules.
In Advances in neural information processing systems.

285

Neural Networks 155 (2022) 258-286

Samangouei, P., Kabkab, M. & Chellappa, R. (2018). Defense-gan: Protect-
ing classifiers against adversarial attacks using generative models. In 6th
international conference on learning representations.

Schlag, 1., Smolensky, P., Fernandez, R., Jojic, N., Schmidhuber, ], & Gao, J.
(2019). Enhancing the transformer with explicit relational encoding for math
problem solving. arXiv preprint arXiv:1910.06611.

Schott, L., Rauber, ], Bethge, M., & Brendel, W. (2019). Towards the first
adversarially robust neural network model on MNIST. In 7th international
conference on learning representations.

Shafahi, A., Ghiasi, A., Huang, F., & Goldstein, T. (2019). Label smoothing and
logit squeezing: A replacement for adversarial training? arXiv preprint arXiv:
1910.11585.

Simonyan, K. Vedaldi, A., & Zisserman, A. (2014). Deep inside convolutional
networks: Visualising image classification models and saliency maps. In 2nd
international conference on learning representations.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for
large-scale image recognition. In 3rd international conference on learning
representations.

Singh, C., Yu, B, & James Murdoch, W. (2019). Hierarchical interpretations
for neural network predictions. In 7th international conference on learning
representations.

Song, Y., Nowozin, S., Kushman, N., Kim, T., & Ermon, S. (2018). PixelDefend:
Leveraging generative models to understand and defend against adversarial
examples. In 6th international conference on learning representations.

Srivastava, R. K., Greff, K., & Schmidhuber, ]. (2015). Training very deep networks.
In Advances in neural information processing systems.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1., & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal
of Machine Learning Research, 15.

Stephenson, C., Feather, ], Padhy, S., Elibol, O., Tang, H., McDermott, J., &
Chung, S. Y. (2019). Untangling in invariant speech recognition. In Advances
in neural information processing systems, Vol. 32.

Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M., & Harris, K. D. (2019).
High-dimensional geometry of population responses in visual cortex. Nature,
571(7765), http://dx.doi.org/10.1038/s41586-019-1346-5.

Stutz, D., Hein, M., & Schiele, B. (2019). Disentangling adversarial robustness
and generalization. In Proceedings of the IEEE computer society conference on
computer vision and pattern recognition. http://dx.doi.org/10.1109/CVPR.2019.
00714.

Summers, C., & Dinneen, M. ]. (2019). Improved adversarial robustness via logit
regularization methods. arXiv preprint arXiv:1906.03749.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking
the inception architecture for computer vision. In Proceedings of the IEEE
computer society conference on computer vision and pattern recognition, Vol.
2016-December. http://dx.doi.org/10.1109/CVPR.2016.308.

Szegedy, C., Zaremba, W., Sutskever, I, Bruna, J., Erhan, D., Goodfellow, 1., & Fer-
gus, R. (2014). Intriguing properties of neural networks. In 2nd international
conference on learning representations.

Tadros, T., Ramyaa, R,, Krishnan, G. P., & Bazhenov, M. (2020). Biologically in-
spired sleep algorithm for increased generalization and adversarial robustnes
in deep neural networks. In ICLR.

Tanay, T. & Griffin, L. (2016). A boundary tilting persepective on the
phenomenon of adversarial examples. arXiv preprint arXiv:1608.07690.
Tramér, F., Behrmann, ], Carlini, N., Papernot, N., & Jacobsen, ]. H. (2020).
Fundamental tradeoffs between invariance and sensitivity to adversarial
perturbations. In 37th international conference on machine learning, Vol.

PartF168147-13.

Tramér, F., & Boneh, D. (2019). Adversarial training and robustness for multiple
perturbations. In Advances in neural information processing systems, Vol. 32.

Trameér, F., Carlini, N., & Brendel, W. (2020). On adaptive attacks to adversarial
example defenses. ArXiv.

Tramér, F., Papernot, N., Goodfellow, 1., Boneh, D., & McDaniel, P. (2017). The
space of transferable adversarial examples. arXiv preprint arXiv:1704.03453.

Treisman, A. (1996). The binding problem. Current Opinion in Neurobiology, 6(2),
http://dx.doi.org/10.1016/S0959-4388(96)80070-5.

Treisman, A. (1998). Feature binding, attention and object perception. Philo-
sophical Transactions of the Royal Society, Series B (Biological Sciences), http:
//dx.doi.org/10.1098/rstb.1998.0284.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., & Madry, A. (2019). Robustness
may be at odds with accuracy. In ICLR. MIT.

van Steenkiste, S., Locatello, F., Schmidhuber, J., & Bachem, O. (2019). Are dis-
entangled representations helpful for abstract visual reasoning? In Advances
in neural information processing systems, Vol. 32.

Von Der Malsburg, C. (1999). The what and why of binding: The modeler’s per-
spective. Neuron, 24(1), 95-104. http://dx.doi.org/10.1016/S0896-6273(00)
80825-9.


http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/ACCESS.2020.3048120
http://dx.doi.org/10.1109/ACCESS.2020.3048120
http://dx.doi.org/10.1109/ACCESS.2020.3048120
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb57
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb57
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb57
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb57
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb57
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb57
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb57
http://arxiv.org/abs/2006.15055
http://dx.doi.org/10.1016/j.neuron.2018.03.009
http://dx.doi.org/10.1016/j.neuron.2018.03.009
http://dx.doi.org/10.1016/j.neuron.2018.03.009
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb60
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb60
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb60
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb60
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb60
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb61
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb61
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb61
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb61
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb61
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb62
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb62
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb62
http://dx.doi.org/10.1109/CVPR.2016.282
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb64
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb64
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb64
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb65
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb65
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb65
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb65
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb65
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb66
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb66
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb66
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb66
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb66
http://dx.doi.org/10.1145/1015330.1015435
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb68
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb68
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb68
http://arxiv.org/abs/1605.07277
http://dx.doi.org/10.1145/3052973.3053009
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb71
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb71
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb71
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb71
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb71
http://arxiv.org/abs/1707.04131
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb73
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb73
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb73
http://dx.doi.org/10.1007/978-3-319-24574-4{_}28
http://dx.doi.org/10.1109/CVPR.2019.00445
http://dx.doi.org/10.1109/CVPR.2019.00445
http://dx.doi.org/10.1109/CVPR.2019.00445
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb76
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb76
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb76
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb76
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb76
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb76
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb76
http://dx.doi.org/10.1007/s11263-015-0816-y
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb78
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb78
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb78
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb79
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb79
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb79
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb79
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb79
http://arxiv.org/abs/1910.06611
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb81
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb81
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb81
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb81
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb81
http://arxiv.org/abs/1910.11585
http://arxiv.org/abs/1910.11585
http://arxiv.org/abs/1910.11585
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb83
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb83
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb83
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb83
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb83
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb84
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb84
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb84
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb84
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb84
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb85
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb85
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb85
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb85
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb85
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb86
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb86
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb86
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb86
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb86
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb87
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb87
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb87
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb88
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb88
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb88
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb88
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb88
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb89
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb89
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb89
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb89
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb89
http://dx.doi.org/10.1038/s41586-019-1346-5
http://dx.doi.org/10.1109/CVPR.2019.00714
http://dx.doi.org/10.1109/CVPR.2019.00714
http://dx.doi.org/10.1109/CVPR.2019.00714
http://arxiv.org/abs/1906.03749
http://dx.doi.org/10.1109/CVPR.2016.308
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb94
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb94
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb94
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb94
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb94
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb95
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb95
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb95
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb95
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb95
http://arxiv.org/abs/1608.07690
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb97
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb97
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb97
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb97
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb97
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb97
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb97
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb98
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb98
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb98
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb99
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb99
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb99
http://arxiv.org/abs/1704.03453
http://dx.doi.org/10.1016/S0959-4388(96)80070-5
http://dx.doi.org/10.1098/rstb.1998.0284
http://dx.doi.org/10.1098/rstb.1998.0284
http://dx.doi.org/10.1098/rstb.1998.0284
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb103
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb103
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb103
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb104
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb104
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb104
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb104
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb104
http://dx.doi.org/10.1016/S0896-6273(00)80825-9
http://dx.doi.org/10.1016/S0896-6273(00)80825-9
http://dx.doi.org/10.1016/S0896-6273(00)80825-9

N. Leadholm and S. Stringer

Vuyyuru, M., Banburski, A., Pant, N. & Poggio, T. (2020). Biologically in-
spired mechanisms for adversarial robustness. In 34th conference on neural
information processing systems.

Wallis, T. S., Funke, C. M. Ecker, A. S., Gatys, L. A, Wichmann, F. A, &
Bethge, M. (2019). Image content is more important than bouma’s law for
scene metamers. ELife, 8, http://dx.doi.org/10.7554/eLife.42512.

Warde-Farley, D., & Goodfellow, 1. (2016). 11 Adversarial perturbations of deep
neural networks. In Perturbations, optimization, and statistics (p. 311).

Whittington, J. C., Muller, T. H,, Mark, S., Chen, G., Barry, C, Burgess, N.,, &
Behrens, T. E. (2020). The Tolman-Eichenbaum machine: Unifying space and
relational memory through generalization in the hippocampal formation. Cell,
183, http://dx.doi.org/10.1016/j.cell.2020.10.024.

Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-MNIST: a novel image dataset
for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.
07747.

Xiao, C., Zhong, P., & Zheng, C. (2020). Enhancing adversarial defense by
k-winners-take-all. In International conference on learning representations
2020.

Xu, C, Yang, J., Lai, H., Gao, J., Shen, L., & Yan, S. (2019). UP-CNN: Un-pooling
augmented convolutional neural network. Pattern Recognition Letters, http:
//dx.doi.org/10.1016/j.patrec.2017.08.007.

286

Neural Networks 155 (2022) 258-286

Yuan, X., He, P, Zhu, Q., & Li, X. (2019). Adversarial examples: Attacks and
defenses for deep learning. IEEE Transactions on Neural Networks and Learning
Systems, http://dx.doi.org/10.1109/TNNLS.2018.2886017.

Zagoruyko, S., & Komodakis, N. (2016). Wide residual networks. In British
machine vision conference 2016, Vol. 2016-September. http://dx.doi.org/10.
5244/C.30.87.

Zantedeschi, V., Nicolae, M. I, & Rawat, A. (2017). Efficient defenses against
adversarial atacks. In AlSec 2017 - proceedings of the 10th ACM workshop
on artificial intelligence and security. http://dx.doi.org/10.1145/3128572.
3140449.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional
networks. In Lecture notes in computer science (including subseries lecture notes
in artificial intelligence and lecture notes in bioinformatics). http://dx.doi.org/
10.1007/978-3-319-10590-1-53.

Zhou, Z., & Firestone, C. (2019). Humans can decipher adversarial images. Nature
Communications, 10(1), http://dx.doi.org/10.1038/s41467-019-08931-6.

Zhou, H., Friedman, H. S., & von der Heydst, R. (2000). Coding of border ownership
in monkey visual cortex. The Journal of Neuroscience, 20(17), 6594-6611.
http://dx.doi.org/10.1523/J]NEUROSCI.2797-12.2013.


http://refhub.elsevier.com/S0893-6080(22)00259-3/sb106
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb106
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb106
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb106
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb106
http://dx.doi.org/10.7554/eLife.42512
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb108
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb108
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb108
http://dx.doi.org/10.1016/j.cell.2020.10.024
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://arxiv.org/abs/1708.07747
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb111
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb111
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb111
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb111
http://refhub.elsevier.com/S0893-6080(22)00259-3/sb111
http://dx.doi.org/10.1016/j.patrec.2017.08.007
http://dx.doi.org/10.1016/j.patrec.2017.08.007
http://dx.doi.org/10.1016/j.patrec.2017.08.007
http://dx.doi.org/10.1109/TNNLS.2018.2886017
http://dx.doi.org/10.5244/C.30.87
http://dx.doi.org/10.5244/C.30.87
http://dx.doi.org/10.5244/C.30.87
http://dx.doi.org/10.1145/3128572.3140449
http://dx.doi.org/10.1145/3128572.3140449
http://dx.doi.org/10.1145/3128572.3140449
http://dx.doi.org/10.1007/978-3-319-10590-1-53
http://dx.doi.org/10.1007/978-3-319-10590-1-53
http://dx.doi.org/10.1007/978-3-319-10590-1-53
http://dx.doi.org/10.1038/s41467-019-08931-6
http://dx.doi.org/10.1523/JNEUROSCI.2797-12.2013

	Hierarchical binding in convolutional neural networks: Making adversarial attacks geometrically challenging
	Introduction
	Related work
	Model description
	Methods
	Adversarial attacks
	Geometrical measures

	Experiments
	Hierarchical binding alone
	Hierarchical binding with regularization
	Hierarchical binding with regularization and noisy training data
	Comparisons to additional models on MNIST
	Geometric measures of network representations
	Understanding the contribution of hierarchical binding
	The importance of binding dimension and causality
	Hierarchical binding reduces the probability of finding vulnerable decision regions

	Performance on other data-sets

	Discussion
	Models that are difficult to fool, vs. models that are impossible to fool
	Other methods that preserve low-level information
	Adversarial examples and human perception

	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix A. Additional Model Details
	Appendix B. Hyperparameters for Adversarial Attacks
	Appendix C. Cherry Picked Examples
	References


