

Bus Duct Design

I. Material

- i. Aluminium
- ii. Copper

II. Type

- i. Air Insulated (fabricated)
- ii. Sandwich

III. Assembly

- i. Totally enclosed
- ii. Isolated phase bus

IV. Design Factors

A. Steady state current

- i. Temperature Factor
- ii. Material Factor
- iii. Enclosure Factor

B. Short circuit condition

- i. Thermal capability
- ii. Dynamic capability
- iii. Stress on bus-bar
- iv. Stress on support

I. Current Derating Factor for Busbars

a) Temperature Factor (Indal)

- 1. Temperature rise 40degree over ambient - 0.88
- 2. Temperature rise 30degree over ambient - 0.75

b) Material Factor (Indal)

Material	De-rating Factor
25M	1.02
B265WP	0.83
505WP	0.94
B515WP	0.92
545M	0.77
AS65	0.72

Bus Duct Design

c) Enclosure Factor (Indal)

Enclosure	Bus area/Enclosure area	De-rating factor
Outdoor	1%	0.95
	5%	0.90
	10%	0.85
Indoor-Well ventilated	1%	0.85
	5%	0.75
	10%	0.65
Indoor-not ventilated	1%	0.65
	5%	0.60
	10%	0.50

II. Current Ratings of Busbars (Indal)

Siz-mm	1 Bar	2 Bar	3Bar	4 Bar
25.4 X 6.35	355	705	970	1100
28.1 X 6.35	520	1020	1350	1535
50.8 X 6.35	670	1290	1705	1940
63.5 X 6.35	810	1510	2000	2260
76.2 X 6.35	960	1740	2310	2620
101.6 X 6.35	1235	2140	2800	3200
127 X 6.35	1505	2510	3240	3700
152.4 X 6.35	1780	2860	3680	4240
50.8 X 9.53	830	1500	1970	2260
76.2 X 9.53	1180	2050	2660	3030

Siz-mm	1 Bar	2 Bar	3Bar	4 Bar
101.6 X 9.53	1495	2480	3150	3560
127 X 9.53	1860	2930	3660	4200
152 X 9.53	2120	3340	4080	4680
203.2 X 12.7	2750	4150	4900	5740
76.2 X 12.7	1355	2240	2830	3240
101.6 X 12.7	1740	2720	3360	3900
127 X 12.7	2080	3120	3900	4550
152.4 X 12.7	2420	3500	4400	5100
203.2 X 12.7	3060	4450	5300	6150
254 X 12.7	3640	5000	6000	6850

Sample Design Calculation for 1000kVA Transformer

Data

Full load current (IN) – 1333A

Short circuit current (IS) – 30000A

Ambient temperature – 35°C

Material for conductor – Aluminium alloy, D50S WP

Maximum allowable temperature on steady state for aluminium – 75°C

Initial temperature taken for short circuit condition (θ_1) – 75°C

Fault duration taken – 1sec.

Maximum temperature allowed on short circuit condition (θ_2) – 170°C

Temperature coefficient of resistance at 20°C for aluminium (α) – 0.0036

Allowable tensile stress on aluminium – 1025kg/cm²

Bus supports – SMC

Allowable shear stress on SMC – 55.5kg/cm²

Bus Duct Design

Duct Details

Type – Fabricated, totally enclosed

Conductor material – Aluminium alloy, D50SWP

Conductor size – 2x127x6.35mm – Phase, 1x127x6.35mm – Neutral

Enclosure size - 400x300mm

Minimum distance between buses (S) – 100mm

Minimum distance between bus & enclosure – 50mm

Support – SMC, 2Way, Thickness - 10mm, Finger length - 19mm

End finger width – 15mm, Middle finger width – 6mm

Distance between supports (L) – 30cm

Location of duct – Indoor, well ventilated

1. Steady state condition

Current rating of suggested buses (Table 3) – 2510A

De-rating factor for 40°C temperature rise – 0.88

De-rating factor for material (Table 1) – 0.94

Conductor area – 127x6.35x7 = 5645mm²

Enclosure area – 400x300 = 120000mm²

Conductor area/Enclosure area = 0.047 = 4.7%

Enclosure factor (Table 2) – 0.75

Actual current rating – 2510x0.88x0.94x0.75 = 1557A

As more than rated current, size suggested is adequate

2. Short circuit condition

a) Thermal capability

Temperature rise (t) = $(1.166 \times I_s^2(1+\alpha \times \theta_1) \times 10^{-2})/A^2$

I_s = Short circuit current = 30000A

α = Temperature coefficient of resistance = 0.0036

θ_1 = Initial temperature = 75°C

A = Area of conductor in mm²

Maximum permissible temperature rise = $\theta_2 - \theta_1 = 170 - 75 = 95^\circ\text{C}$

$95 = (1.166 \times 30000^2(1+0.0036 \times 75) \times 10^2)/A^2$

$A = \sqrt{(1.166 \times 30000^2 (1+0.0036 \times 75) \times 10^2)/95} = 375 \text{ mm}^2$

(Thumb rule A = I_s / 80))

Buses selected has size more than this and so adequate

b) Dynamic capability

Stress On Busbars

Electromagnetic force on short circuit (F_m) = $16 \times I_s^2 \times 10^{-4} / S$ Newton/metre

S = Distance between bus-bars = 100mm

F_m = $16 \times 30000^2 \times 10^{-4} / 100 = 14400 \text{ N/m} = 14.68 \text{ kg/m} = 14.68 \text{ kg/cm}$

Force on one bus (W) = $14.68 / \text{Number of bus-bars} = 14.68 / 2 = 7.34 \text{ kg/cm}$

Maximum bending moment (M) = $W \times L^2 / 8$

L = Distance between supports in cm. = 30cm.

Max. bending moment (M) = $7.34 \times 30^2 / 8 = 825 \text{ kgcm}$

Modulus of section (Z) = $b d^2 / 6$

b = Width of bus-bar in cm. = 12.7cm

d = Thickness of bus-bar in cm = 0.635cm

Bus Duct Design

Modulus of section (Z) = $12.7 \times 0.635^2 / 6 = 0.85 \text{ cm}^3$

Actual fibre force (F) = $M/Z = 825 / 0.85 = 970 \text{ kg/cm}^2$

Allowable tensile stress is 1025 kg/cm², hence adequate.

Stress On Supports

Support reaction (F1) = $Fm \times L = 14.68 \times 30 = 440 \text{ kg}$

Force on one support (f) = $F1 / \text{Number of supports at a point} = 440 / 2 = 220 \text{ kg}$

Thickness of support = 10mm = 1cm.

Area (a) = $(1.5 \times 1 + 0.6 \times 1) = 2.1 \text{ cm}^2$

Shear stress = $f/a = 220 / 2.1 = 105 \text{ kg/cm}^2$

It exceeds allowable maximum stress on SMC, 55.5 kg/cm².

Hence thickness increased to 20mm

Contact area = $(1.5 \times 2 + 0.6 \times 2) = 4.2 \text{ cm}^2$

Now shear stress = $220 / 4.2 = 52.4 \text{ kg/cm}^2$

As it is less than allowable shear stress, 55.5 kg/cm², supports selected adequate

Flexible Connection

Aluminium foil

Foil Thickness - 0.457mm (26 SWG) (Max thickness for flexibility)

Foil Width - 125mm

Current density permissible for aluminium - 0.8 A/mm²

Continuous current - 1333A

Number of foils - $1333 / 0.8 \times 125 \times 0.457 = 30 \text{ Nos.}$

Duct Details

Type : Fabricated, totally enclosed

Material for conductor - Aluminium alloy, D50S - WP

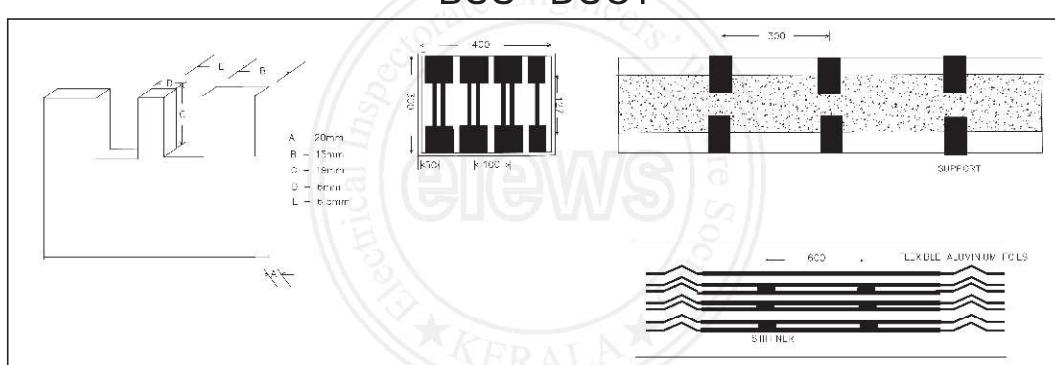
Conductor size - 2x127x6.35mm - Phase 1x127x6.35mm - Neutral

Enclosure size - 400x300mm

Minimum distance between phase buses - 100mm

Minimum distance between bus & enclosure - 50mm

Support - SMC, 2Way, Thickness - 20mm, Finger length - 19mm,


End finger width-15mm, Middle finger width-6mm Distance between supports-30cm

Stiffeners - Size - 127.35mm x 127.35mm x 6.35mm - Spacing - 60cm

Location of duct - Indoor, well ventilated

Flexible connections - 125mm, 0.457mm foils, 30 nos. at both ends

BUS - DUCT

