

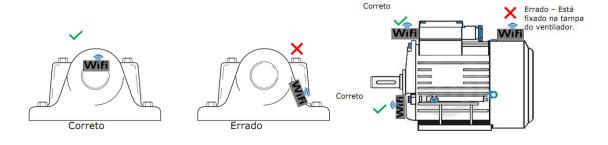
Sensor WFVIB31 T.B.LAB - Especificações Técnicas

O sensor **WFVIB31 T.B.LAB** é um sensor de vibração que utiliza a tecnologia **MEMS** (**Micro-Electro-Mechanical Systems – Sistemas Micro-Eletro-Mecânicos**) de alto desempenho.

Como é totalmente digital transmite medidas via WiFi, suas configurações e parâmetros são determinados através da a rede em que está logado, inclusive é possível determinar IP fixo, SSID e senha de acesso individualmente para cada sensor de vibração.

O sistema **exclusivo de auto-calibração** assegura uma grande repetibilidade do sinal sido, sendo que o sistema incorpora **lógica fuzzy** na análise das leituras e aplicação de filtros digitais de sinais tais como filtro de compensação pendular além de filtros específicos para medição apenas de taxas de variação do sinal (golpes).

A rede neural de cada sensor da T.B.LAB é composta de 15.360.000 "neurônios". Para se ter uma ideia, uma mosca tem cerca de 340.000 neurônios e uma abelha 850.000.


A instalação mecânica do mesmo é feita por adesivo específico, onde se elimina a necessidade de elementos mecânicos de fixação (furos e roscas) na máquina/rolamento em análise.

A conexão à REDE é muito simples, basta configurar endereço IP, SSID e SENHA da rede que o sensor automaticamente se conecta e inicia a coleta e envio de até 17.200 análises/dia.

A alimentação dos sensores é feita através de energia local por fonte DC ou bateria.

Exemplo de instalação física em mancal e motor:

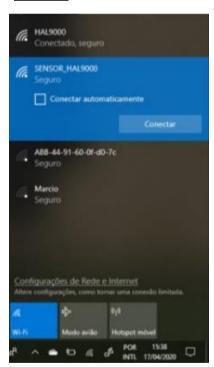
Características técnicas:

Tipo de sensor	Micro-Electro Mechanical System
Sensibilidade	16384 bits/g
Frequência mínima	0,0 Hz (Inclinação)
Frequência máxima da FFT	OHz a 3,65kHz (20 kHz com IA)
Frequência de amostragem	Até 40 kHz
Faixa de medição	2/4/8/16 g (diferencial)
Medição de vibração	Aceleração, velocidade
Eixos de medição	X, Y e Z
Medição de temperatura	sim
Valores RMS	sim
Resolução de frequências	400 linhas (Deslocamento de 0,25%)
Resolução da medição	16 bits
Resolução relativa	1/65535 = 0,0015%
Linearidade	melhor que 1%
Repetibilidade	Melhor que 0,5%
Filtro passa-baixa (software)	100, 200, 400, 1k, 2k, 3,6k, 6k kHz
Seleção de Frequência FFT (com IA)	100, 200, 400, 1k, 2k, 3,6k,4k, 6k, 20 kHz
Memória para dados	192kB RAM, 512kB ROM
Tecnologia do sensor	Digital
Configuração via WiFi	AccessPoint ou Server
Comunicação sem fio	WiFi b/g/n
Conexões elétricas	Alimentação DC (2 fios)
Alcance da rede	70 a 250 m (802.11n)
Número de sensores por gateway	IP4 (0.0.0.0 a 255.255.255.255)
Material de fabricação	Aço, resina plástica
Consumo máximo de corrente	350 mA em 6V
Temperatura de operação (superfície)	-20 até 125 oC
Tensão de alimentação	7 a 15 Vdc
Tamanho(LxAxP)	14 mm x 26 mm x 42 mm
Peso	27 g
Classe de proteção	IP68
Fixação	Adesivo plástico

Especificações e características sujeitas à alteração sem prévio aviso.

Configuração e acesso do sensor à qualquer rede WiFi

Passo 1: Posicionar o sensor T.B.LAB na posição "invertida" (LED para baixo):


sendo um micro roteador.

Ao alimentar o sensor T.B.LAB o LED vai acender por 3 segundos e logo depois piscará à uma frequência de 10 Hz (rápido), isto indica que ele está em modo de configuração de rede.

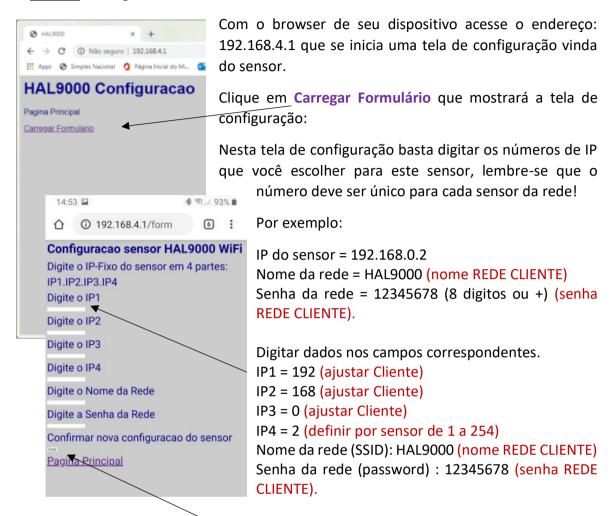
Nesta condição pode-se colocar o sensor T.B.LAB em qualquer posição para prosseguimento da configuração. Note que o LED continuará à piscar em 10 Hz.

O sensor T.B.LAB agora está operando no modo AccesPoint

Passo 2: Acessar AccesPoint SENSOR_HAL9000:

Seja no celular ou no Windows, selecionar a nova rede que aparece na lista de redes WiFi disponíveis.

Neste caso selecione a rede WiFi chamada SENSOR_HAL9000, a senha desta rede é 12345678


Provavelmente você vai receber uma mensagem de que esta rede não dá acesso à internet ou aviso semelhante referente à limitação de acesso, basta

dar um OK e entrar na rede gerada pelo sensor.

Passo 3: Configurar o número IP do sensor T.B.LAB:

Após digitação clique em ENVIAR.

Uma tela de confirmação aparecerá com os dados digitados e o sensor reiniciará entrando na rede selecionada deixando de atuar como AccessPoint.

O LED do sensor T.B.LAB fará uma piscada de 3 segundos e ingressará na rede e teremos o LED piscando em frequência de 1 Hz.

© Informacies do sensor x

← → C © Não segure 192.180.02/NF ☆ Ø ② 1

III Appl © Simples Nacional ① Págria brical do Mi... III final - pauliosaria... #

Dados Gravados na memoria !

Numero IP: 192.168.0.2

SSID : HAL9000

SENHA : 12345678

MAC : 2C:3A:E8:43:51:60

Uma vez na rede WiFi, basta cadastrar o sensor para leitura automática.

Para alteração do endereço IP ou dados da rede basta repetir o processo descrito.

Especificações do rádio WiFi:

- Faixa de Frequência: 2412 ~ 2484MHz
- Modos de operação: STA/AP/STA + AP
- Certificações: FCC, CE, IC, REACH, RoHS
- Transmit Power: 802.11b: 16 +/- 2 dBm (@11Mbps) / 802.11g: 14 +/ 2 dBm (@54Mbps) / 802.11n: 13 +/- 2 dBm (@HT20, MCS7)
- Receiving Sensitivity: CCK, 1Mbps: -90dBm / CCK, 11Mbps: -85dBm / 6Mbps (1/2 BPSK): -88dBm / 54Mbps (3/2 64-QAM): -70dBm / HT20, MCS7 (65Mbps, 72.2Mbps): -67dBm
- Power (Typical Values): Transmissão contínua => Média: ~71mA,
 Pico: 500mA / Modem Sleep: ~20mA / Light Sleep: ~2mA / Deep
 Sleep: ~0.02mA
- Segurança Wireless: WEP / WPA-PSK / WPA2-PSK
- Temperatura de Operação: -20C ~ 85C
- Taxa de transferência: 110-460800bps