

L1₂ Crystal Structure – Technical Explanation

According to Nabarro and de Villiers in "The Physics of Creep", the $L1_2$ structure is an ordered cubic derivative of the FCC lattice, typical of γ' (gamma prime) precipitates in Niand Co-based superalloys. This phase is responsible for precipitation strengthening through coherent intermetallic compounds of the type (Co,Ni)₃(Al,Ti,Ta,Nb).

Key characteristics:

- L1₂ is an ordered FCC structure derived from Cu₃Au.
- (Co,Ni) atoms occupy cube corners and face centers.
- (Al,Ti,Ta,Nb) atoms occupy the cube center.
- The γ' phase remains coherent with the γ matrix, improving creep resistance and high-temperature strength.

The ordered nature of $L1_2$ causes significant strengthening because the γ' precipitates resist dislocation movement through coherency strains and anti-phase boundary formation. This is fundamental in high-temperature applications such as gas turbines, reformers, petrochemical reactors, and other components requiring long-term creep resistance.