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SUMMARY

Many geophysical models are created without any form of uncertainty analysis. Mainly because it is not easy to produce
a meaningful uncertainty analysis from a single best fit model. Most geophysicists are aware of the limitations of their
model, but if the model is passed on to a third party, this information is lost and the risk of misinterpretation arises,
which can have serious consequences. We use the bootstrapping resampling method to create reduced data sets from
the base data set by random omission of data points. Each of these new data sets is then run through a conventional
inversion process to produce an ensemble of solutions with minor variations. The ensemble creation stage is followed by
an appraisal stage of statistical analysis of the solution ensembles to infer an uncertainty estimate for the models based
on that data set, to increase the reliability of the modelling process. The last step of the workflow is the visualisation and
communication of the results to experts as well as non-experts. We demonstrate the effectiveness of the technique with a
case study on a magnetotellurics data set from the Southern Delamerian transect in Victoria, Australia. The process yields
a clear and easy to interpret uncertainty map for the connected model.
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INTRODUCTION

These days inversion modelling is widely used to interpret
geophysical data. The inversion algorithms become more
and more sophisticated and 1D, 2D and 3D data sets are
commonly interpreted.
Inversion models are used in a variety of areas, like re-
search and the exploration industry. Data interpretations
are a widely traded commodity, which requires the models
to be highly reliable to ensure correct interpretation. Even
if the person who created the model is aware of its limi-
tations, as soon as the results are handed to a third party,
overconfidence in the model bears the risk of misinterpre-
tation.
The problem is that most of today’s inversion schemes
produce only a single best fit solution and an uncertainty
analysis based on a single model has only a limited infor-
mation value.
We develop methods to create solution ensembles and ad-
vanced uncertainty analysis techniques based on these en-
sembles to increase model reliability. The method we
present here is based on bootstrapping resampling.

METHOD

Bootstrapping is a resampling method used in statistics
to calculate sample estimates and was first described by
Efron (1979). It is based on statistics calculated from ran-

dom samples x∗ = (x1, . . . , xm), repeatedly drawn from
a base data set X (x∗ ⊂ X).
We applied this principle to magnetotelluric (MT) data.
The behaviour of the electric field E and the magnetic in-
duction B involved in MT are governed by diffusion equa-
tions (see eq. 1 & 2) (Simpson & Bahr, 2005).

∇2E = µ0σ
∂E

∂t
(1)

and ∇2B = µ0σ
∂B

∂t
(2)

Because of the diffusive nature of the electromagnetic
fields, results from MT measurements represent averages
over the volume of medium penetrated by the electromag-
netic waves. Thus, data from different sites and different
sounding periods T should, depending on the penetration
depth p (see eq. 3), contain overlapping information.

p =

√
T ρ̄

πµ
(3)

The idea of the bootstrapping approach is that for per-
fect data the random omission of some of the data points
should not change the result, as the information is still
contained in the remaining data points. Hence, variations
in the results give an estimate of the uncertainty inherent
in the data.
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PRELIMINARY RESULTS

A first test of the bootstrapping approach was conducted
with a data set comprised of broadband MT measurements
of 67 sites along the Southern Delamerian transect from
Victoria, Australia (Robertson, 2012) (see tab. 1).

Table 1. Data set and test specifications.
Number of sites 67
Frequency range 156.25-0.012 Hz
Total number of data points 8476
Number of bootstrap models 100
Fraction of data points omitted 30 %

A total of 100 inversion models were calculated, based
on bootstrapped models with a random data omission of
30 % for each model. All models were based on the same
grid and had the same starting model. The inversions were
executed with the OCCAM (Constable et al., 1987) 2D
smooth inversion code.
Figure 1 shows the result of the standard inversion of the
complete data set. The main feature of the model (delin-
eated in black/white) on which we will concentrate here,
is a low resistivity structure extending between a depth of
10-40 km and a horizontal position of −10-35 km.

Figure 1. Inversion result of the complete data set of the
Southern Delamerian MT transect. The shape
of the main anomaly is marked in black.

To evaluate the results from the reduced data sets, the
standard deviation s (see eq. 4) of the resistivity value
log10(ρ) are calculated for each model cell, under the as-
sumption that the observations xi are approximately nor-
mally distributed (which has not yet been validated).

s =

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2 (4)

To allow for a comparison of the standard deviation of
different cells, the absolute standard deviation is scaled to
a relative standard deviation srel. = s/x̄ (see fig. 2).

Figure 2. Relative standard deviation srel. = s/x̄ of the
resistivity value log10(ρ) each model cell cal-
culated from 100 inversion models based on
100 reduced data sets (30 % data point omis-
sion). Scaled to 0-50 % for higher clarity (max.
srel. = 434.59 %, s̄rel. = 6.55 %). The shape of
the main anomaly, as identified in figure 1, is
marked in white.

Figure 2 clearly shows, that the areas of highest uncer-
tainty are strongly correlated to areas of low resistivity.

DISCUSSION

First results are very promising. As shown in figure 2 the
process produces a clear and easy to interpret uncertainty
map for the related model (see fig. 1).
As to be expected, the areas of highest uncertainty are con-
nected to the areas of low resistivity, since low resistivity
structures cause a strong attenuation of the electromag-
netic fields and, hence, lower the achievable resolution.
The exact position of those areas differs slightly from the
expected though. We expected the areas of high uncer-
tainty to coincide with the lower parts of low resistivity
structures, extending to the areas directly underneath the
low resistivity structures. That is true for the uprising
dome structure in the western part of the anomaly, but in
some instances, especially in the eastern half of the main
anomaly, the upper edge of the low resistivity structure
shows raised uncertainty levels. We are not quite sure
what causes this effect, but it might be a shielding effect
of the uprising structure to the west. That behaviour needs
further examination.
Bootstrapping is superior to the standard sensitivity anal-
ysis. A sensitivity analysis only tests the effect of changes
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to the model parameters on the model response, which
generally just highlights all areas of low resistivity, as
those areas are affecting the model response the most. In
contrast, bootstrapping directly tests the impact of the data
on the model, and flags areas of the model that are poorly
constrained.
A disadvantage of the method is that the calculation of the
inversion models is very time consuming. That is partially
due to the fact that we used an existing standard 2D inver-
sion algorithm and we would probably be able to achieve
speed improvements if we would use a dedicated code,
but the main factor is just the sheer number of models to
be calculated. This absolutely requires the use of multi
core machines and is the main reason that this approach
is currently only feasible for 2D inversions. The general
concept is very much applicable to 3D inversions as well
and will yield similarly good results, when rendered pos-
sible by the availability of more computing power in the
next few years.
Note that, even though we only tested the method on MT
data so far, it is generally applicable to all geophysical
methods that sample volumes, like e.g. gravity or magnet-
ics.

OUTLOOK

The project is clearly a work in progress. The next step is
to test which type of distribution the observations follow,
to confirm that the used statistics are valid or if necessary
adjust the statistics accordingly. Furthermore, the effect
of different omission percentages and different numbers
of bootstrap models will be tested. In addition, we will
test the random omission of whole sites instead of random
data points and will conduct a second case study with a
different high quality data set.
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