

An Algorithm for Content-Based

Automated File Type Recognition

Mason B. McDaniel

A thesis submitted to the Graduate Faculty of

JAMES MADISON UNIVERSITY

in

Partial Fulfillment of the Requirements

for the degree of

Master of Science

Department of Computer Science

December 2001

ii

iii

Approved and recommended for acceptance as a thesis in partial fulfillment of the
requirements for the degree of Master of Science.

 Special committee directing the work of Mason B. McDaniel.

Thesis Advisor Date

Member Date

Member Date

Department Head Date

Received by the Graduate School Office

Date

iv

ACKNOWLEDGEMENTS

I would like to thank the staff of the James Madison University Computer Science
Information Security program for their dedication and assistance through past couple of
years. I would specifically like to thank my advisor, Dr. M. Hossein Heydari, and thesis
committee members, Dr. John McDermott and Dr. Mohammed Eltoweissy for their
valuable input and assistance.

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... IV
TABLE OF FIGURES .. VII
ABSTRACT ... XI
ABSTRACT ... XI
CHAPTER 1: INTRODUCTION .. 78

BACKGROUND .. 78
PREVIOUS WORK ... 79

CHAPTER 2: THE ALGORITHM .. 81
INTRODUCTION .. 81
OPTION 1: BYTE FREQUENCY ANALYSIS ... 81

Building the Byte Frequency Distribution .. 82
Combining Frequency Distributions into a Fingerprint ... 85
Comparing a Single File to a Fingerprint .. 88

OPTION 2: BYTE FREQUENCY CROSS-CORRELATION ... 89
Building the Byte Frequency Cross-Correlation .. 89
Combining Cross-Correlations into a Fingerprint ... 91
Comparing a Single File to a Fingerprint .. 94

OPTION 3: FILE HEADER/TRAILER ANALYSIS .. 95
Building the Header and Trailer Profiles ... 95
Combining Header and Trailer Profiles into a Fingerprint 96
Comparing a Single File to a Fingerprint .. 98

COMBINING SCORES FROM MULTIPLE OPTIONS ... 99
CHAPTER 3: TESTING .. 101

TEST 1 – BETA SWEEP .. 101
TEST 2 – SIGMA SWEEP .. 102
TEST 3 – LINEAR CORRELATION VS. BELL ... 103
TEST 4 – HEADER LENGTH SWEEP ... 103
TEST 5 – TRAILER LENGTH SWEEP ... 104
TEST 6 – ACCURACY TEST (ALL OPTIONS) .. 105
TEST 7 – ACCURACY TEST (OPTION 1) ... 105
TEST 8 – ACCURACY TEST (OPTION 2) ... 105
TEST 9 – ACCURACY TEST (OPTION 3) ... 106
TEST 10 – EXTENDED ACCURACY TEST (ALL OPTIONS) .. 106
TEST 11 – EXTENDED ACCURACY TEST (OPTION 1) .. 107
TEST 12 – EXTENDED ACCURACY TEST (OPTION 2) .. 107
TEST 13 – EXTENDED ACCURACY TEST (OPTION 3) .. 107

CHAPTER 4: RESULTS ... 110
TEST 1 – BETA SWEEP .. 110
TESTS 2 AND 3– SIGMA SWEEP AND LINEAR CORRELATION VS. BELL 111

vi

TEST 4 – HEADER LENGTH SWEEP ... 113
TEST 5 – TRAILER LENGTH SWEEP ... 117
TEST 6 – ACCURACY TEST (ALL OPTIONS) .. 120
TEST 7 – ACCURACY TEST (OPTION 1) ... 122
TEST 8 – ACCURACY TEST (OPTION 2) ... 125
TEST 9 – ACCURACY TEST (OPTION 3) ... 127
TEST 10 – EXTENDED ACCURACY TEST (ALL OPTIONS) .. 129
TEST 11 – EXTENDED ACCURACY TEST (OPTION 1) .. 132
TEST 12 – EXTENDED ACCURACY TEST (OPTION 2) .. 134
TEST 13 – EXTENDED ACCURACY TEST (OPTION 3) .. 137

CHAPTER 5: ANALYSIS ... 140
CONCLUSIONS AND FUTURE WORK ... 140
FUTURE WORK .. 144

APPENDIX A: FINGERPRINT FILE FORMAT... 148
APPENDIX B: FILE TYPES USED FOR CONSTANT TESTS 150

EXECUTABLE FORMATS ... 150
APPENDIX C: FILE TYPES USED FOR ACCURACY TESTS 75
APPENDIX D: FILE TYPES USED FOR EXTENDED ACCURACY TESTS....... 77

EXECUTABLE FORMATS ... 77
PROPRIETARY FORMATS .. 77

APPENDIX E: FILE TYPE FINGERPRINT OVERVIEW 79
APPENDIX F: SAMPLE FILE RECOGNITION REPORT 85
GLOSSARY... 93
BIBLIOGRAPHY ... 95

vii

TABLE OF FIGURES

FIGURE 2-1 - BYTE FREQUENCY DISTRIBUTIONS FOR TWO RTF FILES. 82
FIGURE 2-2 - BYTE FREQUENCY DISTRIBUTIONS FOR TWO GIF FILES. 82
FIGURE 2-3 - FREQUENCY DISTRIBUTION FOR A SAMPLE EXECUTABLE FILE. 83

FIGURE 2-4 - GRAPH FOR COMPANDING FUNCTION

= β
1

xy FOR β = 2. 84
FIGURE 2-5 - FREQUENCY DISTRIBUTION FOR A SAMPLE EXECUTABLE FILE AFTER PASSING

THROUGH THE COMPANDING FUNCTION. .. 84
FIGURE 2-6 - GRAPH OF A LINEAR CORRELATION STRENGTH FUNCTION 86
FIGURE 2-7 - BELL CURVE FOR σ = 0.125. .. 87
FIGURE 2-8 - BYTE FREQUENCY DISTRIBUTION WITH CORRELATION STRENGTH FOR HTML

FINGERPRINT. ... 88
FIGURE 2-9 - BYTE FREQUENCY DISTRIBUTION WITH CORRELATION STRENGTH FOR ZIP

FINGERPRINT. ... 89
FIGURE 2-10 - BYTE CROSS-CORRELATION ARRAY STRUCTURE ... 91
FIGURE 2-11 - BYTE FREQUENCY CROSS-CORRELATION PLOT FOR THE HTML FILE TYPE .. 93
FIGURE 2-12 - BYTE FREQUENCY CROSS-CORRELATION PLOT FOR THE GIF FILE TYPE. 94
FIGURE 2-13 - ARRAY STRUCTURE USED FOR HEADER ANALYSIS....................................... 96
FIGURE 2-14 - FILE HEADER PLOT FOR THE GIF FILE FINGERPRINT 97
FIGURE 2-15 - FILE TRAILER PLOT FOR THE MPEG FILE TYPE. ... 98
FIGURE 4-1 - FREQUENCY SCORES PER FINGERPRINT FOR VARYING VALUES OF Β. 110
FIGURE 4-2 - DIFFERENCE BETWEEN FIRST- AND SECOND-RATED FINGERPRINTS AS A

FUNCTION OF Β. .. 111
FIGURE 4-3 – CROSS-CORRELATION SCORES FOR EACH FINGERPRINT AS A FUNCTION OF Σ.

... 112
FIGURE 4-4 - CROSS-CORRELATION SCORES FOR EACH FINGERPRINT AS A FUNCTION OF Σ.

... 112
FIGURE 4-5 - DIFFERENCES BETWEEN FIRST- AND SECOND-RATED FINGERPRINTS AS A

FUNCTION OF Σ. .. 113
FIGURE 4-6 - TABLE OF FILE HEADER EFFECTIVE SCORES FOR THE FOUR MP3 TEST FILES.

... 114
FIGURE 4-7 - AVERAGE HEADER SCORES PER FILE TYPE FOR EACH HEADER LENGTH 114
FIGURE 4-8 - DIFFERENCES BETWEEN THE HIGHEST AND SECOND-HIGHEST HEADER SCORES

AS A FUNCTION OF HEADER LENGTH. .. 115
FIGURE 4-9 - HEADER SCORE DIFFERENCE BETWEEN THE HIGHEST AND SECOND-HIGHEST

FILE TYPES AS A FUNCTION OF HEADER LENGTH. .. 116
FIGURE 4-10 - AVERAGE HEADER SCORE DIFFERENCES AS A FUNCTION OF HEADER LENGTH.

... 116
FIGURE 4-11 - AVERAGE TRAILER SCORES PER FILE TYPE FOR EACH HEADER LENGTH 117
FIGURE 4-12 - DIFFERENCES BETWEEN THE HIGHEST AND SECOND-HIGHEST TRAILER

SCORES AS A FUNCTION OF HEADER LENGTH. ... 118
FIGURE 4-13 - TRAILER SCORE DIFFERENCE BETWEEN THE HIGHEST AND SECOND-HIGHEST

FILE TYPES AS A FUNCTION OF TRAILER LENGTH. ... 119
FIGURE 4-14 - AVERAGE TRAILER SCORE DIFFERENCES AS A FUNCTION OF TRAILER LENGTH.

... 119

viii

FIGURE 4-15 - IDENTIFIED TYPE OF EACH TEST FILE. THE ACTUAL TYPE IS SHOWN DOWN
THE LEFT COLUMN. .. 120

FIGURE 4-16 - IDENTIFIED TYPE OF EACH TEST FILE WITH A SINGLE OLE DOC FINGERPRINT.
THE ACTUAL TYPE IS SHOWN DOWN THE LEFT COLUMN. .. 122

FIGURE 4-17 - IDENTIFIED TYPE OF EACH TEST FILE WITH ONLY OPTION 1 ENABLED AND
SEPARATE FINGERPRINTS FOR DOC, PPT, AND XLS. THE ACTUAL TYPE IS SHOWN
DOWN THE LEFT COLUMN. .. 123

FIGURE 4-18 - IDENTIFIED TYPE OF EACH TEST FILE WITH ONLY OPTION 1 ENABLED AND A
SINGLE OLE DOC FINGERPRINT. THE ACTUAL TYPE IS SHOWN DOWN THE LEFT
COLUMN. .. 124

FIGURE 4-19 - IDENTIFIED TYPE OF EACH TEST FILE WITH ONLY OPTION 2 ENABLED AND
SEPARATE FINGERPRINTS FOR DOC, PPT, AND XLS FILE TYPES. THE ACTUAL TYPE IS
SHOWN DOWN THE LEFT COLUMN. ... 126

FIGURE 4-20 - IDENTIFIED TYPE OF EACH TEST FILE WITH ONLY OPTION 2 ENABLED AND A
SINGLE OLE DOC FINGERPRINT. THE ACTUAL TYPE IS SHOWN DOWN THE LEFT
COLUMN. .. 127

FIGURE 4-21 - IDENTIFIED TYPE OF EACH TEST FILE WITH ONLY OPTION 3 ENABLED AND
SEPARATE FINGERPRINTS FOR DOC, PPT, AND XLS FILE TYPES. THE ACTUAL TYPE IS
SHOWN DOWN THE LEFT COLUMN. ... 128

FIGURE 4-22 - IDENTIFIED TYPE OF EACH TEST FILE WITH ONLY OPTION 3 ENABLED AND A
SINGLE OLE DOC FINGERPRINT. THE ACTUAL TYPE IS SHOWN DOWN THE LEFT
COLUMN. .. 129

FIGURE 4-23 IDENTIFIED TYPE OF EACH TEST FILE WITH ADDITIONAL TYPES ADDED AND ALL
OPTIONS. .. 130

FIGURE 4-24 IDENTIFIED TYPE OF EACH TEST FILE WITH ADDITIONAL TYPES ADDED, A
COMBINED OLE DOC FINGERPRINT, AND ALL OPTIONS ENABLED. 131

FIGURE 4-25 IDENTIFIED TYPE OF EACH TEST FILE WITH ADDITIONAL TYPES ADDED AND
ONLY OPTION 1. ... 132

FIGURE 4-26 IDENTIFIED TYPE OF EACH TEST FILE WITH ADDITIONAL TYPES ADDED, A
COMBINED OLE DOC FINGERPRINT, AND ONLY OPTION 1 ENABLED. 133

FIGURE 4-27 IDENTIFIED TYPE OF EACH TEST FILE WITH ADDITIONAL TYPES ADDED AND
ONLY OPTION 2. ... 135

FIGURE 4-28 IDENTIFIED TYPE OF EACH TEST FILE WITH ADDITIONAL TYPES ADDED, A
COMBINED OLE DOC FINGERPRINT, AND ONLY OPTION 2 ENABLED. 136

FIGURE 4-29 IDENTIFIED TYPE OF EACH TEST FILE WITH ADDITIONAL TYPES ADDED AND
ONLY OPTION 3. ... 138

FIGURE 4-30 IDENTIFIED TYPE OF EACH TEST FILE WITH ADDITIONAL TYPES ADDED, A
COMBINED OLE DOC FINGERPRINT, AND ONLY OPTION 3 ENABLED. 139

FIGURE 5-1 – SUMMARY OF THE TIMES IT TAKES EACH OPTION TO COMPARE AN UNKNOWN
FILE TO ONE FINGERPRINT AND THE OPTION’S ACCURACIES FOR A SINGLE OLE DOC
FINGERPRINT AND FOR SEPARATE DOC, PPT, AND XLS FINGERPRINTS 141

FIGURE 5-2 - FINGERPRINT FILE SIZES IN BYTES FOR DIFFERENT OPTION COMBINATIONS,
WHERE H IS HEADER LENGTH AND T IS TRAILER LENGTH. .. 143

FIGURE D-1 - AVI FINGERPRINT SUMMARY ... 79
FIGURE D-2 - BMP FINGERPRINT SUMMARY .. 79
FIGURE D-3 - DOC FINGERPRINT SUMMARY .. 79

ix

FIGURE D-4 - EXE FINGERPRINT SUMMARY .. 79
FIGURE D-6 - GIF FINGERPRINT SUMMARY .. 80
FIGURE D-5 - FNT FINGERPRINT SUMMARY ... 80
FIGURE D-8 - HTML FINGERPRINT SUMMARY ... 80
FIGURE D-7 - GZ FINGERPRINT SUMMARY ... 80
FIGURE D-10 - MOV FINGERPRINT SUMMARY ... 80
FIGURE D-9 - JPG FINGERPRINT SUMMARY ... 80
FIGURE D-12 - MPEG FINGERPRINT SUMMARY ... 81
FIGURE D-11 – MP3 FINGERPRINT SUMMARY .. 81
FIGURE D-14 - PDF FINGERPRINT SUMMARY ... 81
FIGURE D-13 – OLE DOC FINGERPRINT SUMMARY .. 81
FIGURE D-16 - PS FINGERPRINT SUMMARY .. 81
FIGURE D-15 - PPT FINGERPRINT SUMMARY ... 81
FIGURE D-18 - RPM FINGERPRINT SUMMARY .. 82
FIGURE D-17 - RM FINGERPRINT SUMMARY .. 82
FIGURE D-20 - TAR FINGERPRINT SUMMARY .. 82
FIGURE D-19 - RTF FINGERPRINT SUMMARY ... 82
FIGURE D-22 - TXT FINGERPRINT SUMMARY .. 82
FIGURE D-21 - TTF FINGERPRINT SUMMARY ... 82
FIGURE D-24 - WPD FINGERPRINT SUMMARY ... 83
FIGURE D-23 - WAV FINGERPRINT SUMMARY ... 83
FIGURE D-26 - ZIP FINGERPRINT SUMMARY .. 83
FIGURE D-25 - XLS FINGERPRINT SUMMARY ... 83
FIGURE D-28 – ACD FINGERPRINT SUMMARY ... 83
FIGURE D-27 – 3TF FINGERPRINT SUMMARY ... 83
FIGURE D-30 – CRP FINGERPRINT SUMMARY .. 84
FIGURE D-29 – CAT FINGERPRINT SUMMARY ... 84
FIGURE D-31 – MDL FINGERPRINT SUMMARY ... 84

x

This page intentionally left blank.

xi

ABSTRACT

 Identifying the true type of a computer file can be a difficult problem. Previous
methods of file type recognition include fixed file extensions, fixed “magic numbers”
stored with the files, and proprietary descriptive file wrappers. All of these methods have
significant limitations. This paper proposes an algorithm for automatically generating
“fingerprints” of file types based on a set of known input files, then using the fingerprints
to recognize the true type of unknown files based on their content, rather than metadata
associated with them. Recognition is performed by three independently selectable
options: byte frequency analysis, byte frequency cross-correlation analysis, and file
header/trailer analysis. Tests were run to identify optimal values of constants used in
recognition calculations, and to measure the accuracy of the algorithm with different
combinations of options. The accuracy varied greatly depending upon which options
were used, from 23% accurate using only the first option, to 96% accurate using all three
options. The algorithm could be used by virus scanning packages, firewalls, or any other
program that needs to identify the types of files for proper operation. Finally,
recommendations are made regarding additional research that could improve the
flexibility and accuracy of the proposed algorithm.

95

CHAPTER 1: INTRODUCTION

Background

 Computers use a tremendous array of file formats today. All types of files are
frequently transmitted through intranets and the Internet.

Currently, operating systems, firewalls, and intrusion detection systems have very
few methods for determining the true type of a file. Perhaps the most common method is
to identify the type of a file by the file’s extension. This is an extremely unreliable
method, as any user or application can change a file’s name and extension at any time.

As a result, some users are able to conceal files from system administrators
simply by renaming them to a filename with a different extension. While this doesn’t
conceal the existence of a file, it can conceal the nature of a file and can prevent it from
being opened by the operating system.

In addition, many virus-scanning packages default to only scanning executable
files. These packages may miss any viruses contained within executable files that had
non-executable file extensions. This could introduce vulnerabilities into a network, even
if it contained virus protection.

The other common method of identifying file types is through manual definition
of file recognition rules. This is an extremely time-consuming process, whereby an
individual examines a file type specification, if one is available, and identifies consistent
features of a file type that can be used as a unique identifier of that type. In the absence
of a specification, the individual must manually examine a number of files looking for
common features that can be used to identify the file type. Not only is this time-
consuming, but it can require an individual with a highly technical background that is
capable of doing a hexadecimal analysis of files.

 Manual rule definition is the method used by many Unix-based operating systems,
as well as tools used in forensic analysis of computer disks during investigations. These
investigations could be part of law enforcement investigations, or part of internal
corporate investigations. Regardless of the investigating authority, automated file type
recognition is a critical part of this sort of computer forensic analysis.

An efficient, automated algorithm to perform this kind of file type recognition would be
of tremendous benefit to organizations needing to perform forensic analyses of computer
hard drives. It could also be used by virus protection software, intrusion detection
systems, firewalls, and security downgrading packages to identify the true nature of
programs passing through the protected systems. Finally, this kind of algorithm could be
of use to the operating systems themselves to allow for correct identification and
handling of files regardless of file extension.

95

Previous Work

 To date, there have been relatively few methods for identifying the type of a file.
One of the most common methods is the use of file extensions. Microsoft’s operating
systems use this method almost exclusively. They come preset with associations between
file extensions and file types. If different associations are desired, they must be manually
reconfigured by the user.1

 As mentioned above, this approach introduces many security vulnerabilities. A
user can change the extension of a file at any time, rendering the operating system unable
to identify it. They can also change the file extension associations to fool the operating
system in to handling files in an inappropriate manner, such as trying to execute a text
file.

 Another approach is that taken by many Unix-based operating systems. These
make use of a “magic number” which consists of the first 16 bits of each file. Another
file, such as /etc/magic then associates magic numbers with file types.2

 This approach has a number of drawbacks as well. The magic numbers must be
predefined before the files are generated, and are then built into the files themselves.
This makes it very difficult to change them over time, since a change might interfere with
the proper operation of many files that were generated using the old magic number.
Furthermore, not all file types use magic numbers. The scheme was initially intended to
assist with the proper handling of executable and binary formats. With only 16 bits
allocated, a number of extensions had to be introduced over time, such as using the “#!”
magic number to identify a command to execute on the rest of the file.3

 Another approach is to define a proprietary file format that encapsulates other
files and provides information regarding their type. One example of this approach is the
Standard File Format (SAF) developed by the Advanced Missile Signature Center
(AMSC).4

There are many down sides to this approach. The specification must be written
defining how to encapsulate and identify each file format. An individual or external
system must identify the type of the file before it can be correctly encapsulated in the
standard format in the correct manner. The most significant problem, however, is that
this type of file can only be used within the small proprietary system that recognizes the
“standard” format. The files cannot be exported to external systems such as the Internet
without removing the encapsulation, and thus negating its benefit.

1 “To Associate a File Extension With a File Type”, Windows 2000 Professional Documentation, available
online from: http://www.microsoft.com/WINDOWS2000/en/professional/help/win_fcab_reg_filetype.htm
2 /etc/magic Help File, available online from: http://qdn.qnx.com/support/docs/qnx4/utils/m/magic.html
3 Why do some scripts start with #!, Chip Rosenthal, available online from: http://baserv/uci/kun.nl/unix-
faq.html
4 The Advanced Missile Signature Center Standard File Format, available online from:
http://fileformat.virtualave.net/archive/saf.zip

http://www.microsoft.com/WINDOWS2000/en/professional/help/win_fcab_reg_filetype.htm
http://qdn.qnx.com/support/docs/qnx4/utils/m/magic.html
http://baserv/uci/kun.nl/unix-faq.html
http://baserv/uci/kun.nl/unix-faq.html
http://fileformat.virtualave.net/archive/saf.zip

95

 Although not directly related to file identification, the field of cryptanalysis has a
very similar problem. In order for a software package to automate the process of
attempting to break encryption, it must be able to recognize a decrypted product when it
appears. This is a very difficult problem for the general case. For encrypted ASCII
English text, however, it becomes easier. The letters of the English language appear with
a predictable frequency in large text documents.5 This means that a program can be
written to analyze frequency distributions and detect the characteristic distribution pattern
of English text when a text file has been successfully decrypted.

5 Stallings, William, Cryptography and Network Security, Prentice Hall, Upper Saddle River, New Jersey,
1999, p. 32.

95

CHAPTER 2: THE ALGORITHM

Introduction

 This paper describes an attempt to extend the concept of frequency analysis and
apply it to the general case of generating a characteristic “fingerprint” for computer file
types, and subsequently using the fingerprint to identify file types based upon their
characteristic signatures. This would enable systems to solve many of the problems
associated with the methods of file type recognition discussed in Chapter 1. The process
could be almost entirely automated, and would not be affected if a user changed a file
name or extension. In addition, if file types change, or new types were created, it would
be a simple matter to update the file fingerprint library without affecting the functionality
of files written under the previous file types.

The design goals for the proposed file recognition algorithm are as follows:

• Accuracy – The algorithm should be as accurate as possible at identifying file
types

• Automatic generation of file type fingerprints – To generate a file type
fingerprint, the user should only be required to input a batch of files of a
known type. The fingerprint should then be generated automatically with no
further input required from the user. (Moreover, additional files should be
able to be added at any time to further refine a file type fingerprint.)

• Small fingerprint files – The fingerprint file sizes should be minimized.

• Speed – Comparisons should be as fast as possible for a given fingerprint file
size

• Flexibility – The algorithm should provide a customizable tradeoff between
speed and accuracy.

• Independence from file size – The size of the fingerprint files should be
largely independent from the size of the input files.

These design goals can be achieved by implementing the three options described
in this section, each of which could be selected independently, or used together for
increased accuracy.

Option 1: Byte Frequency Analysis

 Much like text documents can be broken into series of letters, all computer files
can be broken into a series of bytes, which correspond to eight-bit numbers capable of

95

representing numeric values from 0 to 255 inclusive. By counting the number of
occurrences of each byte value in a file, a frequency distribution can be obtained. Many
file types have consistent patterns to their frequency distributions, providing information
useful for identifying the type of unknown files.

Figure 2-1 shows the frequency distributions for two different RichText (RTF)
files. Although there are noticeable differences, they are quite similar. Contrast those to
the frequency distributions for two different Graphics Interchange Format (GIF) files,
shown in Figure 2-2. Many file types likewise have characteristic patterns that can be
used to differentiate them from other file formats.

Figure 2-1 - Byte frequency distributions for two RTF files.

Figure 2-2 - Byte frequency distributions for two GIF files.

 This section describes the methods used to build the byte frequency distribution of
individual files, to combine the ratings from multiple files into a fingerprint
representative of the file type, and to compare an unknown file to a file type fingerprint,
obtaining a numeric score.

Building the Byte Frequency Distribution

 The first step in building a byte frequency fingerprint is to count the number of
occurrences of each byte value for a single input file. This is done by generating an array
with elements from 0 to 255, and initializing all values to zero. Each byte in the input file
is then looped through. For each byte, the value is extracted and the appropriate element

95

of the array is incremented by one. For example, if the next byte in the file contained the
ASCII value 32, then array element 32 would be incremented by one.

 Once the number of occurrences of each byte value is obtained, each element in
the array is divided by the number of occurrences of the most frequent byte value. This
normalizes the array to frequencies in the range of 0 to 1, inclusive. This normalization
step prevents one very large file from skewing the file type fingerprint. Rather, each
input file is provided equal weight regardless of size.

 Some file types have one byte value that occurs much more frequently than any
other. If this happens, the normalized frequency distribution may show a large spike at
the common value, with almost nothing elsewhere. Figure 2-3 shows the frequency
distribution for an executable file that demonstrates this. The file has large regions filled
with the byte value zero. The resulting graph has a large spike at byte value zero, with
insufficient detail to determine patterns in the remaining byte value ranges.

Figure 2-3 - Frequency distribution for a sample executable file.

 A way to solve this problem would be to pass the frequency distribution through a
companding function to emphasize the lower values. Common companding functions,
such as the A-law and µ-law companding functions used in telecommunications,6 can be
roughly approximated by the following function, which can be very rapidly computed:

= β
1

xy

 Figure 2-4 shows the graph of this function for β = 2.

6 Bellamy, John, Digital Telephony, Second Edition, John Wiley & Sons, Inc., New York, New York,
1991, pp 110-119.

95

Figure 2-4 - Graph for companding function

= β
1

xy for β = 2.

 The same file shown in Figure 2-3, after being passed through this equation,
produces the frequency distribution shown in Figure 2-5. This graph shows more of the
detail across all byte frequencies, and therefore may allow for more accurate
comparisons. Different values of β produce different levels of companding. Tests were
run, discussed in Chapters 3 and 4, to determine the optimal value of β for the most
accurate file type recognition.

Figure 2-5 - Frequency distribution for a sample executable file after passing through the
companding function.

95

 The companding function results in a frequency distribution that is still
normalized to 1. This is true since the most frequent byte value was normalized to 1, and
the companding function with an input value of 1 results in an output value of 1.

Combining Frequency Distributions into a Fingerprint

 A fingerprint is generated by averaging the results of multiple files of a common
file type into a single fingerprint file that is representative of the file type as a whole.
(See APPENDIX A for a description of the file format for the fingerprint file.)

 To add a new file’s frequency distribution to a fingerprint, the fingerprint is
loaded, and the frequency distribution for the new file is generated. Next, each element
of the new file’s frequency distribution array is added to the corresponding element of the
fingerprint score using the following equation:

()
1+
+×

=
filesofnumberprevious

scorefileNewfilesofnumberpreviousScoreFPOldScoreFPNew

 This results in a simple average, where the previous fingerprint score is weighted
by the number of files already loaded into the fingerprint.

 Aside from the byte frequency distributions, there is another related piece of
information that can be used to refine the comparisons. The frequencies of some byte
values are very consistent between files of some file types, while other byte values vary
widely in frequency. For example, note that almost all of the data in the files shown in
Figure 2-1 lie between byte values 32 and 126, corresponding to printable characters in
the lower ASCII range. This is characteristic of the RichText format. On the other hand,
the data within the byte value range corresponding to the ASCII English alphanumeric
characters varies widely from file to file, depending upon the contents of the file.

 This suggests that a “correlation strength” between the same byte values in
different files can be measured, and used as part of the fingerprint for the byte frequency
analysis. In other words, if a byte value always occurs with a regular frequency for a
given file type, then this is an important feature of the file type, and is useful in
identification.

 A correlation factor can be calculated by comparing each file to the frequency
scores in the fingerprint. The correlation factors can then be combined into an overall
correlation strength score for each byte value of the frequency distribution.

 The correlation factor of each byte value for an input file is calculated by taking
the difference between that byte value’s frequency score from the input file and the
frequency score from the fingerprint. If the difference between the two frequency scores
is very small, then the correlation strength should increase toward 1. If the difference is
large, then the correlation strength should decrease toward 0. Therefore, if a byte value
always occurs with exactly the same frequency, the correlation strength should be 1. If

95

the byte value occurs with widely varying frequencies in the input files, then the
correlation strength should be nearly 0.

 One simple function that would accomplish this is the following linear equation:

xxF −= 1)(

 This function produces the graph shown in Figure 2-6.

 Figure 2-6 - Graph of a linear correlation strength function

Another function that would provide more tolerance for small variations and less
tolerance for larger variations is a bell curve with a peak magnitude of 1 and the peak
located at 0 on the horizontal axis. The general equation of a bell curve is:

 −−

=
2

2)(

2

22
1)(

σ

µ

πσ

x

exF

This gives a curve for which the area under the curve equals 1. To get a curve
with a peak magnitude of 1, the equation reduces to:

 −−

=
2

2)(

2
)(

σ

µx

exF

Since the center of the curve should be located at 0, the equation further reduces
to:

 −

=
2

2

2
)(

σ

x

exF

95

where F(x) is the correlation factor between the new byte difference and the average byte
difference in the fingerprint, and x is the difference between the new byte value
frequency and the average byte value frequency in the fingerprint.

 Figure 2-7 shows the plot of this equation for σ = 0.125. This curve provides a
rapid drop-off to a low correlation factor as the absolute value of x increases.

Figure 2-7 - Bell curve for σ = 0.125.

Tests were run, discussed in Chapters 3 and 4, to compare the linear equation to
the bell curve, as well as to determine the bell curve’s optimal value of σ for the most
accurate file type recognition.

 Once the input file’s correlation factor for each byte value is obtained, these
values need to be combined with the correlation strengths in the fingerprint. This is
accomplished by using the following equation, which directly parallels the method used
to calculate the frequency distribution scores:

()
1

...
+
+×

=
filesofnumberprevious

FactorCorrNewfilesofnumberpreviousStrengthCorrOldStrengthCorrNew

 As with the frequency distribution scores, this results in a simple average, where
the previous correlation strength is weighted by the number of files already loaded into
the fingerprint.

95

Comparing a Single File to a Fingerprint

 When identifying a file using the byte frequency analysis option, the unknown
file’s byte frequency distribution must be compared to the byte frequency scores and the
associated correlation strengths stored in each file type fingerprint.

 First, a score must be generated for each fingerprint identifying how closely the
unknown file matches the frequency distribution in the fingerprint. Another important
step is to generate an “assurance level” for each fingerprint. The assurance level
indicates how much confidence can be placed on the score. This is intended to
differentiate between file types that have characteristic byte frequency distribution and
those that do not.

 The score is generated by comparing each byte value frequency from the
unknown file with the corresponding byte value frequency from the fingerprint. As the
difference between these values decreases, the score should increase toward 1. As the
difference increases, the score should decrease toward 0.

 Both the linear and bell curve equations discussed in Option 1 would satisfy this
requirement. Each was used to generate the score for the byte frequency component of
the fingerprint, and tests were run to identify the optimal equation as described in
Chapters 3 and 4.

The file type’s byte frequency correlation strengths can be used to generate a numeric
rating for the assurance level. This is because a file type with a characteristic byte
frequency distribution will have high correlation strengths for many byte values. On the
other hand, a file type that does not have a characteristic byte frequency distribution will
have much more variety, resulting in very low correlation strengths for most byte values.

The assurance level can be computed by a simple average of the correlation strengths
for each byte value. Figure 2-8 shows the byte frequency distribution for the HTML
fingerprint, with the frequency scores in blue and the correlation strengths in red.
Figure 2-9 shows the byte frequency distribution scores and correlation strengths for the
ZIP fingerprint.

Figure 2-8 - Byte frequency distribution with correlation strength for HTML fingerprint.

95

Figure 2-9 - Byte frequency distribution with correlation strength for ZIP fingerprint.

Using this scheme, the HTML file format would have a high assurance level for
the byte frequency, since many byte values have high correlation strengths, whereas the
ZIP file format would have a low assurance level for the byte frequency, suggesting that
perhaps other options should be used to improve accuracy for this type.

Option 2: Byte Frequency Cross-Correlation

 While Option 1 compares overall byte frequency distributions, other
characteristics of the frequency distributions are not addressed. One example can be seen
in Figure 2-8. There are two equal-sized spikes in the blue frequency scores at byte
values 60 and 62, which correspond to the ASCII characters “<” and “>” respectively.
Since these two characters are used as a matched set to denote HTML tags within the
files, they normally occur with nearly identical frequencies.

 This relationship, or cross-correlation, between byte value frequencies can be
measured and scored as well, strengthening the identification process. This section
describes the methods used to build the byte frequency cross-correlations of individual
files, to combine the ratings from multiple files into a fingerprint representative of the file
type, and to compare an unknown file to a file type fingerprint, obtaining a numeric
score.

Building the Byte Frequency Cross-Correlation

 In order to characterize the relationships between byte value frequencies, a two-
dimensional cross-correlation array is built. Since each byte value can have a value
between 0 and 255, a 256×256 array is used, with indices ranging from 0 to 255 in each
dimension.

 There are two key pieces of information that need to be calculated concerning the
byte frequency cross-correlation analysis. First, the average difference in frequency
between all byte pairs must be calculated. Second, as with the byte frequency analysis
described in Option 1, a correlation strength can be calculated identifying how consistent

95

the frequency difference is across multiple files. Byte value pairs that have very
consistent frequency relationships across files, such as byte values 60 and 62 in HTML
files as mentioned above, will have a high correlation strength score. Byte value pairs
that have little or no relationship will have a low correlation strength score.

 Note that half of the array contains redundant information. If byte value i is being
compared to byte value j, then array entry (i, j) contains the frequency difference between
byte values i and j while array entry (j, i) contains the difference between byte values j
and i. Since these two numbers will simply be negatives of each other, storing both of
them is unnecessary. This frees half of the array to store other information.

 The available space can be used to store the correlation strengths of each byte
value pair. So now if byte value i is being compared to byte value j, then array entry (i, j)
contains the frequency difference between byte values i and j while array entry (j, i)
contains the correlation strength for the byte pair.

 Furthermore, a byte value will always have an average frequency difference of 0
and a correlation strength of 1 with itself, so the main diagonal of the array does not need
to be used. These positions can be used to store any other information that is needed for
the comparisons. The only additional number needed is the total number of files that
have been added into the fingerprint. The first entry of the main diagonal (0, 0) is
therefore used to store the number of files that have been added.

 Using the single array to store the different forms of data saves on memory space,
as well as processing time, since redundant calculations don’t have to be performed. The
final array structure is shown in Figure 2-10.

95

i

j

 0 1 2 3 4 5 6 … 255
0 Number

of files

1
2
3
4
5
6

…
255

Figure 2-10 - Byte cross-correlation array structure

 Calculating the difference between the frequencies of two bytes with values i and
j involves simply subtracting the frequency score of byte value i from the frequency of
byte value j. Since byte value frequencies were normalized, with a range of 0 to 1, this
results in a number with a possible range of –1 to 1. A score of –1 indicates that the
frequency of byte value i was much greater than the frequency of byte value j. A score of
1 indicates that the frequency of byte value i was much less than the frequency of byte
value j. A score of 0 indicates that there was no difference between the frequencies of the
two byte values.

Combining Cross-Correlations into a Fingerprint

Once the frequency differences between all byte-value pairs for an input file have
been calculated, they can be added into a fingerprint. To accomplish this, the fingerprint
is loaded, and the frequency differences for each byte value pair in the new file’s array
are combined with the corresponding element of the fingerprint’s array using the
following equation:

()
1

.
+
+×

=
filesofnumberprevious

differencefreqNewfilesofnumberpreviousdifferenceFPOlddifferenceFPNew

 This is the same equation that was used to combine frequency distributions in
Option 1, and it results in a simple average, where the previous byte value frequency
difference is weighted by the number of files already loaded into the fingerprint.

 A correlation factor can be calculated for each byte value pair, by comparing the
frequency differences in the input file to the frequency differences in the fingerprint. The

Correlation
Strength

Average
Frequency
Difference

95

correlation factors can then be combined with the scores already in the fingerprint to form
an updated correlation strength score for each byte value pair.

 If no files have previously been added into a fingerprint, then the correlation
factor for each byte value pair is set to 1. This makes sense, because correlation strength
is, in essence, a measure of the consistency between files of the same type. If only one
file exists in the fingerprint, there is no variation at all, and all byte value pairs show
100% consistency. Of course, with only one file, this is a trivial fingerprint that is not an
adequate representation of the file type as a whole. As additional files are added, the
correlation strengths are then revised to more accurately reflect the file type.

 If at least one file has been previously added into a fingerprint, then the
correlation factor for each byte value pair is calculated by subtracting the pair’s
frequency difference from the new file and the same pair’s average frequency difference
from the fingerprint. This results in a new overall difference between the new file and
the fingerprint. If this overall difference is very small, then the correlation strength
should increase toward 1. If the difference is large, then the correlation strength should
decrease toward 0.

 These are the same conditions that were present in the calculations for Option 1,
and the same two equations can be used to generate the new correlation strengths.
Namely, the following simple linear equation can be used:

xxF −= 1)(

where F(x) is the correlation factor of the byte value pair and |x| is the absolute value of
the frequency difference. (See Figure 2-6 for the graph of this function.) Alternatively,
the following bell-curve equation can be used to provide a more rapid drop-off:

 −

=
2

2

2
)(

σ

x

exF

where F(x) is the correlation factor of the byte value pair. (See Figure 2-7 for the graph
of this function for σ = 0.125.) Chapters 3 and 4 describe tests that were run comparing
the linear and bell curve methods, as well as testing for the optimal value of σ in the bell
curve equation.

 Once the input file’s correlation factor for each byte value pair is obtained, these
values need to be added into the correlation strengths in the fingerprint. This is
accomplished by using the same equation that was used to calculate new correlation
strengths from Option 1:

()
1

...
+
+×

=
filesofnumberprevious

FactorCorrNewfilesofnumberpreviousStrengthCorrOldStrengthCorrNew

95

 As with the correlation strengths from Option 1, this results in a simple average,
where the previous correlation strength is weighted by the number of files already loaded
into the fingerprint.

 After the average frequency differences and correlation strengths for each byte
value pair of the new input file have been updated in the fingerprint, the Number of Files
field is incremented by 1 to indicate the addition of the new file.

 It is interesting to compare the frequency distribution graphs from Option 1 to the
byte frequency cross-correlation plots generated from Option 2. Figure 2-8 shows the
frequency distribution for the HTML file format, and Figure 2-11 shows a graphical plot
of the HTML fingerprint cross-correlation array. Note that there are ranges of byte
values in the frequency distribution that never occurred in any files (they appear with 0
frequency.) These regions appear in the cross-correlation plot as white regions of 0
frequency difference, and dark green regions with a correlation strength of 1.
Furthermore, the intersection of 60 on the vertical axis with 62 on the horizontal axis
(corresponding to the ASCII values for the “<” and “>” characters as mentioned above)
shows a dark green dot representing a correlation strength of 1, as expected.

Figure 2-11 - Byte frequency cross-correlation plot for the HTML file type

95

 Similarly, Figure 2-2 shows the frequency distributions of two GIF files, and
Figure 2-12 shows a graphical plot of the GIF fingerprint cross-correlation array. The
sawtooth pattern shown in the frequency distributions are a characteristic feature of the
GIF file type, and it manifests in the cross-correlation plot as a subtle grid pattern in the
frequency difference region. It is also clear that the regions of high and low correlation
strength are much more evenly distributed in the GIF file type than the HTML file type.

Figure 2-12 - Byte frequency cross-correlation plot for the GIF file type.

Comparing a Single File to a Fingerprint

 When identifying a file using the byte frequency cross-correlation option, the
unknown file’s cross-correlation array must be generated and compared to the cross-
correlation scores and correlation strengths stored in each file type fingerprint.

 As with Option 1, a score is generated for each fingerprint identifying how closely
the unknown file matches the fingerprint. An assurance level is also generated to indicate
how much confidence can be placed on the score. File types that have characteristic
cross-correlation patterns should have high assurance levels, while those that do not have
characteristic cross-correlation patterns should have low assurance levels.

95

 The score is generated by comparing the frequency difference for each byte value
pair from the unknown file with the average frequency difference for the corresponding
byte value pair from the fingerprint. As the difference between these values decreases,
the score should increase toward 1. As the difference increases, the score should
decrease toward 0.

 Both the linear and bell curve equations discussed in Option 1 would satisfy this
requirement. Each was used to generate the score for the byte frequency component of
the fingerprint, and tests were run to identify the optimal equation. These tests are
described in Chapters 3, and their results are discussed in Chapter 4.

 As with Option 1, the correlation strengths are used to generate a numeric rating
for the assurance level. The assurance level is computed as a simple average of the
correlation strengths of each byte value pair. The higher the assurance level, the more
weight can be placed on the score for that fingerprint.

Option 3: File Header/Trailer Analysis

 Options 1 and 2 make use of byte value frequencies to characterize and identify
file types. While these characteristics can effectively identify many file types, some do
not have easily identifiable patterns. To address this, the file headers and file trailers can
be analyzed and used to strengthen the recognition of many file types. The file headers
and trailers are patterns of bytes that appear in a fixed location at the beginning and end
of a file respectively. These can be used to dramatically increase the recognition ability
on file types that do not have strong byte frequency characteristics.

 This section describes the methods used to build the header and trailer profiles of
individual files, to combine the ratings from multiple files into a fingerprint for the file
type, and to compare an unknown file to a file type fingerprint, obtaining a numeric
score.

Building the Header and Trailer Profiles

 The first step in building header and trailer profiles is to decide how many bytes
from the beginning and end of the file will be analyzed. If H is the number of file header
bytes to analyze, and T is the number of trailer bytes to analyze, then two two-
dimensional arrays are built, one of dimensions H × 256, the other of dimensions T ×
256. Figure 2-13 shows the structure of the array used for analysis of the file header. For
each byte position in the file header, all 256 byte values can be independently scored
based upon the frequency with which the byte value occurs at the corresponding byte
position.

95

B
yt

e
Po

si
tio

n

Byte Value

 0 1 2 3 4 5 6 … 255
0
1
2
3
4
5
6
…

H - 1
Figure 2-13 - Array structure used for header analysis

The array structure used for analysis of the file trailer would have the same basic
structure. The only difference is that the byte position dimension would range from 0 to
T – 1 rather than H – 1.

An individual file’s header array is filled by looping through each byte in the
header, from byte 0 (the first byte in the file) to byte H – 1. For each byte position, the
array entry corresponding to the value of the byte is filled with a correlation strength of 1.
All other byte value entries in that row are set to 0. After the entire array is filled, each
byte position row is filled with a single 1 corresponding to the byte value at that byte
position.

The only exception occurs when an input file is shorter than the header or trailer
lengths. In this case, the fields in the missing byte position rows will be filled with the
value -1 to signify no data. (Note that if a file length is greater than the header and trailer
lengths, but less then the sum of the two lengths, then the header and trailer regions will
overlap.)

The file trailer array is similarly filled by looping through the last T bytes of the
file. Again, for each byte position the array entry corresponding to the value of the byte
is filled with a value of 1. All other byte value entries in that row are set to 0.

Combining Header and Trailer Profiles into a Fingerprint

The two dimensional array is an extremely inefficient way to store the data for a
single file, but it becomes useful when many files are combined into a single fingerprint.
This can be accomplished by simply averaging the correlation strength values from each
file into the fingerprint using the following equation, which is similar to the ones used for
Options 1 and 2:

()
1+
+×

=
filesofnumberprevious

entryarrayNewfilesofnumberpreviousentryarrayFPOldentryarrayFPNew

Correlation
Strength

95

 This provides a simple average, where the previous fingerprint correlation
strength is weighted by the number of files already loaded into the fingerprint. A sample
graphical plot of the file header array is shown in Figure 2-14 for the GIF file type.

Figure 2-14 - File header plot for the GIF file fingerprint

 The first few bytes of the GIF header show high correlation strengths (represented
by dark blue marks,) indicating that this type has a strongly characteristic file header.
The specification for the GIF format states that the files shall all begin with the text string
“GIF87a” for an earlier version of the format, or “GIF89a” for a later version.

 Further inspection of Figure 2-14 that byte position 0 has a correlation strength of
1 for byte value 71, which corresponds to the ASCII character “G”. The second byte
position has a correlation strength of 1 for byte value 72, which corresponds to the ASCII
character “I”. This continues through byte values 70 (ASCII “F”) and 56 (ASCII “8”).
At byte position five, though, byte values 55 and 57 both show correlation strengths
roughly balanced. This indicates that these byte values, which correspond to the ASCII
values for “7” and “9” respectively, occurred with almost equal frequency in the input
files. (This further indicates that approximately equal numbers of files of each version of
the GIF format were loaded into the fingerprint.) Finally, byte position six shows a
correlation strength of 1 for byte value 97, corresponding to the ASCII character “a”.

 Beyond byte position six, there is a much broader distribution of byte values,
resulting in lower correlation strengths and lighter marks on the plot.

95

 Figure 2-15 shows a very similar plot of the file trailer for the MPEG file type
fingerprint, where the end of the file is represented by byte position 0 at the bottom of the
plot. This plot shows a broad distribution of byte values (resulting in extremely faint
marks) up until four bytes from the end of the file. These final four bytes show a
characteristic pattern similar to the pattern described above for the GIF file header.

 Note that for file types that do not have a characteristic file header or trailer, the
corresponding plots would appear essentially empty, with many scattered dots with very
low correlation strengths (therefore producing almost white dots.)

Figure 2-15 - File trailer plot for the MPEG file type.

Comparing a Single File to a Fingerprint

 The first step in using file headers and trailers to identify a file is to fill header and
trailer arrays for the unknown file as described above. This will result in an array for
which each byte position row has all fields filled with 0, except for a single field filled
with 1 corresponding to the value of the byte at that position in the file.

 For each byte position in the header and trailer, the byte value of the field set to 1
is extracted. The following equation is then used to generate the score for the file header
or trailer:

95

n

nn

GGG
GCGCGC

S
+++
+++

=

21

2211

where C is the correlation strength for the byte value extracted from the input file for
each byte position, and G is the correlation strength of the byte value in the fingerprint
array with the highest correlation strength for the corresponding byte position.

 This equation produces an average of the correlation strengths of each byte value
from the input file, weighted by the greatest correlation strength at each byte position.
The result of this is to place greatest weight on those byte positions with a strong
correlation, indicating that they are part of a characteristic file header or trailer, and to
place much less weight (ideally no weight) on values where the file type does not have
consistent values.

 The GIF file header plot in Figure 2-14 provides a clear example. The first four
byte positions each have a correlation strength of 1 for a single byte. This indicates that
all input files of the GIF file type had the same byte values for these positions. If an
unknown file has different bytes in these positions, it is a very strong indicator that it is
not a GIF file. On the other hand, if the unknown file has a differing byte value at
position 20, which shows a very low correlation strength, this offers no real information
about whether the unknown file is a GIF file or not since there are no bytes in this
position with a high correlation strength.

 The assurance level for the file header and file trailer is simply set equal to the
overall maximum correlation strength in the header and trailer arrays, respectively. This
is different from the approach used in Options 1 and 2, where the average of all
correlation strengths was used.

Setting the assurance level equal to the maximum correlation strength allows even
a few bytes with very high correlation strength, such as those in the GIF file format to
provide a strong indication of file type. Therefore even a few bytes can produce a strong
influence in recognition. On the other hand, if a file type has no consistent file header or
trailer, the maximum correlation strength will be very low. This means little weight will
be placed on the header or trailer with the low assurance level.

Combining Scores from Multiple Options

If more than one option is used, then the option scores must be combined into a
single overall rating for each fingerprint. The fingerprint with the highest overall rating
is then selected as the most likely match of the file type.

The following equation is used to combine the scores from each option:

trailerheadercorrfreq

trailertrailerheaderheadercorrcorrfreqfreq

AAAA
ASASASAS

O
+++

+++
=

95

where O is the overall fingerprint score, S is the score for each comparison mode, and A
is the assurance level of each assurance mode.

 This produces an average of each score, weighted by the score’s assurance level.
Therefore, if a file type has a strongly characteristic frequency distribution and cross-
correlation, but no characteristic file header or trailer, the frequency distribution and
cross-correlation will be counted toward the overall score far more than the header and
trailer data. This allows each fingerprint to produce a combination of byte frequency
distribution, byte frequency cross-correlation, file header profile, and file trailer profile
that is customized to provide the optimal recognition for its specific file type.

95

CHAPTER 3: TESTING

 The following sections describe the tests that were run to identify optimal values
for equation constants, as well as quantifying the accuracy of the algorithm across a range
of file types.

Test 1 – Beta Sweep

 The goal of the β sweep test is to determine the optimal value of the constant β in
the following equation, used in the Option 1, byte frequency analysis:

= β
1

xy

 The optimal value of β is defined as the value that produces the greatest
difference between the fingerprint with the highest frequency score and the fingerprint
with the second-highest frequency score.

 Different values of β between 0.5 and 2.5 in increments of 0.5 are used to find
the optimum β. For each value of β, a set of fingerprint files are generated for 15
representative file types using a constant library of 20 input files for each file type. (See
APPENDIX B for a list of the file types used.) A test file is then chosen at random from
a different set of files, and an identification report is run for the test file against the
collection of fingerprints generated for each value of β. (See

 102

APPENDIX F for an example of an identification report.) Since the equation is a
mathematical function that affects each frequency calculation in a uniform manner,
regardless of file type, the test file should adequately represent the effects of the various
values of β in general.

For the test file, a grid is filled with the frequency score for each fingerprint for
each value of β. The difference between the highest and second-highest scoring
fingerprints are then calculated and plotted for each sample file. The peak value is
identified as the optimal value of β.

Test 2 – Sigma Sweep

 The goal of this test is to determine the optimal value of the constant σ in the
following equation, used in the Option 2, byte frequency cross-correlation analysis:

 −

=
2

2

2
)(

σ

x

exF

Similar to the β sweep test, the optimal value of σ is defined as the value that
produces the greatest difference between the fingerprint with the highest cross-correlation
score and the second-highest cross-correlation score.

The value of σ is varied exponentially between 0.0015625 and 0.8, doubling the
value at each increment. For each value, a set of fingerprint files is generated for the
same 15 representative file types used in the β sweep test, using the same constant library
of 20 input files for each type. (See APPENDIX B for a list of the file types used.) A
test file is then chosen at random, and an identification report is run against the collection
of fingerprints generated for each value of σ. As with the β sweep, the equation tested is
a mathematical function that affects each calculation in a uniform manner, regardless of
file type, so the test file should adequately represent the effects of the various values of σ
in general.

For the test file, a grid is filled with the cross-correlation score for each
fingerprint for each value of σ . The difference between the highest and second-highest
scoring fingerprints is then calculated and plotted for each sample file.

Because such a broad range of values is covered by the exponential variance of σ,
it does not provide adequate resolution around each data point. To address this, a smaller
linear range of σ values is selected that brackets the peak value identified in the first test.
The sweep test is then rerun using the new smaller linear range of σ in place of the initial
exponential range.

 103

The difference results from the second running of the test provides higher
resolution that will more accurately identify the optimal value of σ .

Test 3 – Linear Correlation vs. Bell

 The goal of this test is to compare the results of the bell curve equation tested in
the σ sweep test above with the results obtained by using the following linear equation
instead:

xxF −= 1)(

 To accomplish this comparison, all bell curve equations are replaced with this
linear equation, and a set of fingerprint files are generated using the same file types and
input file that were used in the σ sweep test. (See APPENDIX B for a list of the file
types used.) An identification report is then run against the same test file used in the σ
sweep test.

 The difference between the highest and second-highest scoring fingerprints is then
calculated and compared to the results of the σ sweep test to determine which method
offers the strongest recognition.

Test 4 – Header Length Sweep

 The goal of this test is to find an optimal value of header length. Unlike the
preceding three tests, the header length is not likely to affect all files or file types in the
same manner. This is because some file types have very short file headers, while others
have longer file header and some have no file headers at all. Each file type behaves
differently in the analysis as the number of header bytes changes. Because of this, a
much more comprehensive set of data needs to be developed and analyzed than was
necessary for the preceding three tests.

 The same 15 representative file types as the previous tests are used to perform the
header length sweep test. (See APPENDIX B for a list of the file types used.) For each
file type, four test files are selected at random, resulting in a library of 60 test files,
equally representing each file type.

The value of the header length variable is varied from 5 to 50 in steps of 5. For
each header length, a set of fingerprints is generated using the same library of 20 input
files per file type used in each of the previous tests. Then, for each header length, an
identification report is generated for each of the 60 test files.

 104

This test results in a tremendous number of data points that must be analyzed to
determine if there is an overall optimal header length. First, the results are broken out by
file type. For the first file type, a table is generated for each header length. Each table is
filled with the header scores generated by each fingerprint for each of the four input files
of the file type. In each table, the scores from each file are averaged together into a
single score for each fingerprint.

Next, another table is built that stores the average header score for each
fingerprint for each header length. Finally, for each header length, the difference is
calculated between the highest fingerprint header score and the second-highest fingerprint
header score. These differences are plotted, and the header length that shows the highest
difference (highest differentiation between file types) is selected as the optimal length for
that file type.

This set of tables are generated for each of the 15 file types tested. Finally, the
difference values from each file type are combined into a single table. The average of all
file types are calculated, showing the overall optimal header length.

Test 5 – Trailer Length Sweep

 The goal of this test is to find an optimal value of trailer length. As with file
headers, trailer length is not likely to affect all files or file types in the same manner,
because some file types have long trailers while others have short trailers or no trailer at
all. Therefore, each file type is likely to behave differently in the analysis as the number
of trailer bytes changes.

 Because of this, essentially the same set of tests are run for file trailers as was run
for the file headers. The same 15 representative file types are used to perform the trailer
length sweep test. (See APPENDIX B for a list of the file types used.) The same set of
60 test files are used, representing four files of each file type.

 The value of the trailer length variable is varied from 5 to 50 in steps of 5. For
each trailer length, a set of fingerprints is generated using the same library of 20 input
files per file type used in each of the previous tests. Then, for each trailer length, an
identification report is generated for each of the 60 test files.

 As with the header length test, the resulting data is initially separated by file type.
For each file type, a table is generated for each trailer length. Each table is filled with the
trailer scores generated by each fingerprint for each of the four input files of the file type.
In each table, the scores from each file are averaged together into a single score for each
fingerprint.

 Another table is built that stores the average trailer score for each fingerprint for
each header length. Finally, for each trailer length, the difference is calculated between
the highest fingerprint trailer score and the second-highest fingerprint trailer score. These
differences are plotted, and the trailer length that shows the highest difference is selected
as the optimal for that file type.

 105

 This set of tables is generated for each of the 15 file types tested. Finally, the
difference values from each file type is combined into a single table and the average of all
file types are calculated, showing the overall optimal trailer length.

Test 6 – Accuracy Test (All Options)

 The goal of this test is to quantify what percentage of unknown input files are
correctly identified with all Options enabled.

 Twenty-five file type fingerprints are be used for this test. (See APPENDIX C for
a list of file types.) Four test files are selected for each file type and are combined into a
single test directory, resulting in a total library of 100 files.

 An identification report is generated for each of the 100 files, with all three
Options enabled. The identified type for each file is recorded and compared to the actual
type of the file. A percentage is calculated, representing the percentage of input files that
are correctly identified.

Test 7 – Accuracy Test (Option 1)

 The goal of this test is to quantify what percentage of unknown input files are
correctly identified when only Option 1 is enabled.

 Twenty-five file type fingerprints are used for this test. (See APPENDIX C for a
list of file types.) Four test files are selected for each file type and are combined into a
single test directory, resulting in a total library of 100 files.

 An identification report is generated for each of the 100 files, with only Option 1
enabled. The identified type for each file is recorded and compared to the actual type of
the file. A percentage is calculated, representing the percentage of input files that are
correctly identified.

Test 8 – Accuracy Test (Option 2)

 The goal of this test is to quantify what percentage of unknown input files are
correctly identified when only Option 2 is enabled.

 Twenty-five file type fingerprints are used for this test. (See APPENDIX C for a
list of file types.) Four test files are selected for each file type and are combined into a
single test directory, resulting in a total library of 100 files.

 106

 An identification report is generated for each of the 100 files, with only Option 2
enabled. The identified type for each file is recorded and compared to the actual type of
the file. A percentage is calculated, representing the percentage of input files that are
correctly identified.

Test 9 – Accuracy Test (Option 3)

 The goal of this test is to quantify what percentage of unknown input files are
correctly identified when only Option 3 is enabled.

 Twenty-five file type fingerprints are used for this test. (See APPENDIX C for a
list of file types.) Four test files are selected for each file type and are combined into a
single test directory, resulting in a total library of 100 files.

 An identification report is generated for each of the 100 files, with only Option 3
enabled. The identified type for each file is recorded and compared to the actual type of
the file. A percentage is calculated, representing the percentage of input files that are
correctly identified.

Test 10 – Extended Accuracy Test (All Options)

 The accuracy tests performed in Tests 6 through 9 tested the accuracy of the
algorithm in identifying well-known file formats. In addition to the common file formats,
there are many formats created by developers to interface only with one or a small
number of programs.

 For this test, five additional file types are added to those used in Tests 6 through
9. Each of the new file formats are proprietary types created for specific applications.
(See APPENDIX D for a list of file types used for this test.)

 The primary goal of this test is to quantify what percentage of unknown input files
are correctly identified with all Options enabled when the proprietary file formats are
added to the common formats. A secondary goal is to observe the effect of adding
additional fingerprints on accuracy.

 A total of thirty file type fingerprints are used for this test. Four test files are
selected for each file type and are combined into a single test directory, resulting in a
total library of 120 files.

 An identification report is generated for each of the 120 files, with all Options
enabled. The identified type for each file is recorded and compared to the actual type of
the file. A percentage is calculated, representing the percentage of input files that are
correctly identified.

 107

Test 11 – Extended Accuracy Test (Option 1)

 The goal of this test is to quantify what percentage of unknown input files are
correctly identified when proprietary file formats are added, and only Option 1 is
enabled.

 Thirty file type fingerprints are used for this test. (See APPENDIX D for a list of
file types.) Four test files are selected for each file type and are combined into a single
test directory, resulting in a total library of 120 files.

 An identification report is generated for each of the 120 files, with only Option 1
enabled. The identified type for each file is recorded and compared to the actual type of
the file. A percentage is calculated, representing the percentage of input files that are
correctly identified.

Test 12 – Extended Accuracy Test (Option 2)

 The goal of this test is to quantify what percentage of unknown input files are
correctly identified when proprietary file formats are added, and only Option 2 is
enabled.

 Thirty file type fingerprints are used for this test. (See APPENDIX D for a list of
file types.) Four test files are selected for each file type and are combined into a single
test directory, resulting in a total library of 120 files.

 An identification report is generated for each of the 120 files, with only Option 2
enabled. The identified type for each file is recorded and compared to the actual type of
the file. A percentage is calculated, representing the percentage of input files that are
correctly identified.

Test 13 – Extended Accuracy Test (Option 3)

 The goal of this test is to quantify what percentage of unknown input files are
correctly identified when proprietary file formats are added, and only Option 3 is
enabled.

 Thirty file type fingerprints are used for this test. (See APPENDIX D for a list of
file types.) Four test files are selected for each file type, and combined into a single test
directory, resulting in a total library of 120 files.

 108

 An identification report is generated for each of the 120 files, with only Option 3
enabled. The identified type for each file is recorded and compared to the actual type of
the file. A percentage is calculated, representing the percentage of input files that are
correctly identified.

 109

This page intentionally left blank.

 110

CHAPTER 4: RESULTS

Test 1 – Beta Sweep

 A Word Perfect document (WPD) was selected at random as the test file used for
this test. The value of β was then varied from 0.5 to 2.5, and the byte frequency scores
were recorded for each fingerprint at each value of β. Figure 4-1 shows the resulting
graph of byte frequency scores per fingerprint for each β.

Figure 4-1 - Frequency scores per fingerprint for varying values of β.

 This graph shows that lower values of β produce higher scores on average,
resulting in more scores clustered closer together in the higher score range. Higher
values of β produce lower scores on average, resulting in more scores clustered closer
together in the lower score range.

Figure 4-2 plots the difference between the scores of the highest and second
highest fingerprints for each value of β. The optimal value of β is defined as the one that
produces the largest difference between these two byte frequency scores.

 111

 Figure 4-2 - Difference between first- and second-rated fingerprints as a function of β.

 It is clear from Figure 4-2 that the largest differentiation between the highest and
second-highest frequency scores occurs at β = 1.5.

Tests 2 and 3– Sigma Sweep and Linear Correlation vs. Bell

 A bitmap (BMP) file was selected at random as the test file used for Test 2. The
value of σ was then exponentially varied from 0.001563 to 0.8, doubling at each step, and
the cross-correlation scores were recorded for each fingerprint at each value of σ. For
Test 3, the bell-curve equation was replaced with the linear equation given in the test
description. An identification report was then generated for the same bitmap file that was
used in Test 2. The results of each test were then combined into a single graph, shown in
Figure 4-3, that shows cross-correlation scores per fingerprint for each value of σ and for
the linear equation.

 Very low values of σ resulted in low cross-correlation scores with little variation
between fingerprints. Conversely, very high values of σ resulted in high cross-correlation
scores, also with little variation between fingerprints. The largest variations in cross-
correlation scores occurred when σ was in the “middle” ranges, between 0.0125 and 0.1.

 The linear equation produced differentiation that was worse than all values of σ
except for σ = 0.8.

 112

 Figure 4-3 – Cross-correlation scores for each fingerprint as a function of σ.

 Because the exponential scale for σ was used to cover such a broad range
of values, the resolution around any one value is rather poor. Therefore, the test was
rerun varying σ between 0.0125 and 0.1 in linear steps of 0.0125. Figure 4-4 graphs the
resulting cross-correlation scores per fingerprint for each σ. Again, the results given by
the linear equation are superimposed for comparison.

Figure 4-4 - Cross-correlation scores for each fingerprint as a function of σ.

 The differences between the highest and second-highest scores were then
calculated for each value of σ. Figure 4-5 shows the plot of these differences as a
function of σ.

 113

 Figure 4-5 - Differences between first- and second-rated fingerprints as a function of σ.

 This graph suggests the value of σ that produces the highest level of
differentiation between the highest and second-highest cross-correlation scores is σ =
0.0375.

Test 4 – Header Length Sweep

 Since header lengths affect the scores of each file type differently, depending
upon the type and length of their file headers, all 60 test files were included in the header
length sweep test (4 test files for each of the 15 file types.) The header length was varied
from 5 to 50 in linear steps of 5, and recognition reports were generated for each value.

 First, a set of tables was generated for each file type for each header length.
Figure 4-6 shows a sample table for the MP3 file format and header length 5.

File Type: MP3
Header Length: 5

Effective
Score 1

Effective
Score 2

Effective
Score 3

Effective
Score 4

Average
Effective Score

BMP 0.2763513 0.2763513 0.2783783 0.2783783 0.2773648
XLS 0.01583333 0.01583333 0.01583333 0.01583333 0.01583333
EXE 0.173913 0.3147826 0.173913 0.173913 0.2091304
GIF 0 0 0 0 0

HTML 0 0 0 0 0
JPG 0.1666667 0.3333333 0.1666667 0.1666667 0.20833335
MP3 0.7247059 0.5535294 0.7511764 0.7511764 0.695147025

 114

MPEG 0.1489691 0.1489691 0.1489691 0.1489691 0.1489691
PDF 0 0 0 0 0
PPT 0 0 0 0 0
RTF 0 0 0 0 0
TXT 0.003353658 0 0.003353658 0.003353658 0.002515244
DOC 0 0 0 0 0
WPD 0 0.217057 0 0 0.05426425
ZIP 0.1583333 0.1583333 0.1583333 0.1583333 0.1583333

Figure 4-6 - Table of file header effective scores for the four MP3 test files.

 The header effective scores were listed for each of the four test files per file type.
These effective scores were then averaged together into a single effective score per file
type for the given header length.

 A similar table was built for each header length. Another table was then built out
of the average effective scores per fingerprint for each header length. Figure 4-7 shows a
graph of the table produced for the MP3 file header.

 Figure 4-7 - Average header scores per file type for each header length

 This graph shows a sharp spike in scores for the MP3 file format, which
indicates a strongly characteristic file header. As was done in previous tests, the
difference in scores between the highest and second-highest ranked file type can be
plotted for each header length to determine the header length that provides the optimal
differentiation between file types. Figure 4-8 shows this graph for the MP3 file format.

 115

Figure 4-8 - Differences between the highest and second-highest header scores as a function of
header length.

 This graph suggests that the best differentiation occurs at a header length of 5
bytes. As the header length increases, the difference between the highest and second-
highest ranked file types generally decreases. This suggests that the key portions of the
MP3 file header occur within 5 to 10 bytes into the file. As the header length increases
beyond five, the chances of random bytes matching the fingerprint increase. The more
random matches there are, the less differentiation there is between file types. Therefore,
as more bytes are analyzed in the MP3 file beyond those belonging to the file header, the
performance of the Option 3 file header algorithm will decrease.

 Figure 4-9 shows the average difference scores for each file type as a function of
header length. A few of the file types, such as JPG and RTF, increase from a header
length of 5 to a header length of 10. This indicates that these file types have
characteristic file header byte patterns longer than five bytes, and less than 15 bytes.
Despite the variations, though, most show the same overall trend. As the header length
increases, the differentiation between file types decreases.

 116

Figure 4-9 - Header score difference between the highest and second-highest file types as a
function of header length.

 The optimal header length is the value that results in the highest average level of
differentiation across all file types. Figure 4-10 shows a graph of header score
differences, averaged across all file types, as a function of header length.

Figure 4-10 - Average header score differences as a function of header length.

 117

 Figure 4-10 confirms that of the lengths tested, a header length of 5 offers the best
file recognition performance.

Test 5 – Trailer Length Sweep

 As with header lengths, trailer lengths affect the scores of each file type
differently, depending upon the type and length of their file headers. Therefore, all 60
test files were included in the trailer length sweep test. The trailer length was varied from
5 to 50 in linear steps of 5, and recognition reports were generated for each value.

 A set of tables of the same format as Figure 4-6 was generated for each file type
for each trailer length. In each table, the trailer effective scores were listed for each of
the four test files per file type. These effective scores were then averaged together into a
single effective score per file type for the given trailer length.

 Another table was then built out of the average effective scores per fingerprint for
each trailer length. Figure 4-11 shows a graph of the table produced for the MP3 file
trailer.

Figure 4-11 - Average trailer scores per file type for each header length

 This graph shows a spike in scores for the MP3 file format, although it is much
lower than the corresponding spike in Figure 4-7 for the MP3 header. Again, the
difference in scores between the highest and second-highest ranked file type can be
plotted for each trailer length to determine the trailer length that provides the optimal
differentiation between file types. Figure 4-12 shows this graph for the MP3 file format.

 118

Figure 4-12 - Differences between the highest and second-highest trailer scores as a function of
header length.

 This graph initially follows a pattern similar to that shown in Figure 4-8. The
differentiation decreases as the trailer length increases. At a trailer length of 35,
however, the differentiation begins to climb again. This indicates that for the MP3 file
type, there is some data around 35 bytes from the end of the file that is characteristic of
the MP3 file type. Even with these bytes, though, the score differences are still
considerably below the difference offered by a trailer length of five bytes.

 Figure 4-13 shows the average difference scores for each file type as a function of
trailer length. File types with a strongly characteristic file trailer, such as JPG and PDF,
follow a pattern very similar to the pattern observed in the file headers, for the same
reasons. As the trailer length increases beyond the size of the actual file trailer, the
chances of random bytes matching the fingerprint increases. The more random matches
there are, the less differentiation there is between file types.

 119

Figure 4-13 - Trailer score difference between the highest and second-highest file types as a
function of trailer length.

 File types that do not have a strongly characteristic file trailer, such as HTML and
BMP, show consistently low scores across the range of trailer lengths.

As with header length, the optimal trailer length is the value that results in the
highest average level of differentiation across all file types. Figure 4-14 shows a graph of
trailer score differences, averaged across all file types, as a function of trailer length.

Figure 4-14 - Average trailer score differences as a function of trailer length.

 120

 Figure 4-14 confirms that of the lengths tested, a trailer length of 5 offers the best
file recognition performance.

Test 6 – Accuracy Test (All Options)

 Ten additional file types were added for the accuracy tests. See APPENDIX C
for a list of file types included in this set of tests. A library of 100 test files was
generated, representing four files of each file type. Recognition reports were then
generated for each of the 100 files. Figure 4-15 shows the reported file type for each file.

 File 1 File 2 File 3 File 4 Score
AVI AVI WAV AVI AVI 3
BMP BMP BMP BMP BMP 4
DOC DOC DOC DOC DOC 4
EXE EXE EXE EXE EXE 4
FNT FNT FNT FNT RPM 3
GIF GIF GIF GIF GIF 4
GZ GZ GZ GZ GZ 4
HTML HTML HTML HTML HTML 4
JPG JPG JPG JPG JPG 4
MOV MOV MOV MOV MOV 4
MP3 RM MP3 MP3 MP3 3
MPEG MPEG MPEG MPEG MPEG 4
PDF PDF PDF PDF PDF 4
PPT DOC DOC DOC DOC 0
PS PS PS PS PS 4
RTF RTF RTF RTF RTF 4
RM RM RM RM RM 4
RPM RPM RPM RPM RPM 4
TAR TAR TAR TAR TAR 4
TXT TXT TXT TXT TXT 4
TTF TTF TTF TTF TTF 4
WAV WAV WAV WAV AVI 3
WPD WPD WPD WPD WPD 4
XLS DOC PPT DOC DOC 0
ZIP ZIP ZIP ZIP ZIP 4
 TOTAL CORRECT: 88
 TOTAL FILES: 100
 Accuracy: 88.00%

 Figure 4-15 - Identified type of each test file. The actual type is shown down the left column.

 121

 It correctly identified all of the files for 19 of the 25 file types. It identified 75%
of the files correctly for four file types. Performance was very poor for two file types
however, Microsoft PowerPoint presentations (PPT) and Microsoft Excel spreadsheets
(XLS). It confused these file types with each other, and with Microsoft Word documents
(DOC). Overall, the algorithm was 88 percent accurate in this test, correctly identifying
88 of the 100 input files.

It is interesting that it had difficulty distinguishing between the DOC, PPT, and
XLS file types, since they are all part of the Microsoft Office suite, and the programs are
designed to interoperate with each other. A comparison of the fingerprints for each of
these three formats (see APPENDIX E) reveals strong similarities. The byte frequency
distributions and byte frequency cross-correlation plots are similar between the three
formats, and the header and trailer plots are identical.

A closer analysis of the files reveals a likely cause for their similarities. All three
of the Microsoft Office formats are stored in an OLE compound document wrapper.7,8
Since only five bytes of the file header and trailer are analyzed, all three of these file
formats would appear identical to the Option 3 tests. Since the OLE compound
document wrapper has a very characteristic file header,

To test this theory, a new OLE DOC fingerprint was generated from the 60 input
files originally used to generate the three separate fingerprints (20 of each file type.) The
accuracy test was then rerun using the new single OLE DOC fingerprint instead of the
separate DOC, PPT, and XLS fingerprints. Figure 4-16 shows the results of this test.

Using the single OLE DOC file type fingerprint, all DOC, PPT, and XLS files
were correctly identified, increasing the overall accuracy to 96 percent. This shows that
all three file types can be accurately identified by a single fingerprint.

7 Ken Kyler, Understanding OLE Documents, Delphi Developer’s Journal, September 1998, available
online from: http://www.kyler.com/pubs/ddj9894.html
8 The Binary Structure of OLE Compound Documents, available online from: http://user.cs.tu-
berlin.de/~schwartz/pmh/guide.html

http://www.kyler.com/pubs/ddj9894.html
http://user.cs.tu-berlin.de/%7Eschwartz/pmh/guide.html
http://user.cs.tu-berlin.de/%7Eschwartz/pmh/guide.html

 122

 File 1 File 2 File 3 File 4 Score
AVI AVI WAV AVI AVI 3
BMP BMP BMP BMP BMP 4
DOC OLE DOC OLE DOC OLE DOC OLE DOC 4
EXE EXE EXE EXE EXE 4
FNT FNT FNT FNT RPM 3
GIF GIF GIF GIF GIF 4
GZ GZ GZ GZ GZ 4
HTML HTML HTML HTML HTML 4
JPG JPG JPG JPG JPG 4
MOV MOV MOV MOV MOV 4
MP3 RM MP3 MP3 MP3 3
MPEG MPEG MPEG MPEG MPEG 4
PDF PDF PDF PDF PDF 4
PPT OLE DOC OLE DOC OLE DOC OLE DOC 4
PS PS PS PS PS 4
RTF RTF RTF RTF RTF 4
RM RM RM RM RM 4
RPM RPM RPM RPM RPM 4
TAR TAR TAR TAR TAR 4
TXT TXT TXT TXT TXT 4
TTF TTF TTF TTF TTF 4
WAV WAV WAV WAV AVI 3
WPD WPD WPD WPD WPD 4
XLS OLE DOC OLE DOC OLE DOC OLE DOC 4
ZIP ZIP ZIP ZIP ZIP 4
 TOTAL CORRECT: 96
 TOTAL FILES: 100
 Accuracy: 96.00%

Figure 4-16 - Identified type of each test file with a single OLE DOC fingerprint. The actual type
is shown down the left column.

Test 7 – Accuracy Test (Option 1)

 The accuracy tests described in Test 6 were rerun after Options 2 and 3 were
turned off, so the recognition only considered the results of Option 1, the byte frequency
analysis. Recognition reports were then generated for each of the 100 test files used in
Test 6. Figure 4-17 shows the results of this test with separate fingerprints for DOC,
PPT, and XLS files.

 123

 File 1 File 2 File 3 File 4 Score
AVI RTF PDF RM TXT 0
BMP FNT XLS RTF TXT 0
DOC RTF DOC DOC RTF 2
EXE PDF DOC DOC XLS 0
FNT RTF TXT TXT GIF 0
GIF RM RM ZIP RM 0
GZ RM ZIP TAR MP3 0
HTML TXT TXT TXT RTF 0
JPG MP3 MP3 GZ JPG 1
MOV MOV RM RM RM 1
MP3 MP3 MP3 GZ MP3 3
MPEG PDF TAR MP3 PDF 0
PDF PPT TXT PDF PDF 2
PPT DOC DOC DOC RTF 0
PS RTF TXT TXT TXT 0
RTF RTF RTF RTF RTF 4
RM PDF MPEG RM RM 2
RPM GZ GZ PDF GZ 0
TAR TXT TXT ZIP PDF 0
TXT TXT TXT TXT TXT 4
TTF XLS DOC TTF TTF 2
WAV FNT TXT TXT TXT 0
WPD WPD TXT TXT WPD 2
XLS DOC FNT DOC XLS 1
ZIP ZIP ZIP GIF GIF 2
 TOTAL CORRECT: 26
 TOTAL FILES: 100
 Accuracy: 26.00%

Figure 4-17 - Identified type of each test file with only Option 1 enabled and separate fingerprints
for DOC, PPT, and XLS. The actual type is shown down the left column.

 The accuracy of Option 1 alone is only 26 percent. This is better than purely
random guesses, which would provide an accuracy of 4 percent, but not accurate enough
for practical use.

 While there were errors across many file types, there was some confusion
between the DOC, PPT, and XLS file types as there was in Test 7. Again, the three
separate fingerprints were replaced with a single OLE DOC fingerprint, and the test was
rerun. Figure 4-18 shows the resulting grid.

 124

 File 1 File 2 File 3 File 4 Score
AVI RTF RM RM TXT 0
BMP FNT WPD RTF TXT 0
DOC RTF WPD RTF RTF 0
EXE AVI WPD WPD FNT 0
FNT RTF TXT TXT GIF 0
GIF RM RM ZIP RM 0
GZ RM ZIP TAR MP3 0
HTML TXT TXT TXT RTF 0
JPG MP3 MP3 GZ JPG 1
MOV MOV RM RM RM 1
MP3 MP3 MP3 GZ MP3 3
MPEG PDF TAR MP3 PDF 0
PDF EXE TXT AVI PDF 1
PPT RTF WPD WPD RTF 0
PS RTF TXT TXT TXT 0
RTF RTF RTF RTF RTF 4
RM AVI MPEG RM RM 2
RPM GZ GZ PDF GZ 0
TAR TXT TXT ZIP PDF 0
TXT TXT TXT TXT TXT 4
TTF TTF WPD TTF TTF 3
WAV FNT TXT TXT TXT 0
WPD WPD TXT TXT WPD 2
XLS TXT FNT TXT WPD 0
ZIP ZIP ZIP GIF GIF 2
 TOTAL CORRECT: 23
 TOTAL FILES: 100
 Accuracy: 23.00%

 Figure 4-18 - Identified type of each test file with only Option 1 enabled and a single OLE DOC
fingerprint. The actual type is shown down the left column.

 With a combined OLE DOC fingerprint, the accuracy for Option 1 actually
decreased to 23 percent. The decrease in accuracy occurred because the OLE DOC
fingerprint was not selected at all, even for the DOC, PPT, and XLS file types. Where
some of these had been correctly identified with the separate fingerprints, none of them
were identified as OLE DOC with the single fingerprint.

 Comparing the fingerprints for the DOC, PPT, and XLS types (see APPENDIX
E) shows that while the Option 3 file headers and trailers are identical between the three
types, there are differences in both Option 1 and Option 2 results. Combining the file
types into a single fingerprint resulted in an Option 1 fingerprint that was an average of

 125

the three types. This average was different enough from the three original types to
prevent accurate detection by using Option 1.

Test 8 – Accuracy Test (Option 2)

 For Test 8, Options 1 and 3 were turned off, so the recognition only considered
the results of Option 2, the byte frequency analysis. Note that the frequency data
produced by Option 1 is required to perform the byte frequency cross-correlations for
Option 2. Therefore the processing of Option 1 must still occur, however the results for
Option 1 were ignored when performing recognition calculations.

Recognition reports were then generated for each of the same 100 test files that
were used in the previous accuracy tests. Figure 4-19 shows the results of this test with
separate fingerprints for DOC, PPT, and XLS files.

 The accuracy of Option 2 alone is 41 percent. This is a significant improvement
over Option 1, but still not accurate enough for practical use.

 There was again some confusion between the DOC, PPT, and XLS file types,
although much less than in previous accuracy tests. Option 2 was able to successfully
identify all DOC files, three out of four PPT files, and two out of four XLS files.

These results were again compared to those produced by combining these three
types into a single OLE DOC fingerprint. Figure 4-20 shows the results of rerunning this
test using the single fingerprint.

 126

 File 1 File 2 File 3 File 4 Score
AVI DOC DOC XLS XLS 0
BMP TTF PPT PPT DOC 0
DOC DOC DOC DOC DOC 4
EXE PPT DOC DOC EXE 1
FNT PPT DOC DOC DOC 0
GIF XLS GIF GIF GIF 3
GZ RPM DOC GZ GZ 2
HTML TXT TXT TXT RTF 0
JPG DOC DOC DOC DOC 0
MOV GIF MOV GIF XLS 1
MP3 DOC MP3 MP3 MP3 3
MPEG MPEG MPEG DOC DOC 2
PDF PDF TXT PDF PDF 3
PPT PPT DOC PPT PPT 3
PS TXT TXT TXT TXT 0
RTF RTF TXT TXT RTF 2
RM RM RM RM PPT 3
RPM RPM RPM DOC RPM 3
TAR TXT TXT RPM XLS 0
TXT TXT TXT TXT TXT 4
TTF DOC DOC TTF TTF 2
WAV TXT TXT TXT TXT 0
WPD WPD DOC WPD WPD 3
XLS XLS XLS PPT DOC 2
ZIP DOC DOC DOC DOC 0
 TOTAL CORRECT: 41
 TOTAL FILES: 100
 Accuracy: 41.00%

Figure 4-19 - Identified type of each test file with only Option 2 enabled and separate fingerprints
for DOC, PPT, and XLS file types. The actual type is shown down the left column.

 As with the Option 1 Only test, performance actually decreased with a single OLE
DOC fingerprint, although for a different reason. Figure 4-20 shows that all DOC, PPT,
and XLS files were correctly identified as OLE DOC files. However, many other file
types were incorrectly identified as OLE DOC, including some that had been correctly
identified when separate fingerprints were used.

 127

 File 1 File 2 File 3 File 4 Score
AVI OLE DOC OLE DOC OLE DOC OLE DOC 0
BMP TTF OLE DOC OLE DOC OLE DOC 0
DOC OLE DOC OLE DOC OLE DOC OLE DOC 4
EXE OLE DOC OLE DOC OLE DOC OLE DOC 0
FNT OLE DOC OLE DOC OLE DOC OLE DOC 0
GIF OLE DOC GIF GIF GIF 3
GZ RPM OLE DOC OLE DOC OLE DOC 0
HTML TXT TXT TXT RTF 0
JPG OLE DOC OLE DOC OLE DOC OLE DOC 0
MOV GIF MOV GIF OLE DOC 1
MP3 OLE DOC MP3 MP3 MP3 3
MPEG MPEG OLE DOC OLE DOC OLE DOC 1
PDF RTF TXT TXT RTF 0
PPT OLE DOC OLE DOC OLE DOC OLE DOC 4
PS TXT TXT TXT TXT 0
RTF RTF TXT TXT RTF 2
RM RM RM RM OLE DOC 3
RPM RPM RPM OLE DOC RPM 3
TAR TXT TXT RPM OLE DOC 0
TXT TXT TXT TXT TXT 4
TTF OLE DOC OLE DOC TTF TTF 2
WAV TXT TXT TXT TXT 0
WPD WPD TXT WPD WPD 3
XLS OLE DOC OLE DOC OLE DOC OLE DOC 4
ZIP OLE DOC OLE DOC OLE DOC OLE DOC 0
 TOTAL CORRECT: 37
 TOTAL FILES: 100
 Accuracy: 37.00%

Figure 4-20 - Identified type of each test file with only Option 2 enabled and a single OLE DOC
fingerprint. The actual type is shown down the left column.

 When the Option 2 results from the three file types were averaged into a single
fingerprint, it produced a new Option 2 graph that was similar enough to each of the three
input types to allow for proper recognition of those types. However, the new average that
was produced was closer to several other file types that the three separate fingerprints had
been. This resulted in the overall decrease in performance.

Test 9 – Accuracy Test (Option 3)

 For Test 9, Options 1 and 2 were turned off, so the recognition only considered
the results of Option 3, the file header and trailer analysis. Recognition reports were
generated for each of the same 100 test files that were used in the previous accuracy tests.

 128

Figure 4-21 shows the results of this test with separate fingerprints for DOC, PPT, and
XLS files.

 File 1 File 2 File 3 File 4 Score
AVI AVI AVI AVI AVI 4
BMP BMP BMP BMP BMP 4
DOC DOC PPT DOC DOC 3
EXE EXE EXE EXE EXE 4
FNT FNT FNT FNT RPM 3
GIF GIF GIF GIF GIF 4
GZ GZ GZ GZ GZ 4
HTML HTML HTML HTML HTML 4
JPG JPG JPG JPG JPG 4
MOV MOV MOV MOV MOV 4
MP3 RM MP3 MP3 MP3 3
MPEG MPEG MPEG MPEG MPEG 4
PDF PDF PDF PDF PDF 4
PPT DOC DOC DOC DOC 0
PS PS PS PS PS 4
RTF RTF RTF RTF RTF 4
RM RM RM RM RM 4
RPM RPM RPM RPM RPM 4
TAR TAR TAR TAR TAR 4
TXT TXT TXT TXT TXT 4
TTF TTF TTF TTF TTF 4
WAV WAV AVI WAV AVI 2
WPD WPD WPD WPD WPD 4
XLS DOC DOC DOC DOC 0
ZIP ZIP ZIP ZIP ZIP 4
 TOTAL CORRECT: 87
 TOTAL FILES: 100
 Accuracy: 87.00%

Figure 4-21 - Identified type of each test file with only Option 3 enabled and separate fingerprints
for DOC, PPT, and XLS file types. The actual type is shown down the left column.

 The accuracy of Option 3 alone is 87 percent. This is another significant
improvement over Option 2, and may be accurate enough for some fault-tolerant
applications.

 Most of the errors occurred between the DOC, PPT, and XLS file types. Figure
4-22 shows the results of rerunning this test using the single OLE DOC fingerprint.

 129

 File 1 File 2 File 3 File 4 Score
AVI AVI AVI AVI AVI 4
BMP BMP BMP BMP BMP 4
DOC OLE DOC OLE DOC OLE DOC OLE DOC 4
EXE EXE EXE EXE EXE 4
FNT FNT FNT FNT RPM 3
GIF GIF GIF GIF GIF 4
GZ GZ GZ GZ GZ 4
HTML HTML HTML HTML HTML 4
JPG JPG JPG JPG JPG 4
MOV MOV MOV MOV MOV 4
MP3 RM MP3 MP3 MP3 3
MPEG MPEG MPEG MPEG MPEG 4
PDF PDF PDF PDF PDF 4
PPT OLE DOC OLE DOC OLE DOC OLE DOC 4
PS PS PS PS PS 4
RTF RTF RTF RTF RTF 4
RM RM RM RM RM 4
RPM RPM RPM RPM RPM 4
TAR TAR TAR TAR TAR 4
TXT TXT TXT TXT TXT 4
TTF TTF TTF TTF TTF 4
WAV WAV AVI WAV AVI 2
WPD WPD WPD WPD WPD 4
XLS OLE DOC OLE DOC OLE DOC OLE DOC 4
ZIP ZIP ZIP ZIP ZIP 4
 TOTAL CORRECT: 96
 TOTAL FILES: 100
 Accuracy: 96.00%

Figure 4-22 - Identified type of each test file with only Option 3 enabled and a single OLE DOC
fingerprint. The actual type is shown down the left column.

 This time, the combined OLE DOC fingerprint resulted in the correct
identification of all three component file types, without affecting the identification of any
other file types. As a result, the accuracy of Option 3 increased to 96 percent with a
single OLE DOC fingerprint.

Test 10 – Extended Accuracy Test (All Options)

 Five additional file types were added for the extended accuracy tests. (See
APPENDIX D.) A library of 120 test files was generated, representing four files of each
file type. Recognition reports were then generated for each of the 120 files. Figure 4-23
shows the reported file type for each file.

 130

 File 1 File 2 File 3 File 4 Score
3TF 3TF 3TF 3TF 3TF 4
ACD ACD ACD ACD ACD 4
AVI AVI AVI WAV AVI 3
BMP BMP BMP BMP BMP 4
CAT CAT CAT CAT CAT 4
CRP CRP CRP CRP CRP 4
DOC ACD DOC DOC ACD 2
EXE EXE EXE EXE EXE 4
FNT RPM FNT FNT FNT 3
GIF GIF GIF GIF GIF 4
GZ GZ GZ GZ GZ 4
HTML HTML HTML HTML HTML 4
JPG JPG JPG JPG JPG 4
MDL MDL CAT MDL MDL 3
MOV MOV MOV MOV MOV 4
MP3 RM MP3 MP3 MP3 3
MPEG MPEG MPEG MPEG MPEG 4
PDF PDF PDF PDF PDF 4
PPT ACD DOC DOC ACD 0
PS PS PS PS PS 4
RTF RTF RTF RTF RTF 4
RM RM RM RM RM 4
RPM RPM RPM RPM RPM 4
TAR TAR TAR TAR TAR 4
TXT TXT TXT TXT TXT 4
TTF TTF TTF TTF TTF 4
WAV AVI WAV WAV WAV 3
WPD WPD WPD WPD WPD 4
XLS DOC ACD PPT ACD 0
ZIP ZIP ZIP ZIP ZIP 4
 TOTAL CORRECT: 105
 TOTAL FILES: 120
 Accuracy: 87.50%

 Figure 4-23 Identified type of each test file with additional types added and all Options.

Again there was poor performance for the DOC, PPT, and XLS file formats.
Rerunning this test with a combined OLE DOC fingerprint produced the results shown in
Figure 4-24.

 131

 File 1 File 2 File 3 File 4 Score
3TF 3TF 3TF 3TF 3TF 4
ACD OLE DOC OLE DOC OLE DOC OLE DOC 4
AVI AVI WAV AVI AVI 3
BMP BMP BMP BMP BMP 4
CAT CAT CAT CAT CAT 4
CRP CRP CRP CRP CRP 4
DOC OLE DOC OLE DOC OLE DOC OLE DOC 4
EXE EXE EXE EXE EXE 4
FNT FNT FNT FNT RPM 3
GIF GIF GIF GIF GIF 4
GZ GZ GZ GZ GZ 4
HTML HTML HTML HTML HTML 4
JPG JPG JPG JPG JPG 4
MDL MDL CAT MDL MDL 3
MOV MOV MOV MOV MOV 4
MP3 RM MP3 MP3 MP3 3
MPEG MPEG MPEG MPEG MPEG 4
PDF PDF PDF PDF PDF 4
PPT OLE DOC OLE DOC OLE DOC OLE DOC 4
PS PS PS PS PS 4
RTF RTF RTF RTF RTF 4
RM RM RM RM RM 4
RPM RPM RPM RPM RPM 4
TAR TAR TAR TAR TAR 4
TXT TXT TXT TXT TXT 4
TTF TTF TTF TTF TTF 4
WAV AVI WAV WAV WAV 3
WPD WPD WPD WPD WPD 4
XLS OLE DOC OLE DOC OLE DOC OLE DOC 4
ZIP ZIP ZIP ZIP ZIP 4
 TOTAL CORRECT: 115
 TOTAL FILES: 120
 Accuracy: 95.83%

 Figure 4-24 Identified type of each test file with additional types added, a combined OLE DOC
fingerprint, and all Options enabled.

 The ACD files were all identified as OLE DOC files. Closer inspection of the
ACD files revealed that they were in fact stored as OLE compound documents. This
identification was therefore correct.
|

 132

Test 11 – Extended Accuracy Test (Option 1)

 The accuracy tests described in Test 10 were rerun after Options 2 and 3 were
turned off, so the recognition only considered the results of Option 1, the byte frequency
analysis. Recognition reports were then generated for each of the 120 test files used in
Test 10. Figure 4-25 shows the results of this test with separate fingerprints for ACD,
DOC, PPT, and XLS files.

 File 1 File 2 File 3 File 4 Score
3TF 3TF 3TF 3TF 3TF 4
ACD 3TF ACD 3TF ACD 2
AVI 3TF RM CRP 3TF 0
BMP 3TF 3TF 3TF FNT 0
CAT CAT CAT CAT CAT 4
CRP CRP CRP CRP CRP 4
DOC 3TF 3TF DOC 3TF 1
EXE XLS DOC DOC CRP 1
FNT GIF 3TF 3TF 3TF 0
GIF RM ZIP RM RM 0
GZ MP3 TAR ZIP CRP 0
HTML RTF TXT CAT CAT 0
JPG JPG GZ MP3 MP3 1
MDL CAT CAT CAT CAT 0
MOV RM CRP RM CRP 0
MP3 MP3 MP3 GZ MP3 3
MPEG CRP MP3 CRP CRP 0
PDF CRP PDF TXT PPT 1
PPT 3TF 3TF DOC 3TF 0
PS TXT TXT TXT CAT 0
RTF RTF RTF CAT RTF 3
RM RM RM CRP CRP 2
RPM CRP GZ GZ GZ 0
TAR CRP ZIP TXT CAT 0
TXT TXT TXT CAT TXT 3
TTF TTF TTF DOC XLS 2
WAV CAT TXT 3TF FNT 0
WPD 3TF 3TF TXT WPD 1
XLS XLS 3TF FNT 3TF 1
ZIP GIF GIF ZIP ZIP 2
 TOTAL CORRECT: 35
 TOTAL FILES: 120
 Accuracy: 29.17%

 Figure 4-25 Identified type of each test file with additional types added and only Option 1.

 133

Rerunning this test with a combined OLE DOC fingerprint produced the results
shown in Figure 4-26.

 File 1 File 2 File 3 File 4 Score
3TF 3TF 3TF 3TF 3TF 4
ACD 3TF 3TF OLE DOC OLE DOC 2
AVI 3TF CRP RM 3TF 0
BMP 3TF 3TF FNT 3TF 0
CAT CAT CAT CAT CAT 4
CRP CRP CRP CRP CRP 4
DOC WPD 3TF 3TF 3TF 0
EXE FNT 3TF 3TF CRP 0
FNT 3TF 3TF 3TF GIF 0
GIF RM ZIP RM RM 0
GZ MP3 TAR ZIP CRP 0
HTML RTF TXT CAT CAT 0
JPG JPG GZ MP3 MP3 1
MDL CAT CAT CAT CAT 0
MOV CRP CRP RM RM 0
MP3 MP3 GZ MP3 MP3 3
MPEG CRP CRP MP3 CRP 0
PDF CRP PDF EXE TXT 1
PPT 3TF 3TF 3TF 3TF 0
PS TXT TXT CAT TXT 0
RTF RTF RTF RTF CAT 3
RM RM CRP RM CRP 2
RPM GZ CRP GZ GZ 0
TAR CRP CAT TXT ZIP 0
TXT TXT CAT TXT TXT 3
TTF TTF TTF TTF WPD 3
WAV CAT TXT FNT 3TF 0
WPD 3TF 3TF WPD TXT 1
XLS WPD FNT 3TF 3TF 0
ZIP GIF ZIP ZIP GIF 2
 TOTAL CORRECT: 33
 TOTAL FILES: 120
 Accuracy: 27.50%

Figure 4-26 Identified type of each test file with additional types added, a combined OLE DOC
fingerprint, and only Option 1 enabled.

 As was the case in Test 7, accuracy decreased with the combined OLE DOC
fingerprint, for the same reason. The combined frequency distribution in the OLE DOC

 134

fingerprint was different enough from the separate file formats to prevent it from being
selected except for two ACD files, even in instances where files had previously been
correctly identified with separate types.

 The accuracies of the results with separate and combined fingerprints are slightly
higher, but comparable to, the accuracies obtained in the initial set of accuracy tests. The
slight increase in accuracy came from the fact that several of the new file formats were
able to be accurately identified by their frequency distributions.

Test 12 – Extended Accuracy Test (Option 2)

 For Test 12, Options 1 and 3 were turned off, so the recognition only considered
the results of Option 2, the byte frequency analysis. As was noted in Test 8, the
frequency data produced by Option 1 is required to perform the byte frequency cross-
correlations for Option 2. Therefore the processing of Option 1 must still occur, however
the results for Option 1 were ignored when performing recognition calculations.

Recognition reports were then generated for each of the same 120 test files that
were used in the previous accuracy tests. Figure 4-27 shows the results of this test with
separate fingerprints for ACD, DOC, PPT, and XLS files.

 The accuracy of Option 2 alone in this test is 44 percent. This is a significant
improvement over Option 1, but still not accurate enough for practical use. It is slightly
higher than the accuracy obtained in the initial accuracy tests, although comparable.

 There was again some confusion between the ACD, DOC, PPT, and XLS file
types, although much less than in previous accuracy tests. Option 2 was able to
successfully identify all DOC files, two out of four PPT files, and one out of four XLS
files.

 135

 File 1 File 2 File 3 File 4 Score
3TF 3TF 3TF 3TF 3TF 4
ACD ACD ACD ACD ACD 4
AVI XLS XLS CAT 3TF 0
BMP 3TF 3TF 3TF TTF 0
CAT CAT CAT CAT CAT 4
CRP CRP CRP CRP CRP 4
DOC DOC DOC DOC DOC 4
EXE EXE DOC DOC ACD 1
FNT 3TF 3TF 3TF 3TF 0
GIF GIF GIF 3TF 3TF 2
GZ 3TF 3TF 3TF 3TF 0
HTML RTF TXT CAT CAT 0
JPG 3TF 3TF 3TF 3TF 0
MDL MDL CAT MDL MDL 3
MOV 3TF GIF 3TF GIF 1
MP3 3TF MP3 MP3 MP3 3
MPEG 3TF 3TF 3TF MPEG 1
PDF PDF PDF TXT PDF 3
PPT 3TF PPT DOC PPT 2
PS TXT TXT TXT CAT 0
RTF RTF TXT TXT RTF 2
RM 3TF RM RM RM 3
RPM DOC RPM RPM RPM 3
TAR XLS RPM 3TF CAT 0
TXT TXT TXT CAT TXT 3
TTF TTF TTF DOC DOC 2
WAV TXT TXT TXT TXT 0
WPD WPD WPD DOC WPD 3
XLS 3TF 3TF ACD XLS 1
ZIP 3TF 3TF 3TF 3TF 0
 TOTAL CORRECT: 53
 TOTAL FILES: 120
 Accuracy: 44.17%

 Figure 4-27 Identified type of each test file with additional types added and only Option 2.

These results were again compared to those produced by combining these three
types into a single OLE DOC fingerprint. Figure 4-28 shows the results of rerunning this
test using the single fingerprint.

 136

 File 1 File 2 File 3 File 4 Score
3TF 3TF 3TF 3TF 3TF 4
ACD OLE DOC OLE DOC OLE DOC OLE DOC 4
AVI OLE DOC CAT OLE DOC 3TF 0
BMP 3TF 3TF TTF 3TF 0
CAT CAT CAT CAT CAT 4
CRP CRP CRP CRP CRP 4
DOC OLE DOC OLE DOC OLE DOC OLE DOC 4
EXE OLE DOC OLE DOC OLE DOC OLE DOC 0
FNT 3TF 3TF 3TF 3TF 0
GIF GIF GIF 3TF 3TF 2
GZ 3TF 3TF 3TF 3TF 0
HTML RTF TXT CAT CAT 0
JPG 3TF 3TF 3TF 3TF 0
MDL MDL CAT MDL MDL 3
MOV GIF GIF 3TF 3TF 0
MP3 3TF MP3 MP3 MP3 3
MPEG 3TF MPEG 3TF OLE DOC 1
PDF PDF PDF PDF TXT 3
PPT OLE DOC OLE DOC OLE DOC OLE DOC 4
PS TXT TXT CAT TXT 0
RTF RTF TXT RTF TXT 2
RM OLE DOC RM RM RM 3
RPM RPM OLE DOC RPM RPM 3
TAR OLE DOC CAT 3TF RPM 0
TXT TXT CAT TXT TXT 3
TTF TTF TTF OLE DOC OLE DOC 2
WAV TXT TXT TXT TXT 0
WPD WPD WPD WPD TXT 3
XLS 3TF OLE DOC OLE DOC OLE DOC 3
ZIP 3TF 3TF 3TF 3TF 0
 TOTAL CORRECT: 55
 TOTAL FILES: 120
 Accuracy: 45.83%

 Figure 4-28 Identified type of each test file with additional types added, a combined OLE DOC
fingerprint, and only Option 2 enabled.

 Unlike Test 8, performance increased with a single OLE DOC fingerprint. Some
files that had been correctly identified with separate fingerprints were incorrectly
identified by the combined fingerprint. However there were enough files that had been
previously misidentified that were correctly identified by the combined fingerprint to
result in an overall increase in performance.

 137

Test 13 – Extended Accuracy Test (Option 3)

 For Test 13, Options 1 and 2 were turned off, so the recognition only considered
the results of Option 3, the file header and trailer analysis. Recognition reports were
generated for each of the same 120 test files that were used in the previous accuracy tests.
Figure 4-29 shows the results of this test with separate fingerprints for ACD, DOC, PPT,
and XLS files.

 The accuracy of Option 3 alone is 85 percent. This is another significant
improvement over Option 2, and may be accurate enough for some fault-tolerant
applications. It is comparable to the results obtained in Test 9, although slightly lower
because of added confusion between DOC and ACD formats.

 138

 File 1 File 2 File 3 File 4 Score
3TF 3TF 3TF 3TF 3TF 4
ACD ACD ACD ACD ACD 4
AVI AVI AVI AVI AVI 4
BMP BMP BMP BMP BMP 4
CAT CAT CAT CAT CAT 4
CRP CRP CRP CRP CRP 4
DOC ACD ACD PPT ACD 0
EXE EXE EXE EXE EXE 4
FNT RPM FNT FNT FNT 3
GIF GIF GIF GIF GIF 4
GZ GZ GZ GZ GZ 4
HTML HTML HTML HTML HTML 4
JPG JPG JPG HTML JPG 3
MDL MDL CAT MDL MDL 3
MOV MOV MOV MOV MOV 4
MP3 RM MP3 MP3 MP3 3
MPEG MPEG MPEG MPEG MPEG 4
PDF PDF PDF PDF PDF 4
PPT ACD ACD ACD ACD 0
PS PS PS PS PS 4
RTF RTF RTF RTF RTF 4
RM RM RM RM RM 4
RPM RPM RPM RPM RPM 4
TAR TAR TAR TAR TAR 4
TXT TXT TXT TXT TXT 4
TTF TTF TTF TTF TTF 4
WAV AVI WAV AVI WAV 2
WPD WPD WPD WPD WPD 4
XLS ACD ACD ACD ACD 0
ZIP ZIP ZIP ZIP ZIP 4
 TOTAL CORRECT: 102
 TOTAL FILES: 120
 Accuracy: 85.00%

 Figure 4-29 Identified type of each test file with additional types added and only Option 3.

 Again, most of the errors occurred between the ACD, DOC, PPT, and XLS file
types. Figure 4-30 shows the results of rerunning this test using a combined fingerprint.

 139

 File 1 File 2 File 3 File 4 Score
3TF 3TF 3TF 3TF 3TF 4
ACD OLE DOC OLE DOC OLE DOC OLE DOC 4
AVI AVI AVI AVI AVI 4
BMP BMP BMP BMP BMP 4
CAT CAT CAT CAT CAT 4
CRP CRP CRP CRP CRP 4
DOC OLE DOC OLE DOC OLE DOC OLE DOC 4
EXE EXE EXE EXE EXE 4
FNT FNT FNT FNT RPM 3
GIF GIF GIF GIF GIF 4
GZ GZ GZ GZ GZ 4
HTML HTML HTML HTML HTML 4
JPG JPG JPG JPG JPG 4
MDL MDL CAT MDL MDL 3
MOV MOV MOV MOV MOV 4
MP3 RM MP3 MP3 MP3 3
MPEG MPEG MPEG MPEG MPEG 4
PDF PDF PDF PDF PDF 4
PPT OLE DOC OLE DOC OLE DOC OLE DOC 4
PS PS PS PS PS 4
RTF RTF RTF RTF RTF 4
RM RM RM RM RM 4
RPM RPM RPM RPM RPM 4
TAR TAR TAR TAR TAR 4
TXT TXT TXT TXT TXT 4
TTF TTF TTF TTF TTF 4
WAV AVI WAV WAV AVI 2
WPD WPD WPD WPD WPD 4
XLS OLE DOC OLE DOC OLE DOC OLE DOC 4
ZIP ZIP ZIP ZIP ZIP 4
 TOTAL CORRECT: 115
 TOTAL FILES: 120
 Accuracy: 95.83%

Figure 4-30 Identified type of each test file with additional types added, a combined OLE DOC
fingerprint, and only Option 3 enabled.

 This time, the combined OLE DOC fingerprint resulted in the correct
identification of all three component file types, without affecting the identification of any
other file types. As a result, the accuracy of Option 3 increased to 95.8 percent with a
single OLE DOC fingerprint. This is almost identical to the 96 percent accuracy shown
in Test 9.

 140

CHAPTER 5: ANALYSIS

Conclusions and Future Work

 Six key design goals were identified for the file type recognition algorithm. Three
of the goals were accuracy, speed, and flexibility. These three factors proved to be
closely related. In addition, speed is directly proportional to the number of fingerprints
that have been created (although it is independent of the size of files that were originally
added into the fingerprint.)

 Flexibility was provided by allowing for three options that could be used
independently or in combinations. The options provided different methods of file
comparison with different accuracies and speed of execution.

 The first option, byte frequency analysis proved to be the fastest. An unknown
file takes an average of 0.010 seconds to compare to 25 fingerprints and identify the
closest match.9 The accuracy of this option was the worst of the three, though, at only
28% for a combined OLD DOC fingerprint, and 29% for separate ACD, DOC, PPT, and
XLS fingerprints. (All accuracies given will be those produced by the extended accuracy
tests, since those tests included the broadest range of file types.)

 By itself, Option 1 would be of very limited use. The calculations performed in
Option 1, though, are used as the basis for the second Option, byte frequency cross-
correlation. Option 2 proved to be by far the slowest, and only moderately more accurate
than the first option. An unknown file takes an average of 1.19 seconds to compare to 25
fingerprints and identify the closest match. Option 2 offers slightly improved accuracy of
46% for a combined OLE DOC fingerprint and 44% for separate ACD, DOC, PPT, and
XLS fingerprints. This accuracy is still too low to be of practical use in most
applications.

Option 3 provides the best combination of speed and accuracy. An unknown file
takes an average of 0.015 seconds to compare to 25 fingerprints and identify the closest
match, which is almost as fast as Option 1. Option 3 had by far the highest accuracy at
96% for a combined OLE DOC fingerprint and 85% for separate ACD, DOC, PPT, and
XLS fingerprints.

All three options together take an average of 1.202 seconds to compare an
unknown file to 25 fingerprints and identify the closest match. The accuracy produced
by all three options was essentially the same as Option 3 alone at 96% for a combined
OLE DOC fingerprint and 88% for separate ACD, DOC, PPT, and XLS fingerprints.

9 All times were taken on an 800 MHz Pentium III laptop with 512 MB RAM.

 141

Since the speed is proportional to the number of filters, it would be useful to
compare the times for each of the options to perform a comparison against a single
fingerprint. These times could then be easily scaled to any number of fingerprints.

Figure 5-1 shows a summary of the times it takes each option to compare an
unknown file to one fingerprint, as well as the accuracies of each option with a combined
OLE DOC fingerprint and with separate DOC, PPT, and XLS fingerprints.

 Time per
Fingerprint
Comparison

Accuracy With
Combined
OLE DOC

Accuracy With
Separate ACD,

DOC, PPT, XLS
Option 1 0.0004 sec. 28 % 29 %
Option 2 0.0476 sec. 46 % 44 %
Option 3 0.0006 sec. 96 % 85 %
All Options 0.0481 sec. 96 % 88 %

Figure 5-1 – Summary of the times it takes each option to compare an unknown file to one
fingerprint and the option’s accuracies for a single OLE DOC fingerprint and for separate DOC,
PPT, and XLS fingerprints

 Another factor related to the speed of the algorithm is the length of time it takes to
build fingerprints from a library of known files. Generating 25 file type fingerprints from
500 files, totaling 233 MB, took 66 seconds. This averages to 2.64 seconds per
fingerprint with 9.32 MB of data in 20 files per fingerprint.

Considering that generation of the fingerprints is a one-time operation, this is
acceptable performance. It appears even more attractive when compared to an analyst
manually examining files and defining characteristics that can be used to identify a file
type.

The speed of fingerprint generation could be dramatically improved if only
Option 3 is used. If only the header and trailer analysis is being performed, there is no
reason to load the entire input files into memory. Only the number of bytes given by the
selected header and trailer lengths need to be read and processed. This would not only
significantly speed fingerprint generation, but would also increase the recognition time of
unknown files for the same reason.

There would be a tradeoff in only using Option 3 in this manner, however. Not
all file types have consistent file headers or trailers. File types that don’t have a fixed
header or trailer would most likely not be correctly recognized if only Option 3 were
used. Options 1 and/or 2 could help with the identification of the few files Option 3 was
unable to identify.

 142

The overall difference in accuracy between All Options and only Option 3 was
negligible. When Option 3 was wrong, the overall guess was normally wrong, even in
cases where Option 1 or 2 provided the correct type. For example, when Option 3 was
only 25% accurate across DOC, PPT, and XLS files, Option 2 was 75% accurate.
However, when the results were combined, more weight was placed on Option 3,
resulting in the misidentification of most of the files.

Another example of this is the first MP3 file used for accuracy testing. This file
was incorrectly identified by Option 3 as an RM file. Option 1 correctly identified it as
an MP3 file, however more weight was placed on Option 3 resulting in the overall
misidentification of the file as an RM file. This suggests that improvements could be
made in the assurance level equations for use in combining the scores.

 Other improvements could be investigated in the methods used to score Options 1
and 2. Perhaps more sophisticated curve-matching algorithms could be tested to see if
they would improve the accuracy of these options.

 Improvements could be made to the header and trailer analysis as well. The
header and trailer tests both showed degradation in performance as longer header and
trailer lengths were used. It should be possible to modify the Option 3 algorithm to
prevent this degradation. Ideally, if many extra bytes were included in the analysis, the
variations in the extra byte values between files should cause the correlation strengths for
these bytes (and thus their impact on the Option 3 score) to quickly reduce to near zero.

This would mean that only the bytes involved in the fixed headers and trailers
would play a significant role in generating the Option 3 score. Longer header and trailer
regions could then be analyzed without degrading accuracy. This could help with the
differentiation between different file types that all use the OLE compound document
format. If a header length were used longer than the OLE compound document header,
then data corresponding to the true file types would be included in the analysis.

Another important goal of the algorithm was automatic generation of file type
fingerprints. This was accomplished, except for the process of gathering a set of input
files of known types. Each fingerprint requires a set of files of the appropriate file type
for the fingerprint. This process requires a bit of care to make sure the files are of the
correct type for the fingerprint. A file of the wrong type mixed into a fingerprint could
degrade the recognition ability for that fingerprint.

 Some thought also has to be put into selecting appropriate file types for
fingerprints. The tests comparing accuracy using one OLE DOC fingerprint versus using
separate ACD, DOC, PPT, and XLS fingerprints highlight the possible effects of
choosing different fingerprints. Creating a single OLE DOC fingerprint dramatically
increased the accuracy of Option 3, but decreased the accuracy of Option 1.

 The final two design goals were small fingerprint size and independence from
input file size. APPENDIX A shows the format of the fingerprint files. The size of the

 143

fingerprint file depends upon which options were selected. If Option 3 was selected it
also depends upon the selected header and trailer lengths.

The size of input files has no impact on fingerprint size, however. A fingerprint
made up of twenty 10 MB video files can be stored in the same sized fingerprint as one
made up of twenty 2 KB font files. Figure 5-2 shows a summary of the fingerprint file
sizes in bytes for different option combinations.

 Size of Fingerprint in Bytes
Option 1 Only 2,053
Option 2 Only 262,153
Option 3 Only 13 + 4(H + T)
Options 1, 2, and 3 264,209 + 4(H + T)

Figure 5-2 - Fingerprint file sizes in bytes for different option combinations, where H is header
length and T is trailer length.

 Even if the input files are shorter than either the header or the trailer lengths, then
no calculations will be performed for the missing byte positions, and all the
corresponding array entries will be set to zero to show that no byte values occurred at
those positions. If the input file length is longer than the header and trailer lengths, but
shorter than the sum of the two lengths, then there will simply be overlap between the
processed regions. The fingerprint size will remain constant for given options and fixed
header and trailer lengths.

 Overall, the algorithm proved effective at correctly identifying the file types of
files based solely upon the content of the files. Option 3 identified executable files with
100 percent accuracy. This option could therefore be of use to virus scanning packages
that are configured to only scan executable files. Option 3 was extremely fast (0.0006
seconds per fingerprint comparison,) and for header and trailer lengths of five bytes, the
total fingerprint size for an executable fingerprint would be only 53 bytes. If just one
fingerprint were required (the EXE fingerprint for example,) the extra processing and
memory requirements to implement the recognition would be negligible.

 The algorithm could possibly be of use to cryptanalysts as well. It could be used
to automatically differentiate between real data and “random” encrypted traffic. To use it
for this kind of purpose, a minimum score threshold could be added. If no fingerprint
scores exceed the minimum score, the unknown data would be identified as random
(possibly encrypted) traffic. If any fingerprint scores exceeded the threshold, then the
highest-scoring fingerprint would be identified as the type of the unknown traffic.

 A number of other systems could also benefit from the described file recognition
approach. These include forensic analysis systems, firewalls configured to block

 144

transfers of certain file types, and security downgrading systems. Further refinements
would be required, however, before the algorithm would be fast enough or accurate
enough to be used by an operating system that must reliably deal with a large number of
varied file types.

Future Work

 There are numerous areas in which additional research could be done. Many file
types have recurrent patterns throughout the body that could be used for identification as
well. An Option 4 could be evaluated and tested that would analyze language constructs
and syntax. One example could be to identify the frequency and locations of recurrent
patterns, similar to the operation of the ZIP compression algorithm.

 This type of analysis could help differentiate between similar types by looking for
file-type-specific tags and patterns. Tags used throughout HTML and RTF files could
then be used to improve identification. As another example, the three-character pattern
consisting of a semicolon followed by a carriage-return line-feed pair would be very
frequent in a C/C++ source code file. A Visual Basic source code file, on the other hand,
would have different recurrent keywords and patterns.

A risk to this type of syntax analysis would be that it could increase the chances
that a large file of one type wrapped in another file type could result in a misidentification
of the real type. If a large HTML file, for example, were embedded in an executable file,
this type of option would likely recognize a large number of HTML-specific patterns, and
could incorrectly identify the file type as HTML rather than EXE.

 Another problem to this type of approach is that the processing overhead would
be significant. This could be minimized, perhaps, by selecting a maximum length into
the file to process, similar to the file header and trailer lengths. This would reduce the
effectiveness of the option, however.

 A simple, but very useful, extension would be to combine the described algorithm
with available compression and archival algorithms. Files identified as a format such as
ZIP, GZ, or TAR could then be run through the appropriate algorithm to extract the
contents into memory. The file type recognition algorithm could then be rerun on each
component, thereby identifying the type of each file contained within the original file.

 Accuracy and speed were analyzed when each option was enabled separately, as
well as when all options were enabled. The results showed that Option 1 comparisons do
not provide any significant assistance to identification, and could conceivably even
reduce accuracy. The arrays generated by Option 1 are used by Option 2, however.
Therefore, Option 1 needs to be performed as part of fingerprint generation, but
frequency distribution comparisons may not need to be performed when identifying
unknown files. It could be informative to test the accuracy and speed when using only
Options 2 and 3 for comparison, without Option 1.

 145

Header and trailer lengths could be set individually per file type. This would
allow for more bytes to be analyzed for file types that have longer headers or trailers,
without incurring the overhead (and possible performance degradation) of processing the
extra bytes on all file types.

An optimization could include having a maximum number of bytes from the
beginning and end of a file to analyze for Options 1 and 2. If the number of bytes was set
large enough to provide a meaningful sample of data, it could remain effective while
dramatically decreasing the time required to process large files. A test would have to be
run to assess any impact this optimization may have on accuracy.

 To increase assurance in the accuracy of the algorithm, larger sample sizes
should be analyzed. Various means of collecting large samples could be evaluated,
including automated generation of sample data files, or customized web crawlers that
would look for and download files of specified types. Manufactured sample data may not
sufficiently reflect the variety that can be seen in real-world data. Real world data,
however, would have to be verified prior to use to ensure that the files are in fact the
types they claim to be.

The optimal values of constants were identified through empirical tests. More
sophisticated statistical techniques could be investigated to improve on the accuracy of
these values.

 Similarly, the bell curve and weighted average equations themselves may not
have been the best possible equations. Neural networks can be very good at identifying
optimal equations for complex situations. Further research could involve developing a
small neural network to detect the optimal equations for correlation strength and
assurance level calculations.

Other areas where additional research could be performed are in regard to the
assurance level and correlation strength equations. The assurance level algorithms could
be improved to avoid the situation where one option identifies the correct type, but the
overall algorithm misidentifies the type because an incorrect option was given too much
weight. Similarly, there may be functions that would be more effective for correlation
strength calculations than a bell curve.

Another interesting area of research would be to investigate the effectiveness of
this approach in differentiating between normal executables and those containing viruses.
A library of files infected with a variety of virus forms would have to be gathered.
Fingerprints could then be generated for various forms of viruses, and identification tests
could then be run to test the accuracy at distinguishing between normal files and infected
files.

 Finally, the algorithm could be extended and tested on forms of binary data other
than simple static files. These could include binary data streams such as streaming audio
or video, finer level analysis such as differentiating between IP and IPX traffic on a
network, or even individual segments within a larger file. Using the previous example, if

 146

a large HTML file were embedded in an executable wrapper, the current algorithm would
identify the file as an executable because of the presence of non-printable characters and
an executable file header. If segments within the file could be independently analyzed,
both the wrapper format and the embedded data formats could potentially be identified.
The most important factor in this type of application is likely to be the speed of the
algorithm, so a balance would have to be reached between accuracy and speed.

 147

This page intentionally left blank.

 148

APPENDIX A: FINGERPRINT FILE FORMAT

Bytes Field Description
1 Options Bitfield (76543210) (Bit 0 = Option 1, Bit 1 = Option2, Bit 2 =

Option 3, Bits 3 through 7 are unused.) If a bit is 1, then that option is
enabled in this fingerprint. If a bit is 0, then that option is not enabled.

4 Number of files added to fingerprint (4-byte integer value)
2048 Option 1 Data (256 sets of two four-byte floating point numbers.) This field

is present if the Option 1 bit is set in the Options Bitfield. The first byte of
each pair is the magnitude; the second byte is the corresponding correlation
strength.

4 Sigma value. This field is present if the Option 2 bit is set in the Options
Bitfield.

262144 Option 2 Data (256 x 256 four-byte floating point numbers.) This field is
present if the Option 2 bit is set in the Options Bitfield.

4 Header Length. This field is present if the Option 3 bit is set in the Options
Bitfield.

4 Trailer Length. This field is present if the Option 3 bit is set in the Options
Bitfield.

X Header Data. (The length of this field depends upon the value of Header
Length. There is one four-byte floating-point number for each byte included
in the Header Length.) This field is present if the Option 3 bit is set in the
Options Bitfield.

Y Trailer Data. (The length of this field depends upon the value of Trailer
Length. There is one four-byte floating-point number for each byte included
in the Trailer Length.) This field is present if the Option 3 bit is set in the
Options Bitfield.

 149

This page intentionally left blank.

 150

APPENDIX B: FILE TYPES USED FOR CONSTANT TESTS

Archive Formats

• ZIP
Audio Formats

• MP3
Document Formats

• DOC
• HTML
• PDF
• PPT
• RTF
• TXT
• WPD
• XLS

Executable Formats
• EXE

Graphic Formats
• BMP
• GIF
• JPG

Video Formats
• MPEG

74

This page intentionally left blank.

75

APPENDIX C: FILE TYPES USED FOR ACCURACY TESTS

Archive Formats

• GZ
• ZIP
• TAR

Audio Formats
• WAV
• MP3

Document Formats
• DOC
• HTML
• PDF
• PPT
• PS
• RTF
• TXT
• WPD
• XLS

Executable Formats
• EXE
• RPM

Font Formats
• TTF
• FNT

Graphic Formats
• BMP
• GIF
• JPG

Video Formats
• AVI
• MPEG
• RM
• MOV

76

This page intentionally left blank.

77

APPENDIX D: FILE TYPES USED FOR EXTENDED ACCURACY
TESTS

Archive Formats

• GZ
• ZIP
• TAR

Audio Formats
• WAV
• MP3

Document Formats
• DOC
• HTML
• PDF
• PPT
• PS
• RTF
• TXT
• WPD
• XLS

Executable Formats
• EXE
• RPM

Font Formats
• TTF
• FNT

Graphic Formats
• BMP
• GIF
• JPG

Video Formats
• AVI
• MPEG
• RM
• MOV

Proprietary Formats
• 3TF
• ACD
• CAT
• CRP
• MDL

78

This page intentionally left blank.

79

APPENDIX E: FILE TYPE FINGERPRINT OVERVIEW

This appendix contains summaries of the fingerprint of each file type. The top of
each figure shows the Option 1 byte frequency distribution. The lower left portion of
each figure shows the Option 2 byte frequency cross-correlation plot, split between
average difference and correlation strength, as described in Chapter 2. The lower right
portion of each figure shows the Option 3 file header plot (the top half of the Option 3
pane) and the file trailer plot (the bottom half of the Option 3 pane.)

The combined OLE DOC fingerprint is shown, as well as the individual
fingerprints (ACD, DOC, PPT, and XLS.) Although there are some differences, they are
very similar, and all share exactly the same file header and trailer patterns, characteristic
of the OLD compound document format.

Figure D-2 - BMP fingerprint summary

Figure D-4 - EXE fingerprint summary

Figure D-1 - AVI fingerprint summary

Figure D-3 - DOC fingerprint summary

80

Figure D-5 - FNT fingerprint summary

Figure D-7 - GZ fingerprint summary

Figure D-9 - JPG fingerprint summary

Figure D-6 - GIF fingerprint summary

Figure D-8 - HTML fingerprint summary

Figure D-10 - MOV fingerprint summary

81

Figure D-11 – MP3 fingerprint summary

Figure D-13 – OLE DOC fingerprint summary

Figure D-15 - PPT fingerprint summary

Figure D-12 - MPEG fingerprint summary

 Figure D-14 - PDF fingerprint summary

Figure D-16 - PS fingerprint summary

82

Figure D-17 - RM fingerprint summary

Figure D-19 - RTF fingerprint summary

Figure D-21 - TTF fingerprint summary

Figure D-18 - RPM fingerprint summary

Figure D-20 - TAR fingerprint summary

Figure D-22 - TXT fingerprint summary

83

Figure D-23 - WAV fingerprint summary

Figure D-25 - XLS fingerprint summary

Figure D-27 – 3TF fingerprint summary

Figure D-24 - WPD fingerprint summary

Figure D-26 - ZIP fingerprint summary

Figure D-28 – ACD fingerprint summary

84

Figure D-29 – CAT fingerprint summary

Figure D-31 – MDL fingerprint summary

Figure D-30 – CRP fingerprint summary

85

APPENDIX F: SAMPLE FILE RECOGNITION REPORT

Filename: C:\Development\FTR\bin\Input Test Files\PDFinput2

Overall Closest Match: PDF

Byte Frequency Closest Match: TXT
Cross-Correlation Closest Match: PDF
File Header Closest Match: PDF
File Trailer Closest Match: PDF

Overall Scores:
 0.0642511 BMP
 0.2214751 XLS
 0.09202309 EXE
 0.03012224 GIF
 0.3025353 HTML
 0.04225569 JPG
 0.0553562 MP3
 0.05165713 MPEG
 0.684445 PDF
 0.0865095 PPT
 0.3084091 RTF
 0.3042476 TXT
 0.2276875 DOC
 0.2275722 WPD
 0.06118989 ZIP

Frequency Scores:
 Raw Assurance Effective
 Score Level Score
 0.009720683 0.2332596 0.002267443 BMP
 0.5574311 0.8970471 0.500042 XLS
 0.2017136 0.4924424 0.09933233 EXE
 0.004134795 0.2348216 0.000970939 GIF
 0.7862476 0.8130449 0.6392546 HTML
 4.99264E-07 0.2475621 1.235989E-07 JPG
 6.825497E-13 0.4824367 3.29287E-13 MP3
 2.962304E-07 0.3988085 1.181392E-07 MPEG
 0.0001700508 0.4646344 7.901146E-05 PDF
 0.07778424 0.5287558 0.04112887 PPT
 0.7367388 0.8620027 0.6350709 RTF
 0.7031381 0.9123371 0.641499 TXT
 0.597475 0.9016744 0.5387279 DOC
 0.575063 0.8515723 0.4897077 WPD
 0.02841559 0.2274891 0.006464239 ZIP

86

Cross-correlation Scores:
 Raw Assurance Effective
 Score Level Score
 0.354186 0.314932 0.1115445 BMP
 0.4234604 0.4816526 0.2039608 XLS
 0.3670453 0.4727979 0.1735383 EXE
 0.1584871 0.4229975 0.06703965 GIF
 0.5378711 0.3981051 0.2141292 HTML
 0.2737767 0.3969876 0.1086859 JPG
 0.3299123 0.4501055 0.1484953 MP3
 0.3240619 0.4454128 0.1443414 MPEG
 0.4770142 0.4738864 0.2260505 PDF
 0.4350897 0.4847711 0.2109189 PPT
 0.488732 0.4488078 0.2193467 RTF
 0.4573833 0.4824656 0.2206717 TXT
 0.4526621 0.4914457 0.2224588 DOC
 0.3755475 0.4609013 0.1730903 WPD
 0.3986118 0.384787 0.1533806 ZIP

Header Scores:
 Raw Assurance Effective
 Score Level Score
 0.004054054 1 0.004054054 BMP
 0 0.95 0 XLS
 0 1 0 EXE
 0 1 0 GIF
 0.03037975 0.9 0.02734177 HTML
 0 1 0 JPG
 0 1 0 MP3
 0 1 0 MPEG
 1 1 1 PDF
 0 1 0 PPT
 0.1666667 1 0.1666667 RTF
 0.00609756 0.55 0.003353658 TXT
 0 1 0 DOC
 0 0.95 0 WPD
 0 1 0 ZIP

87

Trailer Scores:
 Raw Assurance Effective
 Score Level Score
 0.002941176 0.3 0.0008823529 BMP
 0 0.85 0 XLS
 0 1 0 EXE
 0 0.6 0 GIF
 0 0.8 0 HTML
 0.003061224 1 0.003061224 JPG
 0 0.7500001 0 MP3
 0 0.95 0 MPEG
 0.7904255 0.95 0.7509043 PDF
 0 0.9 0 PPT
 0 1 0 RTF
 0 0.9 0 TXT
 0 0.95 0 DOC
 0 0.65 0 WPD
 0 1 0 ZIP

Detailed Fingerprint Scores:

Fingerprint 0: BMP - SCORE: 0.0642511
 Byte Frequency:
 Score: 0.009720683
 Assurance Level: 0.2332596
 Cross-Correlation:
 Score: 0.354186
 Assurance Level: 0.314932
 File Header:
 Score: 0.004054054
 Assurance Level: 1
 File Trailer:
 Score: 0.002941176
 Assurance Level: 0.3

Fingerprint 1: XLS - SCORE: 0.2214751
 Byte Frequency:
 Score: 0.5574311
 Assurance Level: 0.8970471
 Cross-Correlation:
 Score: 0.4234604
 Assurance Level: 0.4816526
 File Header:
 Score: 0
 Assurance Level: 0.95
 File Trailer:

88

 Score: 0
 Assurance Level: 0.85

Fingerprint 2: EXE - SCORE: 0.09202309
 Byte Frequency:
 Score: 0.2017136
 Assurance Level: 0.4924424
 Cross-Correlation:
 Score: 0.3670453
 Assurance Level: 0.4727979
 File Header:
 Score: 0
 Assurance Level: 1
 File Trailer:
 Score: 0
 Assurance Level: 1

Fingerprint 3: GIF - SCORE: 0.03012224
 Byte Frequency:
 Score: 0.004134795
 Assurance Level: 0.2348216
 Cross-Correlation:
 Score: 0.1584871
 Assurance Level: 0.4229975
 File Header:
 Score: 0
 Assurance Level: 1
 File Trailer:
 Score: 0
 Assurance Level: 0.6

Fingerprint 4: HTML - SCORE: 0.3025353
 Byte Frequency:
 Score: 0.7862476
 Assurance Level: 0.8130449
 Cross-Correlation:
 Score: 0.5378711
 Assurance Level: 0.3981051
 File Header:
 Score: 0.03037975
 Assurance Level: 0.9
 File Trailer:
 Score: 0
 Assurance Level: 0.8

Fingerprint 5: JPG - SCORE: 0.04225569
 Byte Frequency:

89

 Score: 4.99264E-07
 Assurance Level: 0.2475621
 Cross-Correlation:
 Score: 0.2737767
 Assurance Level: 0.3969876
 File Header:
 Score: 0
 Assurance Level: 1
 File Trailer:
 Score: 0.003061224
 Assurance Level: 1

Fingerprint 6: MP3 - SCORE: 0.0553562
 Byte Frequency:
 Score: 6.825497E-13
 Assurance Level: 0.4824367
 Cross-Correlation:
 Score: 0.3299123
 Assurance Level: 0.4501055
 File Header:
 Score: 0
 Assurance Level: 1
 File Trailer:
 Score: 0
 Assurance Level: 0.7500001

Fingerprint 7: MPEG - SCORE: 0.05165713
 Byte Frequency:
 Score: 2.962304E-07
 Assurance Level: 0.3988085
 Cross-Correlation:
 Score: 0.3240619
 Assurance Level: 0.4454128
 File Header:
 Score: 0
 Assurance Level: 1
 File Trailer:
 Score: 0
 Assurance Level: 0.95

Fingerprint 8: PDF - SCORE: 0.684445
 Byte Frequency:
 Score: 0.0001700508
 Assurance Level: 0.4646344
 Cross-Correlation:
 Score: 0.4770142
 Assurance Level: 0.4738864

90

 File Header:
 Score: 1
 Assurance Level: 1
 File Trailer:
 Score: 0.7904255
 Assurance Level: 0.95

Fingerprint 9: PPT - SCORE: 0.0865095
 Byte Frequency:
 Score: 0.07778424
 Assurance Level: 0.5287558
 Cross-Correlation:
 Score: 0.4350897
 Assurance Level: 0.4847711
 File Header:
 Score: 0
 Assurance Level: 1
 File Trailer:
 Score: 0
 Assurance Level: 0.9

Fingerprint 10: RTF - SCORE: 0.3084091
 Byte Frequency:
 Score: 0.7367388
 Assurance Level: 0.8620027
 Cross-Correlation:
 Score: 0.488732
 Assurance Level: 0.4488078
 File Header:
 Score: 0.1666667
 Assurance Level: 1
 File Trailer:
 Score: 0
 Assurance Level: 1

Fingerprint 11: TXT - SCORE: 0.3042476
 Byte Frequency:
 Score: 0.7031381
 Assurance Level: 0.9123371
 Cross-Correlation:
 Score: 0.4573833
 Assurance Level: 0.4824656
 File Header:
 Score: 0.00609756
 Assurance Level: 0.55
 File Trailer:
 Score: 0

91

 Assurance Level: 0.9

Fingerprint 12: DOC - SCORE: 0.2276875
 Byte Frequency:
 Score: 0.597475
 Assurance Level: 0.9016744
 Cross-Correlation:
 Score: 0.4526621
 Assurance Level: 0.4914457
 File Header:
 Score: 0
 Assurance Level: 1
 File Trailer:
 Score: 0
 Assurance Level: 0.95

Fingerprint 13: WPD - SCORE: 0.2275722
 Byte Frequency:
 Score: 0.575063
 Assurance Level: 0.8515723
 Cross-Correlation:
 Score: 0.3755475
 Assurance Level: 0.4609013
 File Header:
 Score: 0
 Assurance Level: 0.95
 File Trailer:
 Score: 0
 Assurance Level: 0.65

Fingerprint 14: ZIP - SCORE: 0.06118989
 Byte Frequency:
 Score: 0.02841559
 Assurance Level: 0.2274891
 Cross-Correlation:
 Score: 0.3986118
 Assurance Level: 0.384787
 File Header:
 Score: 0
 Assurance Level: 1
 File Trailer:
 Score: 0
 Assurance Level: 1

92

This page intentionally left blank.

93

GLOSSARY

3TF – Perspective ChartX template file format.

ASSURANCE LEVEL – A value indicating how much confidence can be placed on an
associated score. A file with no characteristic file trailer should have a very low
assurance level associated with file trailer scores.

ACD – AllClear diagram file format.

AVI – Audio Visual Interface, a file format for video files.

BIT – The smallest unit of data a computer can manipulate, representing one of two
states, often represented by a 0 or a 1.

BMP – Bitmap graphics file format.

BYTE – An eight-bit number with a valid range of 0 to 255.

BYTE FREQUENCY – The relative number of occurrences of each byte value in a file.

BYTE FREQUENCY CROSS-CORRELATION – The relationship between byte value
frequencies. If two different byte values always occur with the same frequency,
then the cross-correlation between the two byte values will be high.

CAT – Rational Rose catalog file format.

CORRELATION FACTOR – A numeric score that denotes how closely the results of a
new file match the results already in a fingerprint. The correlation factor from
each new file is added into the fingerprint to generate a correlation strength.

CORRELATION STRENGTH – A rating of how consistent a result is across all files in a
fingerprint.

CRP – Electronic Arts, Need for Speed Porsche Unleashed data model file format.

DOC - Microsoft Word document.

EXE – Executable file format.

FILE HEADER – Consistent pattern of bytes that appears at the beginning of a file.

FILE TRAILER – Consistent pattern of bytes that appears at the end of a file.

FINGERPRINT – A summary of a file type containing information required for
recognition of files of that type.

94

FNT – A bitmapped font file format.

GIF – Graphics Interchange Format, a file format for graphic files.

GZ – Gzip compression file format.

HTML – Hypertext Markup Language, the dominant language for defining web pages.

JPG – Short for JPEG, Joint Photographic Experts Group. JPG is a compressed graphic
file format.

MDL – Rational Rose model file format.

MOV – QuickTime movie file format.

MP3 – MPEG audio layer 3, a file format for storing compressed audio.

MPEG – Short for “moving picture experts group”, a file format for storing compressed
multimedia data.

PDF – Short for “portable document format”, a document file format developed by
Adobe.

PPT – Microsoft PowerPoint presentation file.

PS – PostScript file.

RTF – Rich Text Format, a file format for storing text with additional markup tags.

RM – Real Media audio/visual file format.

RPM – Short for “RedHat package manager”, a Linux file format for storing self-
installing software packages.

TAR – Short for “tape archive”. A UNIX archive file format.

TXT – Text file format.

TTF – True Type Font file format.

WAV – A file format for storing audio data.

WPD – Word Perfect document file format.

XLS – Microsoft Excel spreadsheet file format.

ZIP – File format for storing data compressed using the ZIP compression algorithm.

95

BIBLIOGRAPHY

/etc/magic Help File, available online from:
http://qdn.qnx.com/support/docs/qnx4/utils/m/magic.html

Bellamy, John, Digital Telephony, Second Edition, John Wiley & Sons, Inc., New York,
New York, 1991, pp 110-119.

The Binary Structure of OLE Compound Documents, available online from:
http://user.cs.tu-berlin.de/~schwartz/pmh/guide.html

Kyler, Ken, Understanding OLE Documents, Delphi Developer’s Journal, September
1998, available online from: http://www.kyler.com/pubs/ddj9894.html

Stallings, William, Cryptography and Network Security, Prentice Hall, upper Saddle
River, New Jersey, 1999, p. 32.

The Advanced Missile Signature Center Standard File Format, available online from:
http://fileformat.virtualave.net/archive/saf.zip

To Associate a File Extension with a File Type, Windows 2000 Professional
Documentation, available online from:
http://www.microsoft.com/WINDOWS2000/en/professional/help/win_fcab_reg_f
iletype.htm

Why do some scripts start with #!, Chip Rosenthal, available online from:
http://baserv/uci/kun.nl/unix-faq.html

http://qdn.qnx.com/support/docs/qnx4/utils/m/magic.html
http://user.cs.tu-berlin.de/%7Eschwartz/pmh/guide.html
http://www.kyler.com/pubs/ddj9894.html
http://fileformat.virtualave.net/archive/saf.zip
http://www.microsoft.com/WINDOWS2000/en/professional/help/win_fcab_reg_filetype.htm
http://www.microsoft.com/WINDOWS2000/en/professional/help/win_fcab_reg_filetype.htm
http://baserv/uci/kun.nl/unix-faq.html

	ACKNOWLEDGEMENTS
	TABLE OF FIGURES
	This page intentionally left blank. ABSTRACT
	Identifying the true type of a computer file can be a difficult problem. Previous methods of file type recognition include fixed file extensions, fixed “magic numbers” stored with the files, and proprietary descriptive file wrappers. All of these m...

	CHAPTER 1: INTRODUCTION
	Background
	Previous Work

	CHAPTER 2: THE ALGORITHM
	Introduction
	Option 1: Byte Frequency Analysis
	Building the Byte Frequency Distribution
	Combining Frequency Distributions into a Fingerprint
	Comparing a Single File to a Fingerprint

	Option 2: Byte Frequency Cross-Correlation
	Building the Byte Frequency Cross-Correlation
	Combining Cross-Correlations into a Fingerprint
	Comparing a Single File to a Fingerprint

	Option 3: File Header/Trailer Analysis
	Building the Header and Trailer Profiles
	Combining Header and Trailer Profiles into a Fingerprint
	Comparing a Single File to a Fingerprint

	Combining Scores from Multiple Options

	Byte Position
	H - 1
	BMP

	CHAPTER 3: TESTING
	Test 1 – Beta Sweep
	Test 2 – Sigma Sweep
	Test 3 – Linear Correlation vs. Bell
	Test 4 – Header Length Sweep
	Test 5 – Trailer Length Sweep
	Test 6 – Accuracy Test (All Options)
	Test 7 – Accuracy Test (Option 1)
	Test 8 – Accuracy Test (Option 2)
	Test 9 – Accuracy Test (Option 3)
	Test 10 – Extended Accuracy Test (All Options)
	Test 11 – Extended Accuracy Test (Option 1)
	Test 12 – Extended Accuracy Test (Option 2)
	Test 13 – Extended Accuracy Test (Option 3)

	This page intentionally left blank. CHAPTER 4: RESULTS
	Test 1 – Beta Sweep
	Tests 2 and 3– Sigma Sweep and Linear Correlation vs. Bell
	Test 4 – Header Length Sweep
	Test 5 – Trailer Length Sweep
	Test 6 – Accuracy Test (All Options)
	Test 7 – Accuracy Test (Option 1)
	Test 8 – Accuracy Test (Option 2)
	Test 9 – Accuracy Test (Option 3)
	Test 10 – Extended Accuracy Test (All Options)
	Test 11 – Extended Accuracy Test (Option 1)
	Test 12 – Extended Accuracy Test (Option 2)
	Test 13 – Extended Accuracy Test (Option 3)

	CHAPTER 5: ANALYSIS
	Conclusions and Future Work
	Future Work

	This page intentionally left blank. APPENDIX A: FINGERPRINT FILE FORMAT
	Bytes
	This page intentionally left blank. APPENDIX B: FILE TYPES USED FOR CONSTANT TESTS
	Executable Formats

	This page intentionally left blank. APPENDIX C: FILE TYPES USED FOR ACCURACY TESTS
	This page intentionally left blank. APPENDIX D: FILE TYPES USED FOR EXTENDED ACCURACY TESTS
	Executable Formats
	Proprietary Formats

	This page intentionally left blank. APPENDIX E: FILE TYPE FINGERPRINT OVERVIEW
	APPENDIX F: SAMPLE FILE RECOGNITION REPORT
	This page intentionally left blank. GLOSSARY
	BIBLIOGRAPHY

