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Abstract 
 

 Identifying the true type of a computer file can 
be a difficult problem.  Previous methods of file type 
recognition include fixed file extensions, fixed 
“magic numbers” stored with the files, and 
proprietary descriptive file wrappers.  All of these 
methods have significant limitations.  This paper 
proposes algorithms for automatically generating 
“fingerprints” of file types based on a set of known 
input files, then using the fingerprints to recognize 
the true type of unknown files based on their content, 
rather than metadata associated with them.  
Recognition is performed by three different 
algorithms based on: byte frequency analysis, byte 
frequency cross-correlation analysis, and file 
header/trailer analysis.  Tests were run to measure 
the accuracy of these algorithms.  The accuracy 
varied from 23% to 96% depending upon which 
algorithm was used.  

These algorithms could be used by virus 
scanning packages, firewalls, intrusion detection 
systems, forensic analyses of computer hard drives, 
web browsers, or any other program that needs to 
identify the types of files for proper operation.  File 
type detection is also important to the operating 
systems for correct identification and handling of 
files regardless of file extension. 

 
I.   Introduction 

Computers use a tremendous array of file 
formats today.  All types of files are frequently 
transmitted through intranets and the Internet.  
Currently, operating systems, firewalls, and intrusion 
detection systems have very few methods for 
determining the true type of a file.  Perhaps the most 
common method used is to identify the type of a file 
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by the file’s extension.  This is an extremely 
unreliable method, as any user or application can 
change a file’s name and extension at any time.  As a 
result, some users are able to conceal files from 
system administrators simply by renaming them to a 
filename with a different extension.  While this 
doesn’t conceal the existence of a file, it can conceal 
the nature of a file and can prevent it from being 
opened by the operating system.  In addition, many 
virus-scanning packages default to only scanning 
executable files.  These packages may miss any 
viruses contained within executable files that had 
non-executable file extensions.  This could introduce 
vulnerabilities into a network, even if it contained 
virus protection. 

The other common method of identifying file 
types is through manual definition of file recognition 
rules.  This is an extremely time-consuming process, 
whereby an individual examines a file type 
specification, if one is available, and identifies 
consistent features of a file type that can be used as a 
unique identifier of that type.  In the absence of a 
specification, the individual must manually examine 
a number of files looking for common features that 
can be used to identify the file type.  Not only is this 
time-consuming, but it can require an individual with 
a highly technical background that is capable of 
doing a hexadecimal analysis of files. 

Manual rule definition is the method used by 
many Unix-based operating systems, as well as tools 
used in forensic analysis of computer disks during 
investigations.  Regardless of the investigating 
authority, automated file type recognition is a critical 
part of this sort of computer forensic analysis.   

An efficient, automated algorithm to perform this 
kind of file type recognition would be of tremendous 
benefit to organizations needing to perform forensic 
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analyses of computer hard drives.  It could also be 
used by virus protection software, intrusion detection 
systems, firewalls, web browsers, and security 
downgrading packages to identify the true nature of 
programs passing through the protected systems.  
Finally, this kind of algorithm could be of use to the 
operating systems themselves to allow for correct 
identification and handling of files regardless of file 
extension. 

This paper describes an attempt to extend the 
concept of frequency analysis and apply it to the 
general case of generating a characteristic 
“fingerprint” for different computer file types, and 
subsequently using the fingerprint to identify file 
types based upon their characteristic signatures.  The 
process could be almost entirely automated, and 
would not be affected if a user changed a file name or 
extension.   

 
I.1   Previous work 
 

To date, there have been relatively few methods 
for identifying the type of a file.  One of the most 
commonly used methods is the use of file extensions.  
Microsoft’s operating systems use this method almost 
exclusively.  They come preset with associations 
between file extensions and file types.  If different 
associations are desired, they must be manually 
reconfigured by the user [7]. As mentioned above, 
this approach introduces many security 
vulnerabilities.  A user can change the extension of a 
file at any time, rendering the operating system 
unable to identify it.  They can also change the file 
extension associations to fool the operating system 
into handling files in an inappropriate manner, such 
as trying to execute a text file. 

Another approach is that taken by many Unix-
based operating systems.  These make use of a 
“magic number” which consists of the first 16 bits of 
each file.  A file, such as /etc/magic then associates 
magic numbers with file types [9].  This approach has 
a number of drawbacks as well.  The magic numbers 
must be predefined before the files are generated, and 
are then built into the files themselves.  This makes it 
very difficult to change them over time, since a 
change might interfere with the proper operation of 
many files that were generated using the old magic 
number.  Furthermore, not all file types use magic 
numbers.  The scheme was initially intended to assist 
with the proper handling of executable and binary 
formats.  With only 16 bits allocated, a number of 
extensions had to be introduced over time, such as 
using the “#!” magic number to identify a command 
to execute on the rest of the file [8]. 

Another approach is to define a proprietary file 
format that encapsulates other files and provides 
 
ings of the 36th Hawaii International Conference on System Sciences (
1874-5/03 $17.00 © 2002 IEEE 
information regarding their type.  One example of 
this approach is the Standard File Format (SAF) 
developed by the Advanced Missile Signature Center 
(AMSC) [6].  There are many down sides to this 
approach.  The specification must be written defining 
how to encapsulate and identify each file format.  An 
individual or external system must identify the type 
of the file before it can be correctly encapsulated in 
the standard format in the correct manner.  The most 
significant problem, however, is that this type of file 
can only be used within the small proprietary system 
that recognizes the “standard” format.  The files 
cannot be exported to external systems such as the 
Internet without removing the encapsulation, and thus 
negating its benefit. 

 
II.    Algorithms 
         
The design goals for the proposed file recognition 
algorithm are as follows: 
• Accuracy – The algorithm should be as accurate as 

possible at identifying file types. 
• Automatic generation of file type fingerprints.  
• Small fingerprint files – The fingerprint file sizes 

should be minimized. 
• Speed – Comparisons should be as fast as possible 

for a given fingerprint file size. 
• Flexibility – The algorithm should provide a 

customizable tradeoff between speed and accuracy. 
• Independence from file size.  
These design goals can be achieved by implementing 
the three algorithms described in this paper, each of 
which could be selected independently, or used 
together for increased accuracy. Due to space 
limitation, detailed explanation of these results is 
available in [1].  
 
II.1 Byte frequency analysis (BFA) algorithm 

 
A computer file is a collection of bytes, which 

correspond to eight-bit numbers capable of 
representing numeric values from 0 to 255 inclusive.  
By counting the number of occurrences of each byte 
value in a file, a frequency distribution can be 
obtained.  Many file types have consistent patterns to 
their frequency distributions, providing information 
useful for identifying the type of unknown files.  
Figure II.1 and Figure II.2 show the frequency 
distributions for a typical RichText (RTF) and a 
Graphics Interchange Format (GIF) file, respectively.   
Many file types likewise have characteristic patterns 
that can be used to differentiate them from other file 
formats. 

This section describes the methods used to build 
the byte frequency distribution of individual files and 
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to construct a fingerprint representative of the file 
type. 

 
II.1.1   Building the byte frequency distribution 
 

The first step in building a byte frequency 
fingerprint is to count the number of occurrences of 
each byte value for a single input file.  This is done 
by constructing an array of size 256 (indexed 0 to 
255), and initializing all array locations to zero.  For 
each byte in the file, the appropriate element of the 
array is incremented by one.  Once the number of 
occurrences of each byte value is obtained, each 
element in the array is divided by the number of 
occurrences of the most frequent byte value.  This 
normalizes the array to frequencies in the range of 0 
to 1, inclusive.  This normalization step prevents one 
very large file from skewing the file type fingerprint.  
Rather, each input file is provided equal weight 
regardless of size. 

Some file types have some byte values that occur 
much more frequently than any other.  If this 
happens, the normalized frequency distribution may 
show a large spike at the common values. Figure II.3 
shows the frequency distribution for an executable 
file that demonstrates this.  The file has large regions 
filled with the byte value zero.  The resulting graph 
has a large spike at byte value zero, with insufficient 
detail to determine patterns in the remaining byte 
value ranges. 
 

 
 
Figure II.1 - Byte frequency distributions for two 

RTF files. 
 

A way to solve this problem would be to pass the 
frequency distribution through a companding 

function to emphasize the lower values.  Common 
companding functions, such as the A-law and µ-law 
companding functions used in telecommunications 
[2], can be roughly approximated by the following 

function, which can be very rapidly computed.  
The same file shown in Figure II.3, after being 

passed through this equation, produces the frequency 
distribution shown in Figure II.5.  This graph shows 
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more of the detail across all byte frequencies, and 
therefore may allow for more accurate comparisons. 
Experimental results indicated that β = 1.5 is the 
optimal β value for the most accurate file type 
recognition [1]. The optimal value of β is defined as 
the value that produces the greatest difference 
between the fingerprint with the highest frequency 
score and the fingerprint with the second-highest 
frequency score. 

 

 
Figure II.2 - Byte frequency distributions for two 

GIF files. 
 

 
 

Figure II.3 - Frequency distribution for a sample 
executable file. 

 
The companding function results in a frequency 

distribution that is still normalized to 1.  This is true 
since the most frequent byte value was normalized to 
1, and the companding function with an input value 
of 1 results in an output value of 1. 

 
II.1.2   Combining frequency distributions into a 

fingerprint 
 

A fingerprint is generated by averaging the 
results of multiple files of a common file type into a 
single fingerprint file that is representative of the file 
type as a whole.  To add a new file’s frequency 
distribution to a fingerprint we use the following 
simple averaging equation, where NFPS is the new 
fingerprint score, OFPS is the old fingerprint score, 
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PNF is the previous number of files, and NFS is the 
new file score. 

 
( )

1+
+×=

PNF
NFSPNFOFPSNFPS  

Aside from the byte frequency distributions, 
there is another related piece of information that can 
be used to refine the comparisons.  The frequencies 
of some byte values are very consistent between files 
of some file types, while other byte values vary 
widely in frequency.  For example, note that almost 
all of the data in the files shown in Figure II.1 lie 
between byte values 32 and 126, corresponding to 
printable characters in the lower ASCII range.  This 
is characteristic of the RichText format.  On the other 
hand, the data within the byte value range 
corresponding to the ASCII English alphanumeric 
characters varies widely from file to file, depending 
upon the contents of the file. 

This suggests that a “correlation strength” 
between the same byte values in different files can be 
measured, and used as part of the fingerprint for the 
byte frequency analysis.  In other words, if a byte 
value always occurs with a regular frequency for a 
given file type, then this is an important feature of the 
file type, and is useful in file type identification. 

A correlation factor can be calculated by 
comparing each file to the frequency scores in the 
fingerprint.  The correlation factors can then be 
combined into an overall correlation strength score 
for each byte value of the frequency distribution. 

The correlation factor of each byte value for an 
input file is calculated by taking the difference 
between that byte value’s frequency score from the 
input file and the frequency score from the 
fingerprint.  If the difference between the two 
frequency scores is very small, then the correlation 
strength should increase toward 1.  If the difference is 
large, then the correlation strength should decrease 
toward 0.  Therefore, if a byte value always occurs 
with exactly the same frequency, the correlation 
strength should be 1.  If the byte value occurs with 
widely varying frequencies in the input files, then the 
correlation strength should be nearly 0. 

A function that would provide more tolerance for 
small variations and less tolerance for larger 
variations is a bell curve with a peak magnitude of 1 
and the peak located at 0 on the horizontal axis.  The 
general equation for this type of bell curve is:    
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where F(x) is the correlation factor and x is the 
difference between the new byte value frequency and 
the average byte value frequency in the fingerprint.  
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Experimental results indicated that σσσσ = 0.0375 is 
the optimal σσσσ value for the most accurate file type 
recognition [1]. 
 

 
Figure II.5 - Frequency distribution for a the 

figure II.3 file after passing through the 
companding function. 

 
Once the input file’s correlation factor for each 

byte value is obtained, these values need to be 
combined with the correlation strengths in the 
fingerprint.  This is accomplished by using the 
following simple averaging equation, which directly 
parallels the method used to calculate the frequency 
distribution scores, where NCS is the new correlation 
strength, OCS is the old correlation strength, PNF is 
the previous number of files, and NCF is tne new 
correlation factor. 

( )
1+
+×=

PNF
NCFPNFOCSNCS  

II.1.3    Comparing a single file to a fingerprint 
 

When identifying a file using the byte frequency 
analysis algorithm (BFA):  
� Compute a score for each fingerprint identifying 

how closely the unknown file matches the 
frequency distribution in the fingerprint.  The score 
is generated by comparing each byte value 
frequency from the unknown file with the 
corresponding byte value frequency from the 
fingerprint.  As the difference between these values 
decreases, the score should increase toward 1.  As 
the difference increases, the score should decrease 
toward 0. 
� Compute an “assurance level” for each fingerprint, 

indicating how much confidence can be placed on 
the score.  The file type’s byte frequency 
correlation strengths are used to generate a numeric 
rating for the assurance level.  This is because a file 
type with a characteristic byte frequency 
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distribution will have high correlation strengths for 
many byte values.   
� Compare the unknown file’s byte frequency 

distribution to the byte frequency scores and the 
associated correlation strengths stored in each file 
type fingerprint and pick the best match.   

 
Figure II.7 shows the byte frequency distribution 

for the HTML fingerprint, with the frequency scores 
shown by a solid line and the correlation strengths 
shown by a dotted line.  Figure II.8 shows the byte 
frequency distribution scores and correlation 
strengths for the ZIP fingerprint. 

Using this scheme, the HTML file format would 
have a high assurance level for the byte frequency, 
since many byte values have high correlation 
strengths, whereas the ZIP file format would have a 
low assurance level for the byte frequency, 
suggesting that perhaps other algorithms should 
be used to improve accuracy for this type. 

 
II.2  Byte frequency cross-correlation (BFC) 

algorithm 
 

While BFA algorithm compares overall byte 
frequency distributions, other characteristics of the 
frequency distributions are not addressed.  One 
example can be seen in Figure II.7.  There are two 
equal-sized spikes in the solid frequency scores at 
byte values 60 and 62, which correspond to the 
ASCII characters “<” and “>” respectively.  Since 
these two characters are used as a matched set to 
denote HTML tags within the files, they normally 
occur with nearly identical frequencies. 

This relationship, or cross-correlation, between 
byte value frequencies can be measured and scored as 
well, strengthening the identification process.  This 
section describes the methods used to build the byte 
frequency cross-correlations of individual files, to 
construct a fingerprint representative of the file type, 
and to compare an unknown file to a file type 
fingerprint, obtaining a numeric score. 
 

 
Figure II.7 - Byte frequency distribution with 
correlation strength for HTML fingerprint. 
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Figure II.8 - Byte frequency distribution with 

correlation strength for ZIP fingerprint. 
 

II.2.1 Building the byte frequency cross-
correlation 

 
There are two key pieces of information that 

need to be calculated concerning the byte frequency 
cross-correlation analysis: the average difference in 
frequency between all byte pairs and a correlation 
strength similar to the BFA algorithm. Byte value 
pairs that have very consistent frequency 
relationships across files, such as byte values 60 and 
62 in HTML files, as mentioned above, will have a 
high correlation strength score.  Byte value pairs that 
have little or no relationship will have a low 
correlation strength score.   

In order to characterize the relationships between 
byte value frequencies, a two-dimensional 256×256 
cross-correlation array is built (byte values are 
between 0 and 255), with indices ranging from 0 to 
255 in each dimension.   

Note that if byte value i is being compared to 
byte value j, then array entry (i, j) contains the 
frequency difference between byte values i and j 
while array entry (j, i) contains the negative of the 
corresponding (i, j) location. Hence, half of the array 
contains redundant information and storing both of 
them is unnecessary.  We use the lower half of the 
array to store the correlation strengths of each byte 
value pair.  So now if byte value i is being compared 
to byte value j, then array entry (i, j) contains the 
frequency difference between byte values i and j 
while array entry (j, i) contains the correlation 
strength for the byte pair.  Furthermore, a byte value 
will always have an average frequency difference of 
0 and a correlation strength of 1 with itself, so the 
main diagonal of the array can be used to store any 
other information that is needed for the comparisons.  
We use the first entry of the main diagonal (0, 0) to 
store the number of files that have been used to 
compute the fingerprint.  

Calculating the difference between the 
frequencies of two bytes with values i and j involves 
simply subtracting the frequency score of byte value i 
from the frequency of byte value j.  Since byte value 
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frequencies were normalized, with a range of 0 to 1, 
this results in a number with a possible range of –1 to 
1.  A score of –1 indicates that the frequency of byte 
value i was much greater than the frequency of byte 
value j.  A score of 1 indicates that the frequency of 
byte value i was much less than the frequency of byte 
value j.  A score of 0 indicates that there was no 
difference between the frequencies of the two byte 
values. 
 
II.2.2 Combining cross-correlations into a 

fingerprint 
 

Once the frequency differences between all byte-
value pairs for an input file have been calculated, the 
new fingerprint can be calculated using the following 
equation, similar to the one used in BFA algorithm, 
where NFPD is the new fingerprint difference, OFPD 
is the old fingerprint difference, NFD is the new 
frequency difference, and PNF is the previous 
number of files. 

( )
1+

+×=
PNF

NFDPNFOFPDNFPD  

A correlation factor can be calculated for each 
byte value pair, by comparing the frequency 
differences in the input file to the frequency 
differences in the fingerprint.  The correlation factors 
can then be combined with the scores already in the 
fingerprint to form an updated correlation strength 
score for each byte value pair. As more files are 
added to construct the fingerprint, the correlation 
strengths more accurately reflect the file type. 

If at least one file has been previously added into 
a fingerprint, then the correlation factor for each byte 
value pair is calculated by subtracting the pair’s 
frequency difference from the new file and the same 
pair’s average frequency difference from the 
fingerprint.  This results in a new overall difference 
between the new file and the fingerprint.  If this 
overall difference is very small, then the correlation 
strength should increase toward 1.  If the difference is 
large, then the correlation strength should decrease 
toward 0. New correlation strength is calculated 
using the same equations as the BFA algorithm. 

After the average frequency differences and 
correlation strengths for each byte value pair of the 
new input file have been updated in the fingerprint, 
the Number of Files field is incremented by 1 to 
indicate the addition of the new file. 

It is interesting to compare the frequency 
distribution graphs of BFA algorithm to the byte 
frequency cross-correlation plots generated from 
BFC algorithm.  Figure II.7 shows the frequency 
distribution for the HTML file format, and Figure II.9 
shows a graphical plot of the HTML fingerprint 
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cross-correlation array.  Note that there are ranges of 
byte values in the frequency distribution that never 
occurred in any files (they appear with 0 frequency.)  
These regions appear in the cross-correlation plot as 
mid-tone gray regions of 0 frequency difference. 
Furthermore, the intersection of 60 on the vertical 
axis with 62 (corresponding to the ASCII values for 
the “<” and “>”) shows a dark dot representing a 
correlation strength of 1, as expected. 

Looking at a graphical plot of a GIF fingerprint 
cross-correlation array (not shown to save space), a  
sawtooth pattern in the frequency distributions is a 
characteristic feature of the GIF file type, and it 
manifests in the cross-correlation plot as a subtle grid 
pattern in the frequency difference region.  
 
II.2.3 Comparing a single file to a fingerprint 
 

When identifying a file using the byte frequency 
cross-correlation algorithm (BFC): 
� Compute a score, similar to BFA,  for each 

fingerprint identifying how closely the unknown 
file matches the fingerprint.  The score is generated 
by comparing the frequency difference for each 
byte value pair from the unknown file with the 
average frequency difference for the corresponding 
byte value pair from the fingerprint.  As the 
difference between these values decreases, the 
score should increase toward 1.  As the difference 
increases, the score should decrease toward 0. 
� Compute the assurance level,  indicating how much 

confidence can be placed on the score. File types 
that have characteristic cross-correlation patterns 
should have high assurance levels, others should 
have low assurance levels. As with the BFA 
algorithm, the correlation strengths are used to 
generate a numeric rating for the assurance level. 
The higher the assurance level, the more weight 
can be placed on the score for that fingerprint. 
� Compare the unknown file’s cross-correlation array 

to the cross-correlation scores and correlation 
strengths stored in each file type fingerprint and 
pick the best match. 

 
II.3   File header/trailer (FHT) algorithm 
 

BFA and BFC make use of byte value 
frequencies to characterize and identify file types.  
While these characteristics can effectively identify 
many file types, some do not have easily identifiable 
patterns.  To address this, the file headers and file 
trailers can be analyzed and used to strengthen the 
recognition of many file types.  The file headers and 
trailers are patterns of bytes that appear in a fixed 
location at the beginning and end of a file 
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respectively.  These can be used to dramatically 
increase the recognition ability on file types that do 
not have strong byte frequency characteristics. 

This section describes the methods used to build 
the header and trailer profiles of individual files, to 
combine the ratings from multiple files into a 
fingerprint for the file type, and to compare an 
unknown file to a file type fingerprint, obtaining a 
numeric score.  

 
II.3.1 Building the header and trailer profiles 
 

The first step in building header and trailer 
profiles is to decide how many bytes from the 
beginning and end of the file will be analyzed.  If H 
is the number of file header bytes to analyze, and T is 
the number of trailer bytes to analyze, then two two-
dimensional arrays are built, one of dimensions H × 
256 and the other of dimensions T × 256.  For each 
byte position in the file header (trailer), all 256 byte 
values can be independently scored based upon the 
frequency with which the byte value occurs at the 
corresponding byte position.   

An individual file’s header array is initially set to 
0. For each byte position in the header, from byte 0 
(the first byte in the file) to byte H – 1, the array 
entry corresponding to the value of the byte is filled 
with a correlation strength of 1 (each row has 255 
zeros and a single one). The only exception occurs 
when an input file is shorter than the header or trailer 
lengths.  In this case, the fields in the missing byte 
position rows will be filled with the value -1 to 
signify no data.  (Note that if a file length is greater 
than the header and trailer lengths, but less then the 
sum of the two lengths, then the header and trailer 
regions will overlap.) The trailer array is similarly 
constructed. 

 
II.3.2 Combining header and trailer Profiles into a 

fingerprint 
 

A fingerprint is constructed by averaging the 
correlation strength values from each file into the 
fingerprint using the following equation, which is 
similar to the ones used in BFA and BFC algorithms, 
where NFPA is the new fingerprint array entry, 
OFPA is the old fingerprint array entry, PNF is the 
previous number of files, and NA is the new array 
entry.  

( )
1+

+×=
PNF

NAPNFOFPANFPA  

 
        A sample graphical plot of the file header 
fingerprint array is shown in Figure II.11 (please note 
the very light markings on the figure) for the GIF file 
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type. The first few bytes of the GIF header show high 
correlation strengths (represented by dark marks,) 
indicating that this type has a strongly characteristic 
file header.  The specification for the GIF format 
states that the files shall all begin with the text string 
“GIF87a” for an earlier version of the format, or 
“GIF89a” for a later version. Further inspection of 
Figure II.11 shows that rows 0-3 and 5 have 
correlation strengths of 1 for the byte value positions 
corresponding to ASCII values of “GIF8” and “a”.  
In row four, byte values 55 and 57 (ASCII values for 
“7” and “9” ) both show correlation strengths roughly 
balanced.  This indicates that approximately equal 
numbers of files of each version of the GIF format 
were loaded into the fingerprint. Beyond byte 
position six, there is a much broader distribution of 
byte values, resulting in lower correlation strengths 
and lighter marks on the plot. 

 
 

 
Figure II.9 - Byte frequency cross-correlation plot 

for the HTML file type 
 
        Figure II.12 shows a very similar plot of the file 
trailer for the MPEG file type fingerprint, where the 
end of the file is represented by byte position 0 at the 
bottom of the plot.  This plot shows a broad 
distribution of byte values (resulting in extremely 
faint marks) up until four bytes from the end of the 
file.  These final four bytes show a characteristic 
pattern similar to the pattern described above for the 
GIF file header. 

Note that for file types that do not have a 
characteristic file header or trailer, the corresponding 
plots would appear essentially empty, with many 
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scattered dots with very low correlation strengths 
(therefore producing almost white dots.) 

 
II.3.3 Comparing a single file to a fingerprint 
 
When identifying a file using the file headers and 
trailers algorithm (FHT):  
� Construct the file header and trailer arrays for the 

unknown file as described above. 
� Use the following equation to generate the score 

for the file header and trailer, where C is the 
correlation strength for the byte value extracted 
from the input file for each byte position, and G is 
the correlation strength of the byte value in the 
fingerprint array for the corresponding byte 
position. This equation produces an average of the 
correlation strengths of each byte value from the 
input file, weighted by the greatest correlation 
strength at each byte position.  This results in 
placing greatest weight on those byte positions 
with a strong correlation, indicating that they are 
part of a characteristic file header or trailer, and 
placing much less weight (ideally no weight) on 
values where the file type does not have consistent 
values. 

n

nn

GGG
GCGCGCS

+++
+++=

K

K

21

2211  

� The assurance level for the file header and file 
trailer is simply set equal to the overall maximum 
correlation strength in the header and trailer arrays, 
respectively.  This is different from the approach 
used in BFA and BFC algorithms, where the 
average of all correlation strengths was used. 
� Compare the unknown file’s header/trailer 

information to the cross-correlation scores and 
correlation strengths stored in each file type 
fingerprint and pick the best match. 

 
        The GIF file header provides a clear example.  
The first four byte positions each have a correlation 
strength of 1 for a single byte.  This indicates that all 
input files of the GIF file type had the same byte 
values for these positions.  If an unknown file has 
different bytes in these positions, it is a very strong 
indicator that it is not a GIF file.  On the other hand, 
if the unknown file has a differing byte value at 
position 20, which shows a very low correlation 
strength, this offers no real information about 
whether the unknown file is a GIF file or not since 
there are no bytes in this position with a high 
correlation strength. 

Setting the assurance level equal to the 
maximum correlation strength allows even a few 
bytes with very high correlation strength, such as 
those in the GIF file format to provide a strong 
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indication of file type.  Therefore even a few bytes 
can produce a strong influence in recognition.  On the 
other hand, if a file type has no consistent file header 
or trailer, the maximum correlation strength will be 
very low.  This means little weight will be placed on 
the header or trailer with the low assurance level. 
 

 
Figure II.11 - File header plot for the GIF file 

fingerprint 
 
        The optimal header (trailer) length is the value 
that results in the highest average level of 
differentiation across all file types.  Our experimental 
results indicate that the optimum header and trailer 
length for file type identification is five [1].  
 
III.   Experimental results  
 

In this section we describe our experimental 
results, using each of the 3 above-mentioned 
algorithms to identify file types. Thirty file type 
fingerprints are constructed and used for this test.  To 
run the accuracy test, four test files are selected for 
each file type, resulting in a total library of 120 files. 
Combining the file types ACD, DOC, PPT, and XLS 
into a single OLE DOC fingerprint, using the average 
of the four type fingerprints, resulted in a more 
accurate type recognition for BFC and FHT 
algorithms and a slight decrease for BFA. Following 
shows the accuracy test results for each of the 3 
algorithms. Type recognition reports were generated 
for each of the 120 test files: 
• Figure III.1 shows the resulting file type 

identification grid for BFA algorithm. BFA’s  
accuracy is only 27.50%.  This is better than purely 
random guesses but not accurate enough for 
practical use.  We should note that the accuracy of 
this algorithm increases to 29.17% if separate 
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fingerprints are used for ACD, DOC, PPT, and 
XLS files, not a significant improvement. 

• Figure III.2 shows the resulting file type 
identification grid for BFC algorithm. BFC’s 
accuracy is only 45.83%.  This is a significant 
improvement over BFA, but not accurate enough 
for practical use. 

• Figure III.3 shows the resulting file type 
identification grid for FHT algorithm.  FHT’s 
accuracy is 95.83%. This is a significant 
improvement over BFA and BFC and may be 
accurate enough for some fault-tolerant 
applications. We should note that using separate 
fingerprints for ACD, DOC, PPT, and XLS files 
decreases FHT’s accuracy to 85%, most of the 
errors occurred between the ACD, DOC, PPT, and 
XLS file type identification. 

 
 File 1 File 2 File 3 File 4 Score 

3TF 3TF 3TF 3TF 3TF 4 
ACD 3TF 3TF OLE  OLE  2 
AVI 3TF CRP RM 3TF 0 
BMP 3TF 3TF FNT 3TF 0 
CAT CAT CAT CAT CAT 4 
CRP CRP CRP CRP CRP 4 
DOC WPD 3TF 3TF 3TF 0 
EXE FNT 3TF 3TF CRP 0 
FNT 3TF 3TF 3TF GIF 0 
GIF RM ZIP RM RM 0 
GZ MP3 TAR ZIP CRP 0 
HTML RTF TXT CAT CAT 0 
JPG JPG GZ MP3 MP3 1 
MDL CAT CAT CAT CAT 0 
MOV CRP CRP RM RM 0 
MP3 MP3 GZ MP3 MP3 3 
MPEG CRP CRP MP3 CRP 0 
PDF CRP PDF EXE TXT 1 
PPT 3TF 3TF 3TF 3TF 0 
PS TXT TXT CAT TXT 0 
RTF RTF RTF RTF CAT 3 
RM RM CRP RM CRP 2 
RPM GZ CRP GZ GZ 0 
TAR CRP CAT TXT ZIP 0 
TXT TXT CAT TXT TXT 3 
TTF TTF TTF TTF WPD 3 
WAV CAT TXT FNT 3TF 0 
WPD 3TF 3TF WPD TXT 1 
XLS WPD FNT 3TF 3TF 0 
ZIP GIF ZIP ZIP GIF 2 

TOTAL CORRECT: 33 
TOTAL FILES: 120 

Accuracy: 27.50% 
 

Figure III.1   Identified type of each test file with a 
combined OLE DOC fingerprint, BFA algorithm. 
 
IV.  Conclusions and future work 
 

The BFA algorithm proved to be the fastest of 
the three algorithms.  An unknown file takes an 
average of 0.010 seconds to compare to 25 
fingerprints and identify the closest match (All times 
were taken on an 800 MHz Pentium III laptop with 
512 MB RAM ).  Because of its poor accuracy, BFA 
would be of a very limited use.  The calculations 
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performed in this algorithm, though, are used as the 
basis for the BFC.  

The BFC algorithm proved to be by far the 
slowest and only moderately more accurate than 
BFA.  An unknown file takes an average of 1.19 
seconds to compare to 25 fingerprints and identify 
the closest match.  This algorithm offers slightly 
improved accuracy over BFA but its accuracy is still 
too low to be of practical use in most applications. 

The FHT algorithm provides the best 
combination of speed and accuracy.  An unknown 
file takes an average of 0.015 seconds to compare to 
25 fingerprints and identify the closest match, which 
is almost as fast as BFA. This algorithm had by far 
the highest accuracy at 95.83% for a combined OLE 
DOC fingerprint and 85% for separate ACD, DOC, 
PPT, and XLS fingerprints. 
 

 File 1 File 2 File 3 File 4 Score 
3TF 3TF 3TF 3TF 3TF 4 
ACD OLE  OLE  OLE  OLE  4 
AVI OLE  CAT OLE  3TF 0 
BMP 3TF 3TF TTF 3TF 0 
CAT CAT CAT CAT CAT 4 
CRP CRP CRP CRP CRP 4 
DOC OLE  OLE  OLE  OLE  4 
EXE OLE  OLE  OLE  OLE  0 
FNT 3TF 3TF 3TF 3TF 0 
GIF GIF GIF 3TF 3TF 2 
GZ 3TF 3TF 3TF 3TF 0 
HTML RTF TXT CAT CAT 0 
JPG 3TF 3TF 3TF 3TF 0 
MDL MDL CAT MDL MDL 3 
MOV GIF GIF 3TF 3TF 0 
MP3 3TF MP3 MP3 MP3 3 
MPEG 3TF MPEG 3TF OLE  1 
PDF PDF PDF PDF TXT 3 
PPT OLE  OLE  OLE  OLE  4 
PS TXT TXT CAT TXT 0 
RTF RTF TXT RTF TXT 2 
RM OLE  RM RM RM 3 
RPM RPM OLE  RPM RPM 3 
TAR OLE  CAT 3TF RPM 0 
TXT TXT CAT TXT TXT 3 
TTF TTF TTF OLE  OLE  2 
WAV TXT TXT TXT TXT 0 
WPD WPD WPD WPD TXT 3 
XLS 3TF OLE  OLE  OLE  3 
ZIP 3TF 3TF 3TF 3TF 0 

TOTAL CORRECT: 55 
TOTAL FILES: 120 

Accuracy: 45.83% 

  
Figure III.2 Identified type of each test file with a 

combined OLE DOC fingerprint, using BFC 
algorithm 

Although FHT performs considerably better than 
the other algorithms, 95.83% accuracy, there would 
be a tradeoff in only using this algorithm.  Not all file 
types have consistent file headers or trailers and 
would most likely not be correctly recognized if only 
FHT were used.  BFA and BFC could help with the 
identification of the few files FHT was unable to 
identify. We are working on developing algorithms 
that use a combination of these techniques to improve 
type identification accuracy.  
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Other improvements could be investigated in the 
methods used to compute the score for BFA and 
BFC.  Perhaps more sophisticated curve-matching (or 
other) algorithms could be tested to see if they would 
improve the accuracy of these options. Improvements 
could, also, be made in computing the score and 
correlation strength for header and trailer analysis as 
well.  The header and trailer tests both showed 
degradation in performance as longer header and 
trailer lengths were used.  It should be possible to 
modify the scoring algorithm to prevent this 
degradation 

Overall, the algorithm proved effective at 
correctly identifying the file types of files based 
solely upon the content of the files.  FHT algorithm 
identified executable files with 100 percent accuracy.  
This option could therefore be of use to virus 
scanning packages that are configured to only scan 
executable files.  FHT is extremely fast and for 
header and trailer lengths of five bytes, the total 
fingerprint size for an executable fingerprint would 
be only 53 bytes. The algorithm could possibly be of 
use to cryptanalysts as well.  It could be used to 
automatically differentiate between real data and 
“random” encrypted traffic.   

A number of other systems could also benefit 
from the described file recognition approach.  These 
include forensic analysis systems, firewalls 
configured to block transfers of certain file types, 
web browsers, and security downgrading systems.  
Further refinements would be required, however, 
before the algorithm would be fast enough or 
accurate enough to be used by an operating system 
that must reliably deal with a large number of varied 
file types. 
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   File 1 File 2 File 3 File 4 Score 

3TF 3TF 3TF 3TF 3TF 4 
ACD OLE  OLE  OLE  OLE  4 
AVI AVI AVI AVI AVI 4 
BMP BMP BMP BMP BMP 4 
CAT CAT CAT CAT CAT 4 
CRP CRP CRP CRP CRP 4 
DOC OLE  OLE  OLE  OLE  4 
EXE EXE EXE EXE EXE 4 
FNT FNT FNT FNT RPM 3 
GIF GIF GIF GIF GIF 4 
GZ GZ GZ GZ GZ 4 
HTML HTML HTML HTML HTML 4 
JPG JPG JPG JPG JPG 4 
MDL MDL CAT MDL MDL 3 
MOV MOV MOV MOV MOV 4 
MP3 RM MP3 MP3 MP3 3 
MPEG MPEG MPEG MPEG MPEG 4 
PDF PDF PDF PDF PDF 4 
PPT OLE  OLE  OLE  OLE  4 
PS PS PS PS PS 4 
RTF RTF RTF RTF RTF 4 
RM RM RM RM RM 4 
RPM RPM RPM RPM RPM 4 
TAR TAR TAR TAR TAR 4 
TXT TXT TXT TXT TXT 4 
TTF TTF TTF TTF TTF 4 
WAV AVI WAV WAV AVI 2 
WPD WPD WPD WPD WPD 4 
XLS OLE  OLE  OLE  OLE  4 
ZIP ZIP ZIP ZIP ZIP 4 

TOTAL CORRECT: 115 
TOTAL FILES: 120 

Accuracy: 95.83% 
 

Figure III.3   Identified type of each test file with a 
combined OLE DOC fingerprint, using FHT 

algorithm. 
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