
Model-Based Systems Engineering:

Some Messages for
Digital Transformation in Government

Timothy C. Lethbridge, PhD, P. Eng, ISP, FCIPS

Timothy.Lethbridge@uottawa.ca
http://www.eecs.uottawa.ca/~tcl

mailto:Timothy.Lethbridge@uottawa.ca
http://www.eecs.uottawa.ca/~tcl

Who am I?
Professor of Software Engineering at uOttawa

• Research: code generation, usability, enterprise architecture
• Textbook author: Software Engineering

Professional societies
• CIPS; Board member, Former head of Accreditation Council
• Senior member of IEEE, ACM
• P.Eng.

Industrial Experience
• Mid 1980’s Government of New Brunswick
• Later 1980’s BNR (Nortel)
• 1990’s: Research/consulting with Boeing, Mitel, Federal Government
• 2000’s: Research with IBM, GM, KDM Analytics

Lethbridge: Model-Based Systems Engineering 217:09

What I will talk about
Key problems we need to address

• Government is a complex system of systems

Ways to help make digital government systems more
successful:

—Use systems thinking (consider interconnectedness,
interactions, patterns)

—Generate systems from models
—Be agile
—Attract staff with the right skills
—”Buy, don’t build” is not always the right answer

- Better balance procuring/developing
—Think in terms of user experience (UX)

Lethbridge: Model-Based Systems Engineering 317:09

System
A logical entity

• having a set of definable responsibilities or objectives,
• and which can be divided into interacting components or

subsystems.

Hardware, software, social, natural or a combination.

Natural systems have evolved to survive in a changing
environment

Artificial systems must be designed to achieve their goal
while surviving in a changing environment

Lethbridge: Model-Based Systems Engineering 417:09

Types and Characteristics of Systems

Lethbridge: Model-Based Systems Engineering 517:09

Model
A (simplified/abstract) representation of a system

• Machine-analyzable (ideally)

• Can be
—Descriptive
—Prescriptive: used to generate artifacts (such as code,

manufactured products) or to control processes

• Views: diagrammatic, mathematical, tabular, textual, or
physical

—Have: abstract and concrete syntax
—Have: semantics

Lethbridge: Model-Based Systems Engineering 617:09

Systems Engineering
Solving problems

by procuring, designing, adapting, configuring, integrating
and evolving …
complex software, hardware, networking, and business
process components …
within quality, cost, time, human-nature and other
constraints

The application of engineering principles to systems

Lethbridge: Model-Based Systems Engineering 717:09

A core knowledge source for Systems
Engineering: SEBoK
The Systems Engineering Body of Knowledge

• www.sebokwiki.org
• Version 2.0 available since June 1, 2019
• Published by

—INCOSE
—SERC
—IEEE Computer Society

• Some diagrams and concepts in this presentation come
from SEBoK

Lethbridge: Model-Based Systems Engineering 817:09

http://www.sebokwiki.org/

Software Engineering
A special case of Systems Engineering

Solving problems by designing, adapting, configuring,
integrating and evolving complex software, in a broader
environment, within quality, cost, time, human-nature and
other constraints

Software tends to be the most failure prone system type
—It is hard to know what is needed (requirements)
—Talent is lacking and/or expensive
—Complexity and technical debt can grow rapidly
—User experience is key

Lethbridge: Model-Based Systems Engineering 917:09

Systems Thinking

Sensibility to subtle interconnectedness, interactions, patterns
Especially in control, hierarchy, emergence and complexity

Lethbridge: Model-Based Systems Engineering 1017:09

A View of of Systems Engineering and
related Disciplines (from SEBoK)

Lethbridge: Model-Based Systems Engineering 1117:09

Model-Based Systems Engineering (MBSE)

Models are the primary artifacts
• As opposed to documents (which dominated early

decades of systems engineering)

Models of systems allow us to
• Think abstractly
• Simulate before implementing
• View the system from different perspectives
• See the subtle interactions
• Analyze, test, validate to find defects
• Generate the final system, and each subsequent version

Lethbridge: Model-Based Systems Engineering 1217:09

Some Models in an Automotive System (Paradis 2011)

Think of the subtle interactions!

Lethbridge: Model-Based Systems Engineering 1317:09

Types of Models in a Payroll System
Think of the subtle interactions!

Data models (Class/ERD)
• Employees / Positions / Supervisors / Substantives / Acting Roles /

Temporary Assignments / Departments / Unions / Jurisdictions / Collective
Agreements / Job descriptions / Work units / Pay Scales / Progress
Through Ranks / Overtime / Pay computations / Pay periods / Benefits /
Deductions / Taxes / Pay Actions / Error Corrections / Reports

Process Models: What has to happen, in what order, under
what constraints, by what time

State models: What state can each data item can be in and
when does it change state

Lethbridge: Model-Based Systems Engineering 1417:09

SysML and UML: Modeling languages

Lethbridge: Model-Based Systems Engineering 1517:09

Some UML models: Class diagrams
• Show classes, attributes, generalizations and

interrelationships among data (associations) in ways hard
to see by just looking at code

• Model at: http://try.umple.org/?example=Airline&diagramtype=GvClass

Lethbridge: Model-Based Systems Engineering 1617:09

http://try.umple.org/?example=Airline&diagramtype=GvClass

Entity-Relationship Diagrams (ERD)

For many purposes, interchangeable with class diagrams
• Used heavily in database community (Not UML)

Lethbridge: Model-Based Systems Engineering 1717:09

State Machines

• Show behaviour
• Behaviour changes in

response to events

Lethbridge: Model-Based Systems Engineering 1817:09

SysML Diagrams

Lethbridge: Model-Based Systems Engineering 1917:09

A Selection of systems engineering tools

• Papyrus SysML
• Modelio
• Rational Rhapsody
• MagicDraw
• Sparx EA
• Enterprise Architect

• EA tools such as Archimate
Plus other tools used for design of software, hardware,

business processes

Lethbridge: Model-Based Systems Engineering 2017:09

Sample UML modeling tools in wide use
• Papyrus, and other Eclipse-based tools

—Open source leaders
• IBM Rhapsody, current most widely used IBM tool
• ArgoUML

—Developed 1999-2011, but not maintained
• Astah
• Magic Draw
• StarUML
• PlantUML
• Visual Paradigm

For more details and links see
https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools

Lethbridge: Model-Based Systems Engineering 2117:09

https://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools

Other MDD technologies (language+tool):
Simulink and Stateflow
Part of MathWorks’ MATLAB suite

• Widely used in automotive and other safety-critical
domains

• But expensive and not taught much to general software
engineers

Lethbridge: Model-Based Systems Engineering 2217:09

User Experience

Usability + Aesthetics + The Right Functionality

Central to project success
• Requires awareness and investment

Usability = Learnability + Efficiency of Use + Error avoidance

UX talent is in short supply
• Training is needed

Lethbridge: Model-Based Systems Engineering 2317:09

Model-Driven Systems Engineering likely
beats “Buy, don’t Build”

Corporate products, especially COTS, are legacy too!
• Not designed for purpose
• Corporate employees are often not familiar with the

systems,
—just as lacking in skills as public servants.

Data and processes in government tend to be unique and
complex

Integration of systems requires enterprise-wide models:
• Enterprise Architecture

17:09 Lethbridge: Model-Based Systems Engineering 24

Agility
Developing very small changes to systems, and releasing

frequently,
while responding to stakeholder needs,
maintaining high quality
and keeping overhead and technical debt low

It’s about balancing
1. Speed/Velocity (dates for delivery)
2. Functionality
3. Quality
4. Financial viability

Adjust 1 and 2, avoiding risks from sacrificing 3 and 4
Lethbridge: Model-Based Systems Engineering 2517:09

So why be agile?
• Delivers core stakeholder value earlier
• Enables better quality of life by reducing stress and

overtime
• Better manages stakeholder needs, which change

and are usually not fully knowable
• Allows teams to build quality into systems without

being held to ransom by unreasonable delivery
requirements

• Keeps costs under control
• Lets any project fail fast if going in the wrong direction

“Waterfall” doesn’t work for most projects

Lethbridge: Model-Based Systems Engineering 2617:09

How to be agile (1)

Plan small updates (based on issue tracking and ‘sprints’).
• Or even better, Continuous Integration (CI)

Deliver automated tests with all increments
• Run every time anyone builds
• Even better: Test-Driven Development

Design, document and manage with low overhead
• Collaborative design with wikis and issue comments
• Generate documentation from models and embedded

comments

Lethbridge: Model-Based Systems Engineering 2717:09

How to be agile (2)
Automate, automate, automate

—Version control
—Continuous integration
—Design (tools)
—Software code generation
—Testing
—Analysis (metrics, defect finding)
—Documentation generation
—Review processes
—Release/distribution
—Management of dependencies

Lethbridge: Model-Based Systems Engineering 2817:09

How to be agile (3)

Involvement of and responsiveness to end-users
• Understand and respond to their needs
• So as to deliver them a good user experience

• Have them ‘in house’ to
—Discuss plans, designs
—Try out prototypes

• Get a working early system version into their hands fast

Lethbridge: Model-Based Systems Engineering 2917:09

Any challenges to being agile (1)?
Tricky if you are given a binder of pre-written requirements!

• Some solutions:
—Negotiate to be agile
—Decline to accept a contract for unchangeable

requirements

Lethbridge: Model-Based Systems Engineering 3017:09

Any challenges to being agile (2)?

Tricky if we are asked to adopt a giant pre-existing system
• That is not designed for agility

Some solutions
—Develop from scratch with agility from the start
—Roll out slowly to small groups of stakeholders

Lethbridge: Model-Based Systems Engineering 3117:09

Any challenges to being agile (3)?
For some embedded systems:

• Model and simulate safety and security: non-negotiable
• Certification of in-field changes is required

For systems with many or complex interfaces to other systems
• Modeling of interfaces avoids chaos

Lethbridge: Model-Based Systems Engineering 3217:09

Test driven development (TDD)
Tests are the specification of what system should do with

automatically verifiable results.

Process:
• Write the tests
• Verify they fail

• Design and implement the system increment
• Verify the tests pass

• Perform other refactoring or changes as needed
• Always verify the tests keep passing

Lethbridge: Model-Based Systems Engineering 3317:09

Continuous integration (CI)

Integrate agile increments into customer-facing systems as
soon as they are ready (maybe multiple times a day!)

• ‘Ready’ means checks have passed such as:
—100% of pre-written tests
—Reviews, inspections
—Automated analysis for vulnerabilities

Options:
• Slow releases as well as continuous releases
• A/B testing – some users given experimental version

Lethbridge: Model-Based Systems Engineering 3417:09

Curation of issues / backlog

Bugs, features, enhancements are all issues

Can come from end-users, customers, marketing,
developers

• Developer issues might include refactoring and dealing
with technical debt

There is a need to work on the highest-value issues first
• Both bugs and enhancements
• Not do ‘too much’
• Regular sorting ‘planning game’ needed

Lethbridge: Model-Based Systems Engineering 3517:09

Planned reduction of technical debt

Technical Debt (TD)
= required future development needed to avoid excess costs
(interest) from software evolution and support

Examples
• Inflexible/non-scalable design choices
• “quick and dirty” implementation
• The need to upgrade obsolescent dependencies

Agility helps manage TD
• By allowing scheduling of regular refactoring activities

Lethbridge: Model-Based Systems Engineering 3617:09

What can break agility?
• Managing documents rather than models

• Contracting out without attention to agility

• Procuring a large system and then trying to make it
conform!

• Developing CAN be better if done in an agile manner
using models

• Lack of automation and other weaknesses in tools

Lethbridge: Model-Based Systems Engineering 3717:09

Difficulty level of top 15 software modeling
tools in a survey my team conducted (2017)

38Lethbridge: Model-Based Systems Engineering 17:09

39

Biggest perceived
drawbacks of all
modeling tools

Lethbridge: Model-Based Systems Engineering 17:09

Perceived
biggest
drawbacks
of top 7
tools

40

Argo
UML

Astah Eclipse
Mod.
Tools

Magic
Draw
UML

Papyrus Star
UML

Visual
Paradigm

Complex to use

25.0% 11.5% 22.2% 46.2% 42.9% 11.8% 10.5%

Slow to use

12.5% 11.5% 11.1% 15.4% 14.3% 17.6% 5.3%

Does not generate
code of the
quality I would
like

25.0% 38.5% 11.1% 23.1% 21.4% 23.5% 10.5%

Does not support
some modeling
aspects

25.0% 19.2% 0.0% 30.8% 7.1% 17.6% 15.8%

Does not give
sufficient
feedback about
models

37.5% 53.8% 22.2% 23.1% 42.9% 35.3% 42.1%

Hard to draw
diagrams

25.0% 0.0% 55.6% 30.8% 28.6% 17.6% 21.1%

Does not interact
well with other
tools

6.3% 11.5% 22.2% 30.8% 0.0% 11.8% 10.5%

Buggy 18.8% 0.0% 11.1% 7.7% 28.6% 5.9% 5.3%

Not kept up to
date

25.0% 3.8% 0.0% 0.0% 0.0% 17.6% 10.5%

Lethbridge: Model-Based Systems Engineering 17:09

Textual modeling, and motivation for Umple …

Lethbridge: Model-Based Systems Engineering 4117:09

Textual modeling tools

Almost all modeling tools support a way to exchange models
textually: XMI (XML Metadata Interchange)

• But not intended or easy for human editing

Some tools are specifically designed to allow modeling
textually in the same way one would program

• Many examples:
—List at https://modeling-languages.com/text-uml-tools-complete-list/
—PlantUML: https://www.planttext.com

- Nice, but lacks features such as complete code generation
—Others: USE, TextUML, yUML

Lethbridge: Model-Based Systems Engineering 4217:09

https://modeling-languages.com/text-uml-tools-complete-list/
https://www.planttext.com/

Umple: Simple, Ample,
UML Programming Language
1. Open source textual modelling tool set for 3 platforms

• Command line compiler
• Web-based tool (UmpleOnline) for demos and education
• Eclipse plugin

2. Code generator for UML ++
• Infinitely nested state machines, with concurrency
• Proper referential integrity and multiplicity constraints on

associations
• Traits, mixins, aspects for modularity
• Text generation templates, patterns, traits

3.Pre-processor to add UML, patterns and other features on top of
Java, PhP, C++ and other languages

Lethbridge: Model-Based Systems Engineering 4317:09

Quick demo

Entry-point: http://umple.org

UmpleOnline: http://manual.umple.org

Github: https://github.com/umple/umple

Lethbridge: Model-Based Systems Engineering 4417:09

http://umple.org/
http://manual.umple.org/
https://github.com/umple/umple

Motivation for developing Umple (1)
We want the best combination of features:

• Textual editing and blending with other languages
• Ability to use in an agile process

—Write tests, continuous integration, versioning
—Combine the best of agility and modeling

• Excellent code generation
—Complete generation of real systems (including itself)

• Multi-platform (command line, Eclipse, Web)
• Practical and easy to use for developers

—Including great documentation
• Open source

Lethbridge: Model-Based Systems Engineering 4517:09

Conclusions
Ways to help make digital government systems more

successful
—Use systems thinking (consider interconnectedness,

interactions, patterns)
—Generate systems from models
—Be agile
—Attract staff with the right skills
—”Buy, don’t build” is not always the right answer

- Better balance procuring/developing
—Think in terms of user experience

Lethbridge: Model-Based Systems Engineering 4617:09

