BUILD THE VISION

Unified Architecture Framework An Introduction

ISACA / AEA / DRIE Professional Seminar Ottawa, 28th of January 2019 Presented by: Robert Weisman, MSc, PEng, PMP, CD CEO Build The Vision Incorporated <u>Robert.weisman@buildthevision.ca</u> <u>rweisman@uottawa.ca</u> www.buildthevision.ca

Unified Architecture Framework (UAF) An Introduction - Abstract

The Unified Architecture Framework (UAF) is an extensive update of the NATO Architecture Framework (NAF), UK Ministry of Defence Architecture Framework (MODAF) and US Department of Defense Architecture Framework (DODAF) that provides the viewpoints necessary to enable complex architectures to be developed and implemented.

Some of the matters addressed include cyber-security, governance and enables continuous audit.

The presentation will provide an overview of the UAF, an open standard, that is expected to be used globally in defence as well as in many governments.

Biography Robert Weisman, MSc, PEng, PMP, CD

Robert Weisman MSc, PEng has been actively working in the field of Enterprise Architecture and Portfolio Management since the late 1980's in both public and private sector.

Robert is also heavily involved in governance and audit in consulting and is Vice President of the Information Systems Audit and Control Association (Ottawa Chapter). He has worked throughout the Government of Canada bringing business and technology stakeholders together.

Robert has worked in Enterprise Architecture since 1993 in Strategic Direction in the Defence Information Services Organization and after five years joined CGI as a management consultant where he started the global EA practice.

Robert is a civil / military engineer who also has completed Army staff college and undergraduate and graduate studies in Computer Science (artificial intelligence / decision support). Currently Bob is Engineer in Residence, part-time professor and Phd candidate at the University of Ottawa where he is studying in the multi-disciplinary domain of e-Business (e-Society, e-Management and e-Technology) specializing in the business of government. He created and has taught the graduate EA Course at UofO since 2016, as well as teaching TOGAF 9.2 in Build The Vision Inc.

- 1. Introduction and Context
- 2. EA Fundamentals
- 3. The Unified Architecture Framework
- 4. Concluding Material

Part 1 Introduction and Context

ISACA / AEA / DRIE Professional Seminar Ottawa, 28th of January 2019 Presented by: Robert Weisman, MSc, PEng, PMP, CD CEO Build The Vision Incorporated <u>Robert.weisman@buildthevision.ca</u> <u>rweisman@uottawa.ca</u> <u>www.buildthevision.ca</u>

What is the Unified Architecture Framework?

- The Unified Architecture Framework[®] (UAF[®]) is a generic and commercially orientated architecture framework based on work in defence domain by the Object Management Group (OMG)
- UAF defines ways of representing an enterprise architecture that enables stakeholders to focus on specific areas of interest in the enterprise while retaining sight of the big picture.
- UAF meets the specific business, operational and systems-ofsystems integration needs of commercial and industrial enterprises as well as the U.S. Department of Defense (DoD), the UK Ministry of Defence (MOD), the North Atlantic Treaty Organization (NATO) and other defense organizations.
- Remember defence / defense has a huge supply chain of civilian providers

Model-Based Systems Engineering (MBSE)

- a <u>systems engineering</u> methodology that focuses on creating and exploiting <u>domain models</u> as the primary means of information exchange between engineers, rather than on document-based information exchange.
- More recently, the focus has also started to cover aspects related to the *model execution in computer simulation experiment*, to further overcome the gap between the system model specification and the respective simulation software.
- As a consequence, the term modeling and simulationbased systems engineering (M&SBSE) has also been used along with MBSE

Model-Driven Architecture (MDA)

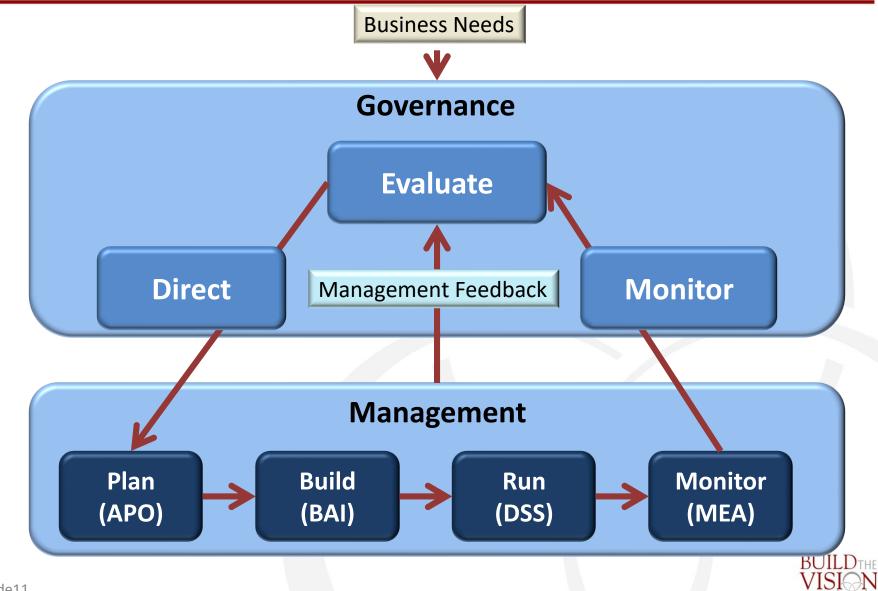
- a <u>software design</u> approach for the development of <u>software systems</u>.
- provides a set of guidelines for the structuring of specifications, which are expressed as <u>models</u>.
- launched by <u>Object Management Group</u> (OMG) in 2001.
- OMG focus for MDA is on forward engineering, i.e. producing code from abstract, human-elaborated modelling diagrams (e.g. class diagrams).
- Architecture-Driven Modernization's objective is to produce standards for model-based reverse engineering of legacy systems.

Part 2 EA Fundamentals

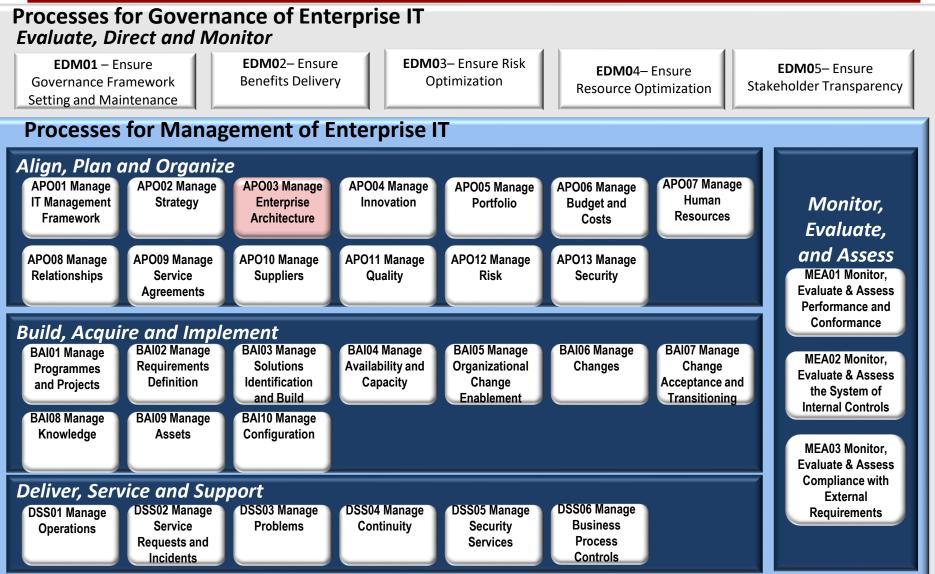
ISACA / AEA / DRIE Professional Seminar Ottawa, 28th of January 2019 Presented by: Robert Weisman, MSc, PEng, PMP, CD CEO Build The Vision Incorporated <u>Robert.weisman@buildthevision.ca</u> <u>rweisman@uottawa.ca</u> www.buildthevision.ca

The Three Components of EA (Also of Strategic Management EMBOK)

Architecture


- A formal description of an enterprise,
- a. its component parts,
- b. their inter-relationships, and
- c. the principles and guidelines governing their design and
- d. evolution over time.

Target Architecture


As-Is (Baseline Architecture) Implementation and Migration Plan

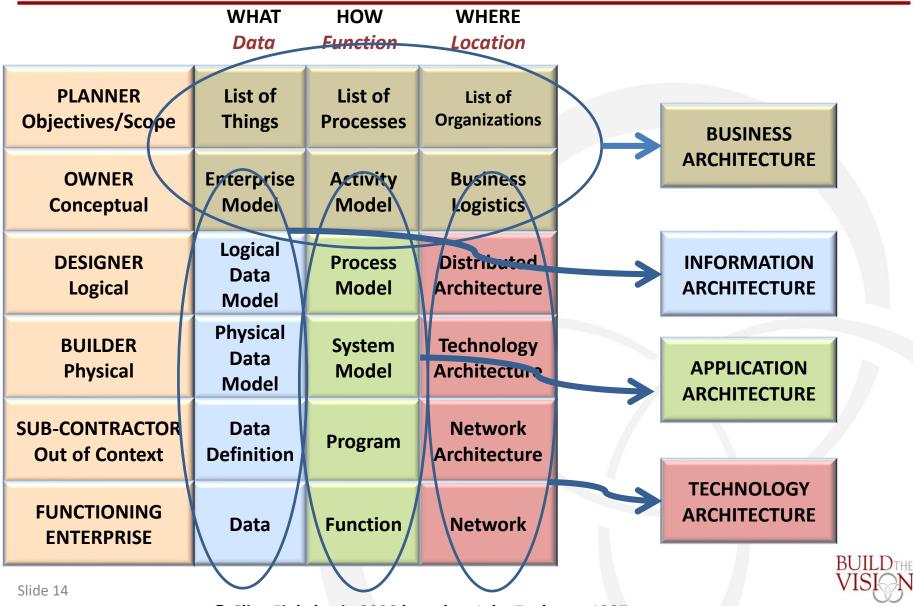
COBIT 5 – Governance and Management Key Areas

Why EA for Audit and Governence ? COBIT 5 Process Reference Model

Different Dimensions to be Considered at Different

Levels of Abstraction

	WHAT Data	HOW Function	WHERE Location	
PLANNER Objectives/Scope	List of Things	List of Processes	List of Organizations	
OWNER Conceptual	Enterprise Model	Activity Model	Business Logistics	
DESIGNER Logical	Logical Data Model	Process Model	Distributed Architecture	
BUILDER Physical	Physical Data Model	System Model	Technology Architecture	
SUB-CONTRACTOR Out of Context	Data Definition	Program	Network Architecture	
FUNCTIONING ENTERPRISE	Data	Function	Network	



Slide 13

© Clive Finkelstein 2006 based on John Zachman 1987

Where the Traditional Architecture Domains Come

From

© Clive Finkelstein 2006 based on John Zachman 1987

The Zachman EA Framework and Levels of Abstraction

	What	How	Where	Who	When	Why
	Data	Process	Network	People	Time	Motivation
Scope/Objectives (Strategic View)			Cont	extual		
Model of Business (Owner's View)			Conc	eptual		
Description of IS (Designer's View)			Lo	gical		
Technology Model (Builder's View)			Phy	/sical		
Detailed Description (Out-of-Context)		Phy	vsical (Ou	ut of Co	ntext)	
Actual System	Operating System					
Slide 15						VISION

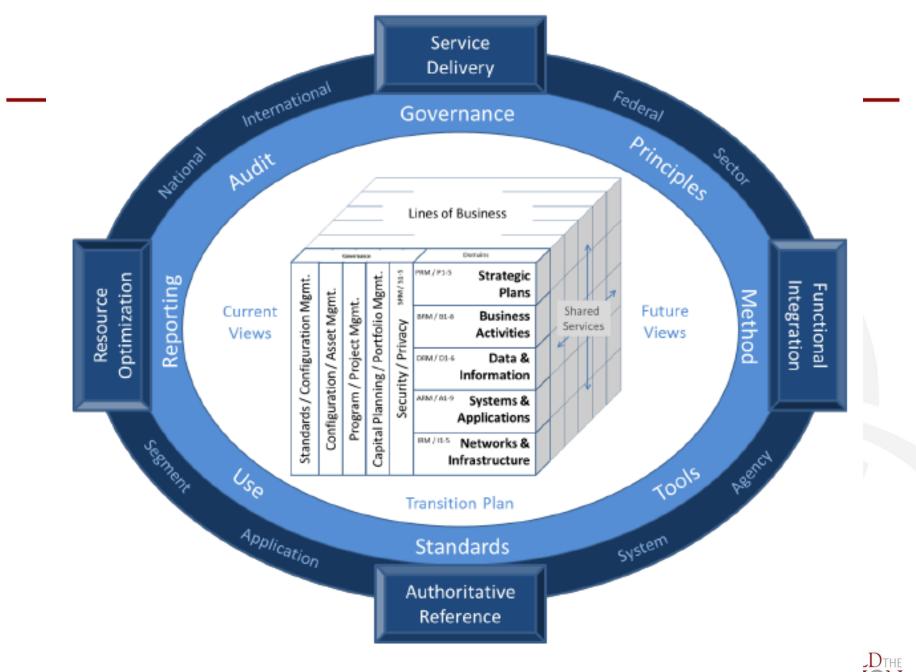
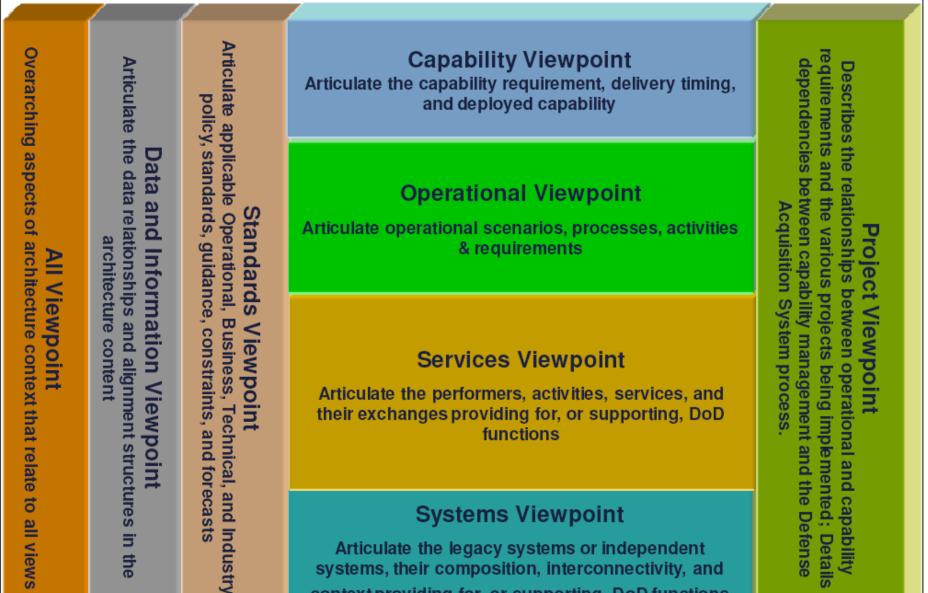



Figure 1. The Common Approach to Federal EA

DODAF 2 – Architecture Views

context providing for, or supporting, DoD functions

Basic Architecture Concepts

Architectural artefacts are created in order to describe a system, solution, or state of the enterprise. TOGAF 9.2 has adapted ISO/IEC 42010: 2011 definitions.

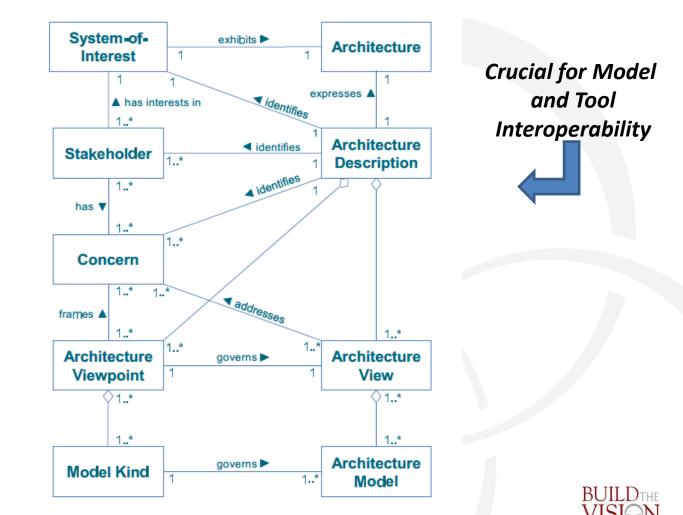
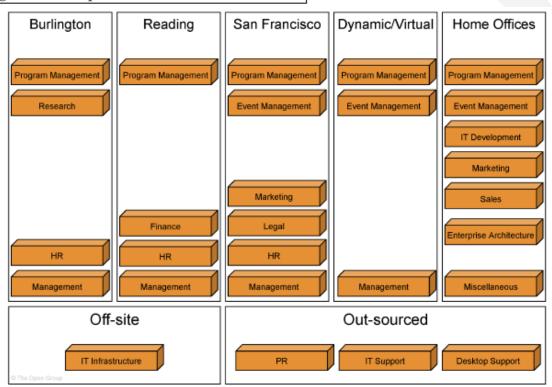


Figure 31-1 Basic Architectural Concepts

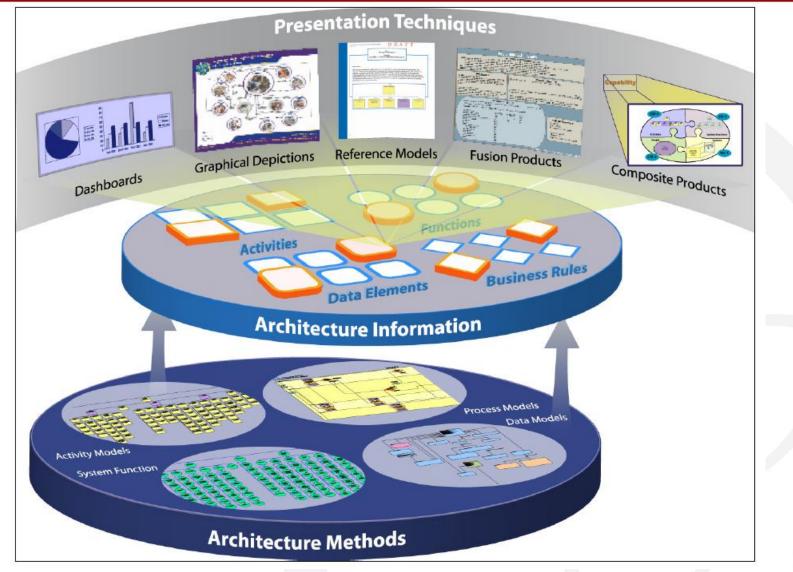
KLP 31.2-2 (1)

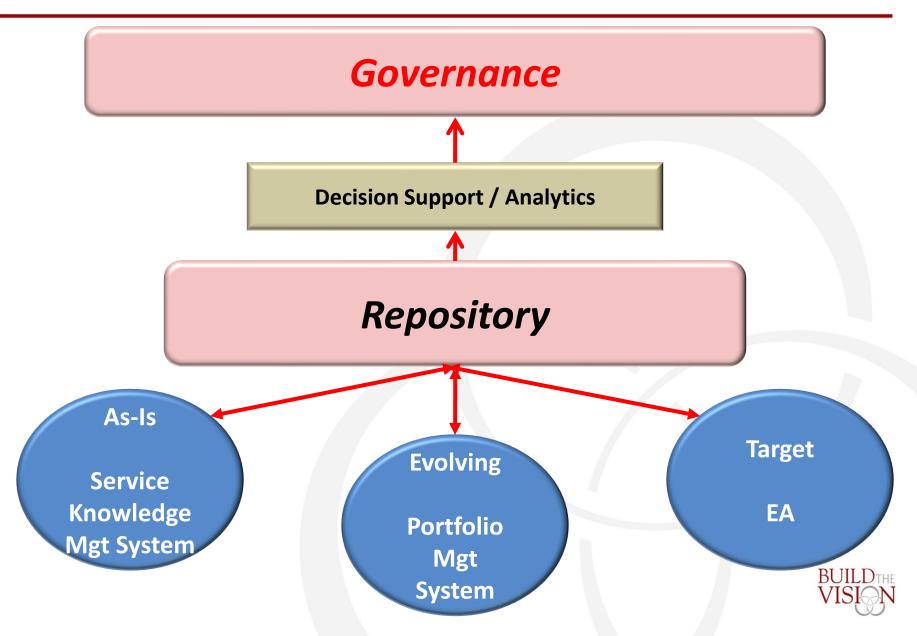

Example View and Viewpoint

Architecture Viewpoint Element	Description	
Stakeholders	Management Board, Chief Executive Officer	
Concerns	Show the top-level relationships between US/UK geographical sites and business functions.	
Modeling technique	Nested boxes diagram. Outer boxes = locations; inner boxes = business functions. Semantics of nesting = functions performed in the locations.	

Example Architecture View

Architecture Viewpoint


The Open Group Business Domains


KLP 31.2-1 (2)

DODAF 2 – Architecture Views / Presentation Techniques

A Repository to Support All of Governance

Part 3 The Unified Architecture Framework

ISACA / AEA / DRIE Professional Seminar Ottawa, 28th of January 2019 Presented by: Robert Weisman, MSc, PEng, PMP, CD CEO Build The Vision Incorporated <u>Robert.weisman@buildthevision.ca</u> <u>rweisman@uottawa.ca</u> www.buildthevision.ca

Core Principles of the UAF Profile

• Requirements-driven:

– UAFP is intended to satisfy the requirements.

*** Domain meta model (DMM) driven: ***

 The DMM was created first by domain experts and it served as a foundation for profile development.

Reuse of existing specifications:

 UAFP reuses UML/SysML wherever practical to satisfy the requirements and leverage features from both UML and SysML to provide a robust modeling capability.

• Partitioning:

- The package is the basic unit of partitioning in this specification.
- Packages partition the model elements into logical groupings that minimize circular dependencies among them.

Compliance levels:

- UAFP has a single compliance level based upon a combination of the reuse of UML and SysML elements, this simplifies the implementation of UAFP compared to UPDM 2.x for tool vendors.
- Is expected that the views that are created as a result of this profile have frames that reflect the underlying SysML diagram type that is used as the basis for the view.
- Also expected that the graphical notation used to display elements within those views correspond to the standard SysML graphical notation of the SysML/UML metaclass that the stereotype extends.

Interoperability

- UAFP inherits the XMI interchange capability from UML.
- The UAFP specification reuses a subset of UML 2 and provides additional extensions needed to address mandatory requirements.

Unified Architecture Framework – Object Management Group - 2016

Metadata MdMetadata Taxonomy Md-TxArchitecture Viewpoints*Metadata Connectivity Md-SrMetadata Processes* Md-PrIIMetadata Constraints*Metadata Co	Traceability st-Tr
Strategic StStrategic Taxonomy St-TxStrategic Structure 	ap Service Traceability
Operational Op Operational Taxonomy Op-Tx Operational Structure Op-Sr Operational Connectivity Op-Cn Operational Processes Op-Pr Operational States Op-St Interaction Scenarios Op-Is Operational Constraints Operational Constraints	ap Traceability
Service Service Service Service Service Service Service Service Roadi	ap Traceability
Sv Sv-Tx Sv-Sr Sv-Cn Sv-Pr Sv-St Scenarios Conceptual Data Environment Sv-Ct Sv-Rm	
Personnel Personnel Personnel Personnel Personnel Personnel Competence, Availability Pr Taxonomy Structure Connectivity Processes Pr-St Scenarios Logical Data Model, Personnel For Personnel For Pr Pr-Tx Pr-Sr Pr-Cn Pr-Pr Pr-St Scenarios Logical Data Model, Pr-Ct Personnel For Pr-Rm Pr-St Pr-Is Pr-St Pr-Rm Pr-St	Personnel tion, Traceability Pr-Tr
Resource RsResource Taxonomy Rs-TxResource Rsource Structure Rs-SrResource Rsource Rs-CnResource Resource Rs-PrResource Resource Rs-StResource Resource Rs-StResource Resource Rs-StResource Resource Rs-StResource Resource Rs-StResource Resource Rs-StResource Resource Rs-StResource Resource Resource Rs-StResource Resource Resource Rs-StResource Resource Resource Rs-StResource Resource Resource Rs-StResource Resource Resource Rs-StResource Resource Resource Resource Rs-StResource Resource Resource Rs-StResource Resource Resource Resource Rs-StResource Resource Resource Resource Rs-StResource Resource Resource Resource Resource Rs-StResource Resource Resource Resource Resource Rs-StResource Resource Resource Resource Resource Rs-StResource Resource	
Security Sc Security Taxonomy Sc-Tx Security Structure Sc-Sr Security Processes Sc-Pr Security Processes Sc-Pr Security Processes Sc-Ct Security Sc-Ct Security Sc-Ct	
Projects Project Taxonomy Project Structure Project Connectivity Project Activity Project Activity Project Road Pj Pj-Tx Pj-Sr Pj-Cn Pj-Pr Piology Piology	ap Project Traceability Pj-Tr
Standards Sd Standards Taxonomy Sd-Tx Standards Structure Sd-Sr - - -	map Traceability Sr-Tr
Actuals Actual Resources Actual Actual Resources Actual Resources Structure, Ar-Sr Simulation b Simulation b Parametric Ar Ar-Sr Ar-Cn Simulation b Simulation b Parametric	
Dictionary * Dc	
Summary & Overview SmOv Requirements Rq	

The UAF Grid Logic based on UAF Annex A – OMG 2016

- View Types Columns Reflect generic perspective
- Domains Rows Reflect levels of abstraction and interests
- Viewpoints
 - Intersection set of View Types and Domains
 - Perspective on the problem space
 - For Stakeholders, Include WHAT is to presented and a MODEL on how it is to be presented; in UAF they use the System Modeling Language (SysML) which is an extension of the Unified Modeling Language (UML).
 - Reflects the layers of abstraction, interest, as per Zachman
 - Somewhat analogous to a "report" in old speak
 - For the Grid, the viewpoints represent a de-conflicted view of the underlying model
 - Practically, used to populate the repository database
 - Overall Viewpoints can be whatever is needed by the stakeholders reflecting data in the repository
- Domains
 - Reflects the areas of concern for architects that are described in varying levels of abstraction
 - Grid captures the information required by the frameworks using the Unified Architecture Framework

Notes on The UAF Grid

based on UAF Annex A – OMG 2016

- These viewpoints are architectural artifacts that contribute to the success in defining and developing an architecture.
- Viewpoints used to evaluate architecture behavior and constraints
- The information model is a column across the abstraction layers that can be defined in any of its forms, i.e., Conceptual, Logical, or as a schema at any level of abstraction.
- Parameters column captures the measures and environments across the architecture in all the different layers of abstraction.
- Expectation is that:
 - physical schema model not be developed in the framework
 - any tool implementing the framework provides a means to import or link-to representations of the physical model such as XML schemas.
- Metadata Taxonomy viewpoint provides a placeholder for a means to extend the profile to other domains,
 - consequently there is not a specific diagramming type for Metadata Taxonomy

• Taxonomy

- Presents all the elements as a standalone structure.
- Presents all the elements as a specialization hierarchy, provides a text definition for each one and references the source of the element.
- Structure
 - Describes the definitions of the dependencies, connections, and relationships between the different elements.

- Connectivity
 - Describes connections, relationships, and interactions between the different elements.
- Processes
 - Captures activity based behavior and flows.
 - Describes activities, their Inputs/Outputs, activity actions and flows between them.
- States
 - Captures state-based behavior of an element.
 - Is a graphical representation of states of a structural element and how it responds to various events and actions.

- Interaction Scenarios
 - Expresses a time ordered examination of the exchanges as a result of a particular scenario.
 - Is a time-ordered examination of the exchanges between participating elements as a result of a particular scenario.
- Information
 - Address the information perspective on operational, service, and resource architectures.
 - Allows analysis of an architecture's information and data definition aspect, without consideration of implementation specific issues
- Parameters
 - Captures the measures and environments across the architecture in all the different layers of abstraction

• Constraints

- Details the measurements that set performance requirements constraining capabilities.
- Defines the rules governing behavior and structure.
- Roadmap
 - Addresses how elements in the architecture change over time.
 - Describes architecture elements at different points in time or different periods of time.
- Traceability
 - Describes the mapping between elements in the architecture.
 - Can be between different viewpoints within domains as well as between domains.
 - Can also be between structure and behaviors.

- Metadata
 - Captures meta-data relevant to the entire architecture.
 - Provides information pertinent to the entire architecture.
 - Present supporting information rather than architectural models.
- Strategic
 - Capability management process.
 - Describes the capability taxonomy, composition, dependencies, and evolution
 - "Conceptual"
- Operational
 - Illustrates Logical Architecture of the enterprise.
 - Describes requirements, operational behavior, structure, and exchanges required to support (exhibit) capabilities.
 - Defines all operational elements in an implementation/solution independent manner

- Services
 - Service-Orientated View (SOV) is a description of services needed to directly support the operational domain as described in the Operational View.
 - A service within UK Defence Architecture Framework (MODAF) is understood in its broadest sense, as a unit of work through which a provider provides a useful result to a consumer.
 - DoDAF: The Service Views within the Services Viewpoint describe the design for service-based solutions to support operational development processes (JCIDS) and Defense Acquisition System or capability development within the Joint Capability Areas

- Personnel
 - Defines and explores organizational resource types.
 - Shows taxonomy of types of organizational resources as well as connections, interaction, and growth over time.
- Resources
 - Captures a solution architecture consisting of resources, e.g., organizational, software, artifacts, capability configurations, and natural resources that implement the operational requirements.
- Security
 - Security assets and security enclaves.
 - Defines the hierarchy of security assets, asset owners, security constraints (policy, laws, and guidance) and details where they are located (security enclaves)

- Projects
 - Describes projects and project milestones, how those projects deliver capabilities, the organizations contributing to the projects and dependencies between projects.
- Standards
 - MODAF: Technical Standards Views are extended from the core DoDAF views to include non-technical standards such as operational doctrine, industry process standards, etc.
 - DoDAF: The Standards Views within the Standards Viewpoint are the set of rules governing the arrangement, interaction, and interdependence of solution parts or elements.
- Actual Resources
 - The analysis, e.g., evaluation of different alternatives, what-if, tradeoffs, V&V on the actual resource configurations. Illustrates the expected or achieved actual resource configurations

Be Careful Exposing SysML to Business

7.1.6.1 UAF::Services::Taxonomy

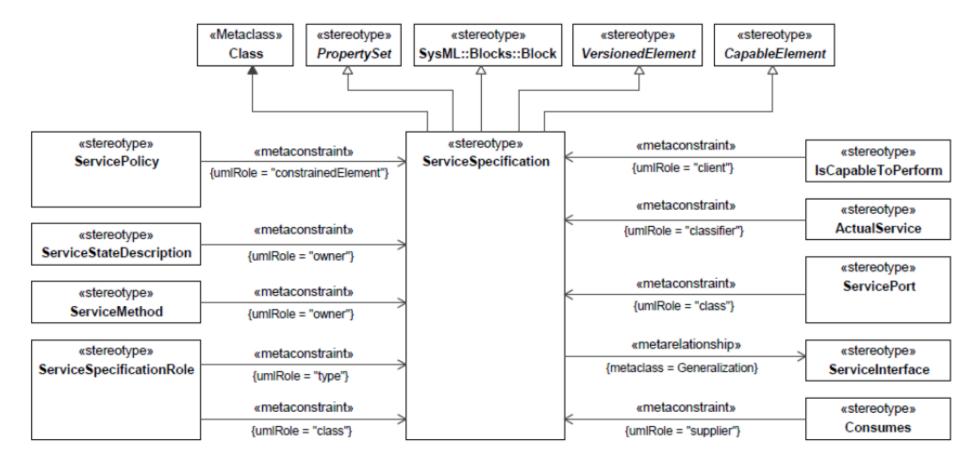
Contains the elements that contribute to the Services Taxonomy Viewpoint.

ServiceSpecification

Package: Taxonomy

isAbstract: No

Generalization: PropertySet, VersionedElement, CapableElement, Block


Extension: Class

Description

The specification of a set of functionality provided by one element for the use of others.

SysML Explanations – Good for Designers

NATO Architecture Framework V4 - Viewpoints

Figure 1-1: NAFv4 Viewpoints

						Behaviour				
	Taxonomy	Structure		Connectivity	Processes	States	Sequences	Information	Constraints	Roadmap
Concepts	C1 Capability Taxonomy NAV-2, NCV-2	C2 Enterprise Vision NCV-1		C3 Capability Dependencies NCV-4	C4 Standard Processes NCV-6	C5 Effects NOV-6b		C7 Performance Parameters NCV-1	C8 Planning Assumptions	Cr Capability Roadmap NCV-3
	C1-S1 (NSOV-3)									
Service Specifications	S1 Service Taxonomy NAV-2, NSOV-1			S3 Service Interfaces NSOV-2	S4 Service Functions NSOV-3	S5 Service States NSOV-4b	S6 Service Interactions NSOV-4c	S7 Service I/F Parameters NSOV-2	S8 Service Policy NSOV-4a	Sr Service Roadmap
Logical Specifications	L1 Node Types NAV-2	L2 Logical Scenario NOV-2	L2-L3 (NOV-1)	L3 Node Interactions NOV-2, NOV-3	L4 Logical Activities NOV-5	L5 Logical States NOV-6b	L6 Logical Sequence NOV-6c	L7 Logical Data Model NSV-11a	L8 Logical Constraints NOV-6a	Lr Lines of Development NPV-2
					L4-P4 (NSV-5)					
Physical Resource Specifications	P1 Resource Types NAV-2, NSV-2a,7,9,12	P2 Resource Structure NOV-4,NSV-1		P3 Resource Connectivity NSV-2, NSV-6	P4 Resource Functions NSV-4	P5 Resource States NSV-10b	P6 Resource Sequence NSV-10c	P7 Physical Data Model NSV-11b	P8 Resource Constraints NSV-10a	Pr Configuration Management NSV-8
Architecture Meta-Data	A1 Meta-Data Definitions NAV-3	A2 Architecture Products		A3 Architecture Correspondence ISO42010	A4 Methodology Used NAF Ch2	A5 Architecture Status NAV-1	A6 Architecture Versions NAV-1	A7 Architecture Meta-Data NAV-1/3	AB Standards NTV-1/2	Ar Architecture Roadmap

NAF V4 – Service Taxonomy Viewpoint

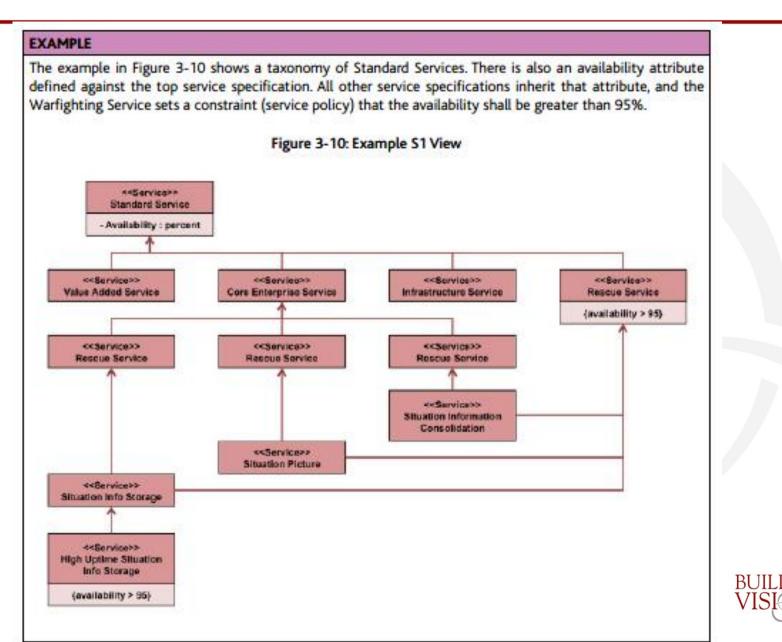
4.1 S1 – SERVICE TAXONOMY

NAFv3: NSOV-1/NAV-2

The S1 Viewpoint is concerned with the identification of service specifications, and their organization into specialization hierarchies (taxonomies).

Views implementing this Viewpoint:

- · Shall include all service specifications relevant for the architecture.
- May organize all service specifications into a specialization hierarchy.
- May include measures for the service specifications.
- May include attributes for the service specifications.


A service taxonomy, in whole or parts, may be referenced by, or used in describing, multiple architectures (e.g.

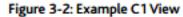
a S1 View at enterprise-level will be referenced by S1 Views at the capability-level).

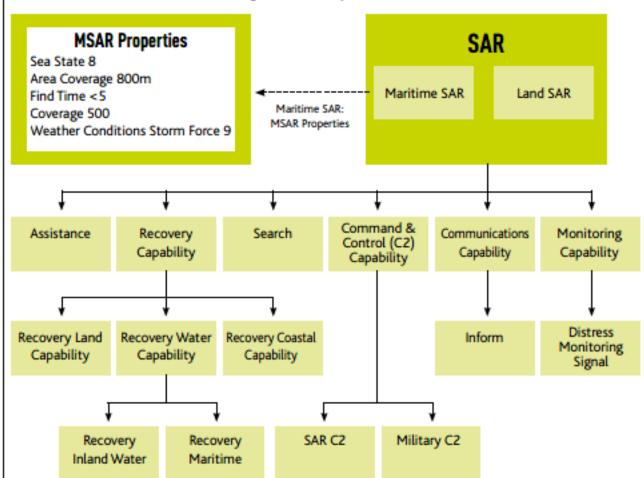
CONCERNS ADDRESSED	USAGE
 Cataloguing Service Specifications. Defining attributes used to measure Service Levels. Specialization of Service Specifications. 	 Service-oriented architecture governance. Identification of services. Service planning. Service audit. Service gap analysis. Providing reference services for architectures. Tailoring generic services for specific applications.
REPRESENTATION	
 Tabulation. Hierarchical (connected shapes). UML class diagram. 	

NAF V4 – Service Taxonomy Viewpoint

NAF V4 – Capability Taxonomy Viewpoint

3.1 C1 – Capability Taxonomy	NAFv3: NCV-2
hierarchies (taxonomies) independent of their implen	
CONCERNS ADDRESSED	USAGE
 Capability Planning. Capability Management. 	 Identification of existing and required capabilities. Source for the derivation of cohesive sets of Key User Requirements (KURs). Providing reference capabilities for multiple architectures.
REPRESENTATION	
 Tabulation. Hierarchical (Connected Shapes). 	


Class Diagram (with generalization relationships and property definitions).



NAF V4 – Capability Taxonomy Viewpoint

EXAMPLE

The following example uses a hierarchical diagram to depict the individual capabilities and their place in the taxonomy.

The capabilities in a C1 View are related by specialization relationships that assert one capability is a special case of another (e.g. Recovery Capability is specialized into Recovery Land Capability, Recovery Water Capability and Recovery Costal Capability in above example).

Part 4 Concluding Material

ISACA / AEA / DRIE Professional Seminar Ottawa, 28th of January 2019 Presented by: Robert Weisman, MSc, PEng, PMP, CD CEO Build The Vision Incorporated <u>Robert.weisman@buildthevision.ca</u> <u>rweisman@uottawa.ca</u> <u>www.buildthevision.ca</u>

- UAF has a long pedigree in a very complex environment
- Linkage of concepts to execution
 - Constant direction of MDA and MBSE
- Language is technical but is business driven
 - SysML is not user friendly, redo diagrams
 - Look at the NATO Architecture Framework for business (and IM) friendly explanations
- This is future looking
 - Being extended for Internet of Things
 - Need for EAs to leverage
 - Great for auditors looking to place controls

QUESTIONS ?

ISACA / AEA / DRIE Professional Seminar Ottawa, 28th of January 2019 Presented by: Robert Weisman, MSc, PEng, PMP, CD CEO Build The Vision Incorporated <u>Robert.weisman@buildthevision.ca</u> <u>rweisman@uottawa.ca</u> www.buildthevision.ca

