
Practical No 10

Aim: - Implementing Sets in python

Theory:-

Set

Sets are used to store multiple items in a single variable. A set is a collection which

is unordered, unchangeable*, and unindexed. Sets are written with curly brackets.

Create a Set:

thisset = {"apple", "banana", "cherry"}

print(thisset)

Set Items

Set items are unordered, unchangeable, and do not allow duplicate values.

Unordered

Unordered means that the items in a set do not have a defined order.

Set items can appear in a different order every time you use them, and cannot be referred to by

index or key.

Unchangeable

Set items are unchangeable, meaning that we cannot change the items after the set has been

created.

Once a set is created, you cannot change its items, but you can remove items and add new items.

Duplicates Not Allowed

Sets cannot have two items with the same value

Duplicate values will be ignored:

thisset = {"apple", "banana", "cherry", "apple"}

print(thisset)

Output:

{'banana', 'cherry', 'apple'}

Get the Length of a Set

To determine how many items a set has, use the len() function.

thisset = {"apple", "banana", "cherry"}

print(len(thisset))

Output:

3

Set Items - Data Types

String, int and boolean data types:

set1 = {"apple", "banana", "cherry"}

set2 = {1, 5, 7, 9, 3}

set3 = {True, False, False}

set4 = {"abc", 34, True, 40, "male"}

Access Items

We cannot access items in a set by referring to an index or a key.

But we can loop through the set items using a for loop, or ask if a specified value is present in a

set, by using the in keyword.

thisset = {"apple", "banana", "cherry"}

for x in thisset:

print(x)

Output:

cherry

apple

banana

Search Items:

Check if "banana" is present in the set:

thisset = {"apple", "banana", "cherry"}

print("banana" in thisset)

Output:

True

Change Items

Once a set is created, you cannot change its items, but you can add new items.

To add one item to a set use the add() method.

thisset = {"apple", "banana", "cherry"}

thisset.add("orange")

print(thisset)

Output:

{'cherry', 'orange', 'apple', 'banana'}

Add Sets

To add items from another set into the current set, use the update() method.

frutis1 = {"apple", "banana", "cherry"}

fruits2 = {"pineapple", "mango", "papaya"}

fruits.update(tropical)

print(fruits)

Output:

{'apple', 'mango', 'cherry', 'pineapple', 'banana', 'papaya'}

Add Any Iterable

The object in the update() method does not have to be a set, it can be any iterable object (tuples,

lists, dictionaries etc.).

Add elements of a list to at set:

thisset = {"apple", "banana", "cherry"}

mylist = ["kiwi", "orange"]

mytuple = (1,2,3,4)

thisset.update(mylist, mytuple)

print (thisset)

Output:

{1, 2, 3, 4, 'orange', 'cherry', 'kiwi', 'banana', 'apple'}

Remove Item

To remove an item in a set, use the remove(), or the discard() method.

Remove "banana" by using the remove() method:

thisset = {"apple", "banana", "cherry"}

thisset.remove("banana")

print(thisset)

Output:

{'apple', 'cherry'}

Remove "banana" by using the discard() method:

thisset = {"apple", "banana", "cherry"}

thisset.discard("banana")

print(thisset)

Output:

{'apple', 'cherry'}

You can also use the pop() method to remove an item, but this method will remove the last item.

Remember that sets are unordered, so you will not know what item that gets removed.

The return value of the pop() method is the removed item.

thisset = {"apple", "banana", "cherry"}

x = thisset.pop()

print(x) #removed item

print(thisset) #the set after removal

Output:

cherry
{'banana', 'apple'}

The clear() method empties the set:

thisset = {"apple", "banana", "cherry"}

thisset.clear()

print(thisset)

Output:

set()

The del keyword will delete the set completely

thisset = {"apple", "banana", "cherry"}

del thisset

print(thisset) #this will raise an error because the set no longer exists

Loop Items

You can loop through the set items by using a for loop:

thisset = {"apple", "banana", "cherry"}

for x in thisset:

print(x)

Output:

apple

banana

cherry

Join Two Sets

There are several ways to join two or more sets in Python.

You can use the union() method that returns a new set containing all items from both sets, or

the update() method that inserts all the items from one set into another:

The union() method returns a new set with all items from both sets:

set1 = {"a", "b" , "c"}

set2 = {1, 2, 3}

set3 = set1.union(set2)

print(set3)

Output:

{3, 'b', 'c', 1, 'a', 2}

The update() method inserts the items in set2 into set1:

set1 = {"a", "b" , "c"}

set2 = {1, 2, 3}

set1.update(set2)

print(set1)

Output:

{'c', 2, 3, 'b', 1, 'a'}

Keep ONLY the Duplicates

The intersection_update() method will keep only the items that are present in both sets.

Keep the items that exist in both set x, and set y:

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

x.intersection_update(y)

print(x)

Output:

{'apple'}

The intersection() method will return a new set, that only contains the items that are present in

both sets.

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

z = x.intersection(y)

print(z)

Output:

{'apple'}

Keep All, But NOT the Duplicates

The symmetric_difference_update() method will keep only the elements that are NOT present

in both sets.

x = {"apple", "banana", "cherry", "orange"}

y = {"google", "microsoft", "apple", "orange"}

x.symmetric_difference_update(y)

print(x)

Output:

The symmetric_difference() method will return a new set, that contains only the elements that

are NOT present in both sets.

x = {"apple", "banana", "cherry"}

y = {"google", "microsoft", "apple"}

z = x.symmetric_difference(y)

print(z)

Output:

{'google', 'banana', 'microsoft', 'cherry'}

Result: The practical has been successfully studied.

