
Practical No. 5 

Aim: - Implementing Dictionaries in Python. 

Theory: - There are four collection data types in the Python programming language: 

 List is a collection which is ordered and changeable. Allows duplicate members. 

 Tuple is a collection which is ordered and unchangeable. Allows duplicate members. 

 Set is a collection which is unordered, unchangeable, and unindexed. No duplicate 

members. 

 Dictionary is a collection which is ordered and changeable. No duplicate members. 

 

Dictionaries are used to store data values in key: value pairs. 

A dictionary is a collection which is ordered, changeable and do not allow duplicates. 

Dictionaries are written with curly brackets, and have keys and values. 

Dictionary Items 

Dictionary items are ordered, changeable, and does not allow duplicates. 

Dictionary items are presented in key:value pairs, and can be referred to by using the key name. 

 

Ordered 

Dictionaries are ordered, it means that the items have a defined order, and that order will not 

change. 

 

Changeable 

Dictionaries are changeable, meaning that we can change, add or remove items after the 

dictionary has been created. 

 

Duplicates Not Allowed 

Dictionaries cannot have two items with the same key. 

Create and print a dictionary: 

thisdict = { 
"brand": "Ford", 
"model": "Mustang", 
"year": 1964 

} 
print(thisdict) 

 
Output: 

{'brand': 'Ford', 'model': 'Mustang', 'year': 1964} 



Dictionary Length 

To determine how many items a dictionary has, use the len() function: 

 
print(len(thisdict)) 

Output: 

3 

 
Dictionary Items - Data Types 

The values in dictionary items can be of any data type: 

String, int, boolean, and list data types: 

 
thisdict = { 

"brand": "Ford", 

"electric": False, 

"year": 1964, 

"colors": ["red", "white", "blue"] 

} 

Output: 

'brand': 'Ford', 'electric': False, 'year': 1964, 'colors': ['red', 

'white', 'blue']} 

 
Accessing Items 

You can access the items of a dictionary by referring to its key name, inside square brackets: 

Get the value of the "model" key: 

thisdict = { 

"brand": "Ford", 

"model": "Mustang", 

"year": 1964 

} 

x = thisdict["model"] 

print(x) 

Output: 

Mustang 

 
There is also a method called get() that will give you the same result: 

thisdict = { 

"brand": "Ford", 

"model": "Mustang", 



"year": 1964 

} 

x = thisdict.get("model") 

print(x) 

 
Output: 

Mustang 

Get Keys 

The keys() method will return a list of all the keys in the dictionary. 

x = thisdict.keys() 

print(x) 

 
Output: 

dict_keys(['brand', 'model', 'year']) 

 
Get Values 

The values() method will return a list of all the values in the dictionary. 

 
x = thisdict.values() 

print(x) 

 
Output: 

dict_values(['Ford', 'Mustang', 1964]) 

 
Check if Key Exists 

To determine if a specified key is present in a dictionary use the in keyword: 

thisdict = { 

"brand": "Ford", 

"model": "Mustang", 

"year": 1964 

} 

if "model" in thisdict: 

print("Yes, 'model' is one of the keys in the thisdict dictionary") 

Output: 

Yes, 'model' is one of the keys in the thisdict dictionary 

 
Change Values 

You can change the value of a specific item by referring to its key name: 

Change the "year" to 2018: 



thisdict = { 

"brand": "Ford", 

"model": "Mustang", 

"year": 1964 

} 

thisdict["year"] = 2018 

Output: 

{'brand': 'Ford', 'model': 'Mustang', 'year': 2018} 

Update Dictionary 

The update() method will update the dictionary with the items from the given argument. 

The argument must be a dictionary, or an iterable object with key:value pairs. 

Add new key value pair: 

 
thisdict = { 

"brand": "Ford", 

"model": "Mustang", 

"year": 1964 

} 

thisdict.update({"price": 20000}) 

thisdict.update({"color": "red"}) 

 
Output: 

{'brand': 'Ford', 'model': 'Mustang', 'year': 2020, ‘pirce’ : 20000, 

‘color’ : ‘red’} 

 
Removing Items 

There are several methods to remove items from a dictionary: 

The pop() method removes the item with the specified key name 

thisdict = { 

"brand": "Ford", 

"model": "Mustang", 

"year": 1964 

} 

thisdict.pop("model") 

print(thisdict) 

Output: 

{'brand': 'Ford', 'year': 1964} 



The del keyword removes the item with the specified key name: 

thisdict = { 

"brand": "Ford", 

"model": "Mustang", 

"year": 1964 

} 

del thisdict["model"] 

print(thisdict) 

Output: 

{'brand': 'Ford', 'year': 1964} 

 
The del keyword can also delete the dictionary completely: 

thisdict = { 

"brand": "Ford", 

"model": "Mustang", 

"year": 1964 

} 

del thisdict 

print(thisdict) #this will cause an error because "thisdict" no longer 

exists. 

The clear() method empties the dictionary: 

thisdict = { 

"brand": "Ford", 

"model": "Mustang", 

"year": 1964 

} 

thisdict.clear() 

print(thisdict) 

 
Output: 

{} 

Copy a Dictionary 

You cannot copy a dictionary simply by typing dict2 = dict1, because: dict2 will only be 

a reference to dict1, and changes made in dict1 will automatically also be made in dict2. 

There are ways to make a copy, one way is to use the built-in Dictionary method copy(). 

thisdict = { 

"brand": "Ford", 

"model": "Mustang", 

"year": 1964 



} 

mydict = thisdict.copy() 

print(mydict) 

Output: 

{'brand': 'Ford', 'model': 'Mustang', 'year': 1964 

 
Nested Dictionaries 

A dictionary can contain dictionaries, this is called nested dictionaries. 

Create a dictionary that contain three dictionaries: 

myfamily = { 

"child1" : { 

"name" : "Ram", 

"year" : 2004 

}, 

"child2" : { 

"name" : "Sham", 

"year" : 2007 

}, 

"child3" : { 

"name" : "Hari", 

"year" : 2011 

} 

} 
 
 

 
Output: 

 {'child1': {'name': 'Ram', 'year': 2004}, 'child2': {'name': 'Sham', 

'year': 2007}, 'child3': {'name': 'Hari', 'year': 2011}} 
 
 
Result: Practical has been studied successfully. 


