
Practical No. 8

Aim: - Write a program to explain concept of Object Oriented Programming (OOP).

Theory: Object-oriented programming (OOP) is a method of structuring a program by bundling

related properties and behaviors into individual objects.

Object-oriented programming in Python is a powerful and flexible way to structure and organize our

code. It helps we model real-world concepts and relationships between objects, making our code more

maintainable and easier to understand.

Object-oriented programming (OOP) is a programming paradigm that is based on the concept of

"objects." Objects are instances of classes, and they can contain both data (attributes) and behavior

(methods). Python is a versatile programming language that supports OOP principles. Here's an overview

of how we can use OOP in Python:

Classes and Objects:

 In Python, we define a class using the class keyword. A class is a blueprint for creating objects.

 Objects are instances of classes. We create an object by calling the class as if it were a function.

class Person:

def init__(self, name, age):

self.name = name

self.age = age

person1 = Person("Alice", 30)

person2 = Person("Bob", 25)

Attributes:

 Objects can have attributes that store data.

 We can access and modify object attributes using dot notation.

print(person1.name)

print(person1.age)

print(person2.name)

print(person2.age)

Output: Alice

30

Bob

25

Methods:

 Methods are functions defined within a class. They can operate on the object's data (attributes).

The self parameter is used to refer to the instance of the object inside the class methods.

class Person:

def init__(self, name, age):

self.name = name

self.age = age

def say_hello(self):

print("Hello, my name is {self.name} and I'm {self.age} years old.")

person1 = Person("Alice", 30)

person1.say_hello()

Output: "Hello, my name is Alice and I'm 30 years old."

Inheritance:

Inheritance allows we to create a new class that is a modified version of an existing class. The new class

inherits attributes and methods from the base class.

class Student(Person):

def init__(self, name, age, student_id):

super(). init__(name, age)

self.student_id = student_id

student = Student("Eve", 20, "12345")

student.say_hello() # Student inherits the say_hello() method from the Person class.

1. Encapsulation:

 We can use encapsulation to control the visibility of attributes and methods within a class.

 By convention, attributes and methods that should not be accessed from outside the class

are prefixed with a single underscore (e.g., _private_var) to indicate that they are for

internal use.

2. Polymorphism:

 Polymorphism allows we to use the same interface (method name) for objects of different

classes.

 It simplifies the code and allows we to work with objects in a more abstract and generic

way.

def introduce(person):

person.say_hello()

alice = Person("Alice", 30)

bob = Student("Bob", 25, "98765")

introduce(alice) # Output: "Hello, my name is Alice and I'm 30 years old."

introduce(bob) # Output: "Hello, my name is Bob and I'm 25 years old."

Result: The practical has been performed & studied successfully.

