UNIT 5 : Digital Filter Design

TABLE 8.1 Comparison of Digital and Analog Filters

Digital filter Analog filter
1. It operates on digital samples (or sampled 1. It operates on analog signals (or actual
version) of the signal. signals).
2. It is governed (or defined) by linear 2. It is governed (or defined) by linear differ-
difference equations. ential equations.
3. It consists of adders, multipliers, and delay 3. It consists of electrical components like
elements implemented in digital logic resistors, capacitors, and inductors.

(either in hardware or software or both).

4. In digital filters, the filter coefficients are 4. In analog filters, the approximation problem
designed to satisfy the desired frequency is solved to satisfy the desired frequency
response. response.

Advantages of digital filters

1.

The values of resistors, capacitors and inductors used in analog filters change with
temperature. Since the digital filters do not have these components, they have high
thermal stability.

In digital filters, the precision of the filter depends on the length (or size) of the
registers used to store the filter coefficients. Hence by increasing the register bit
length (in hardware) the performance characteristics of the filter like accuracy,
dynamic range, stability and frequency response tolerance, can be enhanced.

The digital filters are programmable. Hence the filter coefficients can be changed
any time to implement adaptive features.

A single filter can be used to process multiple signals by using the techniques of
multiplexing.

Disadvantages of digital filters

1.

2.

The bandwidth of the discrete signal is limited by the sampling frequency. The
bandwidth of real discrete signal is half the sampling frequency.

The performance of the digital filter depends on the hardware (i.e.. depends on the
bit length of the registers in the hardware) used to implement the filter.

Important features of IIR filters

1.
2.

The physically realizable IIR filters do not have linear phase.
The IIR filter specifications include the desired characteristics for the magnitude
response only.

Design of IIR filter by impulse invariant Transformation:



In this technique, the desired impulse response of the digital filter is obtained by uniformly
sampling the impulse response of the equivalent analog filter. The main idea behind this is to

preserve the frequency response characteristics of the analog filter. For the digital filter to

possess the frequency response characteristics of the corresponding analog filter, the sampling

period T should be sufficiently small (or the sampling frequency should be sufficiently high) to

minimize (or completely avoid) the effects of aliasing.

Let h,(f) = Impulse response of analog filter
T = Sampling period
h(n) = Impulse response of digital filter

For impulse invariant transformation,
h(n) = h (O, .7 = h(nT)

The Laplace transform of the analog filter impulse response h,(f) gives the transfer
function of analog filter.

Llh,(D)] = H,s)
The transformation technique can be well understood by first considering a simple
distinct poles case for the analog filter’s system function as shown below.

N

Ha(s)=z Ai
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The impulse response /,(f) of the analog filter is obtained by taking the inverse Laplace
transform of the system function H,(s).

Av'
h,()=L"[H ()] = Y Aie"'u, (1)

i=1

where u,(f) is the unit step function in the continuous-time case.
The impulse response h(n) of the equivalent digital filter is obtained by uniformly
sampling h,(1), i.e.,

: .
h(n)=h,(nT) =Y Age" Ty (nT)

i=1



The system function of the digital system of above expression can be obtained by
taking z-transform, i.e.

H(z)= Z h(n)z™"

n=0

Using the above equation for h(n). we have

e
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H(z)= Z A,-e”""r ua(nT):l 7

0 [i=1

Interchanging the order of summation. we have
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Comparing the above expressions for H,(s) and H(z). we can say that the impulse invariant
transformation is accomplished by the mapping.

| 1
s—p; (is tranformed to) 1 ep;T Z_l

Relation between analog and digital poles

The above mapping shows that the analog pole at s = p; is mapped into a digital pole at
z = e"" . Therefore, the analog poles and the digital poles are related by the relation.

’:eIT

The general characteristic of the mapping z = ¢* can be obtained by substituting s = ¢ + jQ
and expressing the complex variable z in polar form as z = re/".

re;:.u s e((r+JQ)T :eo'Te;QT
That means
|Z| s e(rT
and Lz=w=QT

So the relationship between analog frequency € and digital frequency @ is

w=QT or Q:ﬂ-
{4



As a result of this, ¢ < 0 implies that 0 < r < 1 and ¢ > 0 implies that » > 1 and
¢ = 0 implies that r = 1. Therefore, the left half of s-plane is mapped into the interior of the
unit circle in the z-plane. The right half of the s-plane is mapped into the exterior of the unit
circle in the z-plane. This is one of the desirable properties for stability. The jQ-axis is
mapped into the unit circle in z-plane. However, the mapping of jQ-axis is not one-to-one.

LV

. Aﬂ
), " 7

1

—
=V

(a) (b)

Figure 8.3 Mapping of (a) s-plane into (b) z-plane by impulse invariant transformation.



EXAMPLE 8.4 For the analog transfer function

2

H,()= (s+1)(s+3)

determine H(z) if (a) 7 = 1s and (b) 7 = 0.5 s using impulse invariant method.

%
(s+1)(s+3)

Using partial fractions, H,(s) can be expressed as:

Solution: Given, H (s)=

H,(s)= + b
s+1 s+3
' 2
A=(s+D)H,(s)|__ = =
T 3 [y
' 2
B=(S+3)Ha(s)|_z=— =-1
e € 3 3 PR
1 1 1 1

Ha(S)= - = -
s+1 s+3 s—=1D) §=(=3)

By impulse invariant transformation, we know that

A A
§= pi (is transformed to) 1 _ ep,'Tz-l

Here H,(s) has two poles and p, = -1 and p, = -3.
Therefore, the system function of the digital filter is:

' 1 1
H@= 1-en7! - 1-eP’ 7!
o M 1

B | It - 1— g g



(a) WhenT=1s

= e R
1—-e z l—e“z

T 1-0367877'  1-0.04977"

 (1-0.0497z7) - (1-0.3678z7")
(1-0367827')(1-0.049777")

_ 0.3181z
1-0.4175z7" +0.018277>

(b) WhenT=05s

H(z)= 0 —6-0'52-! - l_e-3><0.52-|
1 1

T 1-0.606z7" 1-02237"

(1-02237)-(1-06062")
(1-0.60627')(1-0.223z7")

~ 0.3837
1-0.829z7! +0.135z772




EXAMPLE 8.7 The system function of an analog filter is expressed as:

H (s)=
“ s(s +2)

Find the corresponding H(z) using the impulse invariant method for a sampling frequency of
4 samples per second.

Solution: Given sampling rate = 4 samples/second
Sampling period T = % =025s
Expressing the given H,(s) in terms of partial fractions, we have

)= 2 _l_ 1 _ 1 B 1
T s(s +2) T s s+2  s—(0) s—(-2)

H (s

a

By the impulse invariant transformation, we know that

A A

(is transformed to) ] = ep;T =1

S=p;

Here H,(s) has two poles and p; = 0 and p, = -2.
Therefore, the system function of the digital filter is:

| 1
= 1—eMTz  1—ePTy
_, M I
T 1_ 0T, & 1 —geaT -
o 1
= ) 1 — 2029 -1
1 1

1-z' 1-0.606 7"

_(1-0.60627")—(1-2z7")
T -z (1-0.606z7")

_ 0.3947~"
T 1-1.606z" +0.60677

lIR filter by Bilinear Transformation Method:

To convert an analog filter function into an equivalent digital filter function, just put
2 1-7"

-

&= ?F in Ha(.S)



EXAMPLE 8.12
H, (s)=
(s

with T = 0.5 s and find H(z2).

Solution: Given that H (s) =

(s+3)(s+4)

Apply the bilinear transformation to

4

+3)(s +4)

and T = 0.5 s.

-— "_l !
To obtain H(z) using the bilinear transformation, replace s by -;'—, l ~_1
+7z
4 4
Hiz)= ———— T GANG+d
T 147! 1+
_ 4
T Ir _';'_I A ( _7_| )
4[] L 143 4'1 *'_u'“‘
. \ A l\ ’
_ 4
4-47" +34377" |[4-477" + 44477
I 1+z 1+77
a0+
(7-z718
_1qQ +77)
2 (7-271

Design procedure for low pass digital Butterworth Low Pass Filter:

in H,(s)



The low-pass digital Butterworth filter is designed as per the following steps:
Let A; = Gain at a passband frequency @,

Step 1
Step 2

Step 3

A, = Gain at a stopband frequency @,
Q, = Analog frequency corresponding to @,
Q, = Analog frequency corresponding to

Choose the type of transformation, i.e., either bilinear or impulse invariant transformation.
Calculate the ratio of analog edge frequencies €,/€Q;.
For bilinear transformation
' 3 2 Q,  tan w,/2
0 =S, e L, e s
T =i 2 Q,  tan /2
For impulse invariant transformation,

“, szwl L _wy

T’ T Qo
Decide the order N of the filter. The order N should be such that

o]

)
Choose N such that it is an integer just greater than or equal to the value obtained above.

Q =

2




Step 4 Calculate the analog cutoff frequency Q=

2
—tan w,/2

1 12N
]
[14; }

For impulse invariant transformation Q=

For bilinear transformation Q =

Step 5 Determine the transfer function of the analog filter.
Let H,(s) be the transfer function of the analog filter. When the order N is even,
for unity dc gain filter, H,(s) is given by

He»)=1] =

o 8+ Qs+ 2

When the order N is odd, for unity dc gain filter. H,(s) is given by

N-1
Q 2 02
H,(s)= — 5 - 5
s+Q. 00 5T+ b Qs +Q;

The coefficient by is given by
b, =2sin | GE—DT
2N

For normalized case, Q. = 1| rad/s

Step 6 Using the chosen transformation, transform the analog filter transfer function H (s)
to digital filter transfer function H(z).

Step 7 Realize the digital filter transfer function H(z) by a suitable structure.

Properties of Butterworth filters

1. The Butterworth filters are all pole designs (i.e. the zeros of the filters exist at o).
2. The filter order N completely specifies the filter.



The magnitude response approaches the ideal response as the value of N increases.
The magnitude is maximally flat at the origin.

The magnitude is monotonically decreasing function of €.

At the cutoff frequency €. the magnitude of normalized Butterworth filter is 1/
«/:2_ . Hence the dB magnitude at the cutoff frequency will be 3 dB less than the
maximum value.

el o

EXAMPLE 8.17 Design a Butterworth digital filter using the bilinear transformation. The
specifications of the desired low-pass filter are:

09 < |H(w)| <1: 0w < %
. 3r
| Hw)| < 0.2; 'l <Sw<n

withT=1s

Solution: The Butterworth digital filter is designed as per the following steps.
From the given specification, we have

A =09and w, =

adT'=1§

A|§" (SRR

A, =02and w, =

Step 1 Choice of the type of transformation
Here the bilinear transformation is already specified.
Step 2 Determination of the ratio of the analog filter’s edge frequencies, €2,/Q,

@i 2 i 2 = 2 i | O o 3% 08
2T 21 2 8
S’).,:gtanﬂzztan (#2) =2tan£=2

T 2 1 2 4
Q _488 ..
Q, 2 '

Step 3  Determination of the order of the filter N

]

1
- lo i
Q.




(o.lz)2 _1]/ [(o.;f _l}}

%mﬂ

>
log 1.207
log £24/0.2345
WL AL b o men
2 log 2414

Since N = 2.626, choose N = 3.
Step 4 Determination of the analog cutoff frequency Q. (i.e., -3 dB frequency)

O = 2 =2.5467

12N 12x3
L-] [ . —1}
{Af jl 0.9°

Step 5 Determination of the transfer function of the analog Butterworth filter H,(s)

N-l

(5]

Q, Q?
For odd N, we have H,(s)= c c

s+Q. 1 b Qs+

where b, =2 sin [(21‘2%]

For N = 3, we have

(5= Q. i Q7 i
s+Q, 57 +bQ s+ Q)
where b, = 2sin Exl-g =2sinZ =1
2x%3 6
] 5467)°
Therefore, H,(s)= 25467, - @467) >
5 +2.5467 || 57 + 1(2.5467) 5 + (2.5467)" ]

Step 6 Conversion of H,(s) into H(z)
Since bilinear transformation is to be used. the digital filter transfer function is:

H@= B0 gf1-0) = B0 ficr
T

14z

1-:7
-1

l+z2

2.5467 (2.5467)

1-z7! P B o _
2[1 = J+2-5467 o ] = || +2.5467 2! = | +(2.5467)
AL 1+2° 1+2°

H(z)=




3

0.2332(1 + 7'

T 1+0439477" +03845772 +0.04167



