
PPS UNIT 3:

CONTROL FLOW, FUNCTIONS

Conditional Statements:

Conditional statements are used in programming to

control the flow of a program.

There are three main types of conditional statements in

Python:

The if-elif-else construct works in the same way as a usual if-else statement.

if-elif-else construct is also known as nested-if construct.

Home work:

Iteration Statements (Loops)
Iteration statements are used to execute a piece of code a certain
number of times or until a certain condition is met.
There are two types of iteration statements in Python:

 The “for” loop
 The “while” loop

Example 1

Example 2

Example 3

Example 1

Example 2

Using break statement:

The Pass Statement Example:

Functions in Python

If a program contains a large piece of code that must be run
repeatedly, it is preferable to implement that code as a function and
then call it using a loop. Functions promote code reuse, modularity,
and integrity.
 Consider the following scenario: you must add two numbers 100
times. You will have to assign values to two variables 100 times,
perform the addition, and print the result on the console if you don't
use a function. If you're asked to conduct subtraction, you'll have to
change the plus sign back and forth 100 times. It is more convenient
in this case to write a function that accepts two numbers and performs
addition between them. The function can then be invoked inside a
loop. Similarly, if you want to move from addition to subtraction,
you must do so in one position.

Function Composition in Python
Function composition is the way of combining two or more functions in such a
way that the output of one function becomes the input of the second function
and so on. For example, let there be two functions “F” and “G” and their
composition can be represented as F(G(x)) where “x” is the argument and
output of G(x) function will become the input of F() function.

Example:
Function to add 2
to a number
def add(x):
 return x + 2

Function to multiply
2 to a number
def multiply(x):
 return x * 2

Printing the result of
composition of add and
multiply to add 2 to a number
and then multiply by 2
print("Adding 2 to 5 and multiplying the result with 2: ",
 multiply(add(5)))

Output:
Adding 2 to 5 and multiplying the result with 2: 14

Explanation

First the add() function is called on input 5. The add() adds 2 to the input and

the output which is 7, is given as the input to multiply() which multiplies it by 2

and the output is 14

Strings: string slices:

Python slice string syntax is:

str_object[start_pos:end_pos:step]

The slicing starts with the start_pos index (included) and ends at end_pos index
(excluded). The step parameter is used to specify the steps to take from start to end
index. Python String slicing always follows this rule: s[:i] + s[i:] == s for any index ‘i’. All
these parameters are optional - start_pos default value is 0, the end_pos default value
is the length of string and step default value is 1. Let’s look at some simple examples of
string slice function to create substring.

s = 'HelloWorld'

print(s[:])

print(s[::])

Output:

HelloWorld

HelloWorld

Note that since none of the slicing parameters were provided, the substring is equal to
the original string. Let’s look at some more examples of slicing a string.

s = 'HelloWorld'

first_five_chars = s[:5]

print(first_five_chars)

third_to_fifth_chars = s[2:5]

print(third_to_fifth_chars)

Output:

Hello

llo

Note that index value starts from 0, so start_pos 2 refers to the third character in the
string.

Reverse a String using Slicing

We can reverse a string using slicing by providing the step value as -1.

s = 'HelloWorld'

reverse_str = s[::-1]

print(reverse_str)

Output: dlroWolleH

Let’s look at some other examples of using steps and negative index values.

s1 = s[2:8:2]

print(s1)

Output: loo Here the substring contains characters from indexes 2,4 and 6.

s1 = s[8:1:-1]

print(s1)

Output: lroWoll Here the index values are taken from end to start. The substring is
made from indexes 1 to 7 from end to start.

https://www.digitalocean.com/community/tutorials/python-slice-string#reverse-a-string-using-slicing

Some additional important Programs:

