
Subject: Programming for Problem Solving [UNITL102]

Unit 5: FILE HANDLING & EXCEPTION HANDLING

What is an Exception

An exception is an occurrence that causes the program's execution to be
interrupted. In other words, when a Python script meets a condition that it is unable to handle,
it throws an exception. Exceptions in Python are raised in the form of objects. When an
exception occurs, an object containing
information about the exception is initialized. In Python, an exception must be addressed or
the program may terminate.

Exception Handling in Python

Exception handling in Python allows us to handle and recover from errors or exceptional situations
that can occur during the execution of our code. These exceptional situations are known as
exceptions. Python provides a mechanism to catch and manage exceptions to prevent our program
from crashing when something unexpected happens.

Syntax for Exception Handing

The syntax for exception handling is as follows:

Try:

#the code that can raise exception

except ExceptionA:

#the code to execute if ExceptionA occurs

For example:

try:

 x = 10 / 0

except ZeroDivisionError:

 print("Division by zero is not allowed.")

Output: Division by zero is not allowed

Multiple Exceptions

We can handle different types of exceptions separately by using multiple except blocks.

Syntax

try:

 # Code that might raise an exception

except ExceptionType1:

 # Handle ExceptionType1

except ExceptionType2:

 # Handle ExceptionType2

except ExceptionType3:

 # Handle ExceptionType3

Example

To manage multiple exceptions, simply stack one exception handling block on top of the
other. Consider the following exception:
Exam

try:

num1 = 10
num2 = 2
result = num1/num2
print(result)

except ZeroDivisionError:

print ("Sorry, division by zero not possible")
except NameError:

print ("Some variable/s are not defined")
else:

print("Program executed without an exception")

In the script above, both the “ZeroDivisionError” and “NameError” exceptions are handled.
Therefore, if you set the value of num2 to 0, the “ZeroDivisionError” exception will occur.
However if you try to divide the num1 by ‘b’, the “NameError” exception will occur since the
variable “b” is not defined. Finally if none of the exception occurs, the statement in the
else block will execute.

Another way to handle multiple exceptions is by using Exception object which is base class
for all the exceptions. The Exception object can be used to handle all types of exceptions.
Take a look at the following example.

try:

num1 = 10
num2 = 0
result = num1/num2
print(result)

except Exception:

print ("Sorry, program cannot continue")

else:

print("Program executed without an exception")

In the script above, all the different types of exceptions will be handled by code block for
Exception object. Therefore, a generic message will be printed to the user. In the script above,
the num2 contains zero. Therefore, the “ZeroDivisionError” exception will occur. The result
will look like this:

Sorry, program cannot continue

Generic Exception Handling:

We can use a generic except block to catch any exception, but this should be used sparingly because
it can make it harder to identify and fix issues.

try:

 # Code that might raise an exception

except:

 # Handle any exception

Else Block:

We can use an else block after the try and except blocks to specify code that should be executed if no
exception occurs.

try:

 # Code that might raise an exception

except ExceptionType:

 # Handle the exception

else:

 # Code to run if no exception occurred

Finally Block:

We can use a finally block to specify code that should be executed regardless of whether an
exception occurred or not. This is useful for cleanup operations like closing files or network
connections.

try:

 # Code that might raise an exception

except ExceptionType:

 # Handle the exception

finally:

 # Code to run no matter what

Python File Handling

File handling or data handling is the process of performing various operations on various types of
files. The most popular file operations are opening a file, reading the contents of a file, creating a
file, writing data to a file, appending data to a file, etc.

1. Opening a File

To open a file in python the open function is used. It takes 3 parameters: The path to the file, the
mode in which the file should be opened and the buffer size in number of lines. The third parameter
is optional. The open function returns file object. The syntax of the open function is as follows:

file_object = open(file_name, file_mode, buffer_size)

Following table describe different types of modes along with their description:

Mode Description

R Opens file for read only

r+ Opens file for reading and writing

Rb Only Read file in binary

rb+ Opens file to read and write in binary

W Opens file to write only. Overwrites existing files with same Name

w+ Opens file for reading and writing

Wb Opens file to read and write in binary. Overwrites existing files with

same name

 A Opens a file for appending content at the end of the file

a+ Opens file for appending as well as reading content

Ab Opens a file for appending content in binary

ab+ Opens a file for reading and appending content in binary

The file object returned by the open method has three main attributes:
1- name: returns the name of the file
2- mode: returns the mode with which the file was opened
3- closed: is the file closed or not

Example:

First create a file test.txt and place it in the root directory of the D drive.

file_object = open("D:/test.txt", "r+")

print(file_object.name)

print(file_object.mode)

print(file_object.closed)

In the script above, we open the test.txt file in the read and write mode. Next we print the name and
mode of the file on the screen. Finally we print whether the file is closed or not.

Output:

D:/test.txt

r+

False

2. Close a File

To close an opened file, we can use close method.

Example:

file_object=open("D:/test.txt","r+")
print(file_object.name)
print(file_object.closed)
file_object.close()
print(file_object.closed)

In the script above, the test.txt file is opened in r+ mode. The name of the file is printed. Next we
check if the file is opened using closed attribute, which returns false, since the file is open at the

moment. We then close the file using close method. We again check if the file is closed, which
returns true since we have closed the file.

Output:

D:/test.txt

False

True

3. Writing Data to a File

To write data to a file, the write function is used. The content that is to be written to the file is
passed as parameter to the write function.

Example:

file_object = open("D:/test1.txt", "w+")

file_object .write("Welcome to Python.\n The best programming language! \n")

file_object .close()

In the script above, the file test.txt located at the root directory of D drive is opened. The file
is opened for reading and writing. Next two lines of text have been passed to the write
function. Finally the file is closed.
If we will go to root directory of D drive, we will see a new file test1.txt with the following
contents:

Welcome to Python.
The best programming language!

4. Reading Data from a File:

To read data from a file in Python, the read function is used. The number of bytes to read
from a file is passed as a parameter to the read function.

Example:

file_object = open("D:/test1.txt", "r+")
sen = file_object.read(12)
print("The file reads: "+sen)
file_object .close()
The script above reads the first 12 characters from the test1.txt file that we wrote in the last example.
Output:

The file reads: Welcome to P

To read the complete file, do not pass anything to the read function. The following script reads the
complete test1.txt file and prints its total content.

file_object = open("D:/test1.txt", "r+")
sen = file_object.read()
print(sen)
file_object .close()

Output:

Welcome to Python.
The best programming language!

5. Renaming Python Files

We can rename and delete python files using Python os module. To rename a file, the rename
function is used. The old name of the file is passed as first parameter while new name is passed as
second parameter.

Example:

import os

os.rename("D:/test1.txt", "D:/test2.txt")
The above script renames file test1.txt to test2.txt

6. Delete Python Files

To delete a file in Python, the remove method is used.

Example:

import os
os.remove("D:/test.txt")

The above script deletes the test.txt file located at the root directory of D drive.

Recent Trends in Python

Python is a high-level, versatile, and easy-to-learn programming language. It is known for its
simplicity and readability, making it an excellent choice for beginners and experienced developers
alike. Python has wide range of applications, including web development, data analysis, machine
learning, automation, scientific computing, artificial intelligence, and more. Its simplicity and
extensive ecosystem make it a top choice for developers across various domains.

1. Artificial Intelligence and Machine Learning:

 Python remained the language of choice for AI and machine learning. TensorFlow,
PyTorch, and scikit-learn were popular libraries for deep learning and ML.

2. Data Science and Analytics:

 Python continued to dominate the field of data science with libraries like Pandas,
NumPy, and Jupyter notebooks for data analysis and visualization.

3. Natural Language Processing (NLP):

 NLP applications using Python were on the rise, thanks to libraries like spaCy and the
widespread use of pre-trained language models like GPT-3 and BERT.

4. Computer Vision:

 Python was widely used for computer vision applications, leveraging libraries such as
OpenCV and deep learning frameworks like OpenAI's DALL-E and CLIP.

5. Web Development:

 Frameworks like Django, Flask, and FastAPI were popular choices for web
development. Many developers used Python for both server-side and client-side
development.

6. Serverless and Cloud Computing:

 Python was a common language for developing serverless functions and cloud-based
applications on platforms like AWS Lambda, Google Cloud Functions, and Azure
Functions.

7. Blockchain and Cryptocurrency:

 Python was used in blockchain development for creating smart contracts, developing
blockchain applications, and interacting with cryptocurrencies.

8. DevOps and Automation:

 Python played a crucial role in DevOps and automation tasks, including infrastructure
management, deployment automation, and continuous integration.

9. Cybersecurity:

 Python was employed for tasks related to cybersecurity, such as penetration testing,
vulnerability assessment, and security tool development.

10. Quantitative Finance:

 Python was widely used in the finance industry for quantitative analysis, algorithmic
trading, risk management, and portfolio optimization.

11. Healthcare and Bioinformatics:

 Python was used in healthcare for tasks like medical imaging analysis, data analysis,
and genomics research.

12. IoT (Internet of Things):

 Python was used in IoT projects for device communication, data analysis, and building
IoT applications.

13. Educational Tools and Platforms:

 Python was a popular language for creating educational resources and platforms, and it
remained a common choice for teaching programming.

14. 3D and Game Development:

 Python, particularly with libraries like Pygame and Panda3D, was used for 3D graphics
and game development.

15. Quantum Computing:

 Python was adopted for quantum computing development and simulations, with
libraries like Qiskit gaining traction.

16. Type Hinting and Static Analysis:

 The use of type hinting with tools like mypy to enhance code quality and
maintainability continued to grow.

