
Experiment No. 4
Aim: Write a MATLAB Program to find DFT of the sequence and Plot Magnitude & Phase Plot.

Tool: Matlab

Theory:

Discrete Fourier Transform (DFT) converts a finite sequence of equally-spaced samples of a function into

a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which

is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of

the duration of the input sequence. An inverse DFT is a Fourier series, using the DTFT samples as

coefficients of complex sinusoids at the corresponding DTFT frequencies. It has the same sample-values

as the original input sequence. The DFT is therefore said to be a frequency domain representation of the

original input sequence. If the original sequence spans all the non-zero values of a function, its DTFT is

continuous (and periodic), and the DFT provides discrete samples of one cycle. If the original sequence is

one cycle of a periodic function, the DFT provides all the non-zero values of one DTFT cycle.

The DFT is the most important discrete transform, used to perform Fourier analysis in many practical

applications. In digital signal processing, the function is any quantity or signal that varies over time, such

as the pressure of a sound wave, a radio signal, or daily temperature readings, sampled over a finite time

interval (often defined by a window function). In image processing, the samples can be the values

of pixels along a row or column of a raster image. The DFT is also used to efficiently solve partial

differential equations, and to perform other operations such as convolutions or multiplying large integers.

Since it deals with a finite amount of data, it can be implemented in computers by numerical algorithms or

even dedicated hardware. These implementations usually employ efficient fast Fourier transform (FFT)

algorithms; so much so that the terms "FFT" and "DFT" are often used interchangeably. Prior to its current

usage, the "FFT" initialism may have also been used for the ambiguous term "finite Fourier transform".

Input Parameter:

Enter the Sequence for which DFT is to be calculated [1 2 3 4 5]

 15.0000 + 0.0000i -2.5000 + 3.4410i -2.5000 + 0.8123i -2.5000 - 0.8123i -2.5000 - 3.4410i

Code:

% To find DFT of the sequence and Plot Magnitude and Phase Response
x=input('Enter the Sequence for which DFT is to be calculated');
N=length(x);
n=[0:1:N-1];
k=[0:1:N-1];
nk=n'*k;
WN=exp(-1j*2*pi/N);
WNnk=WN.^nk;
% DFT of x is Xk
Xk=x*WNnk;

https://en.wikipedia.org/wiki/Sampling_(signal_processing)
https://en.wikipedia.org/wiki/Function_(mathematics)
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Fourier_series
https://en.wikipedia.org/wiki/Complex_number
https://en.wikipedia.org/wiki/Sine_wave
https://en.wikipedia.org/wiki/Frequency_domain
https://en.wikipedia.org/wiki/Discrete_transform
https://en.wikipedia.org/wiki/Fourier_analysis
https://en.wikipedia.org/wiki/Digital_signal_processing
https://en.wikipedia.org/wiki/Signal_(information_theory)
https://en.wikipedia.org/wiki/Sound_wave
https://en.wikipedia.org/wiki/Radio
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Window_function
https://en.wikipedia.org/wiki/Image_processing
https://en.wikipedia.org/wiki/Pixel
https://en.wikipedia.org/wiki/Raster_image
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Numerical_algorithm
https://en.wikipedia.org/wiki/Digital_circuit
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Initialism
https://en.wikipedia.org/wiki/Finite_Fourier_transform_(disambiguation)

disp(Xk);
MagX=abs(Xk);
PhaseX=angle(Xk)*180/pi;
subplot(2,1,1);
plot(k,MagX);
title('Magnitude Response of DFT');
subplot(2,1,2);
plot(k,PhaseX);
title('Phase Response of DFT');

Result and Observations:

Conclusion: Hence DFT of the given sequence is determined and Magnitude & Phase Plot is plotted.

Experiment No. 5
Aim: Write a MATLAB Program to calculate Circular Convolution of Two Equal Sequence using DFT &

IDFT.

Tool: Matlab

Theory:

Circular convolution, also known as cyclic convolution, is a special case of periodic convolution, which is

the convolution of two periodic functions that have the same period. Periodic convolution arises, for

example, in the context of the discrete-time Fourier transform (DTFT). In particular, the DTFT of the

product of two discrete sequences is the periodic convolution of the DTFTs of the individual sequences.

And each DTFT is a periodic summation of a continuous Fourier transform function (see DTFT

§ Definition). Although DTFTs are usually continuous functions of frequency, the concepts of periodic and

circular convolution are also directly applicable to discrete sequences of data. In that context, circular

convolution plays an important role in maximizing the efficiency of a certain kind of common filtering

operation.

A case of great practical interest is illustrated in the figure. The duration of the x sequence is N (or less),

and the duration of the h sequence is significantly less. Then many of the values of the circular convolution

are identical to values of x∗h, which is actually the desired result when the h sequence is a finite impulse

response (FIR) filter. Furthermore, the circular convolution is very efficient to compute, using a fast

Fourier transform (FFT) algorithm and the circular convolution theorem.

There are also methods for dealing with an x sequence that is longer than a practical value for N. The

sequence is divided into segments (blocks) and processed piecewise. Then the filtered segments are

carefully pieced back together. Edge effects are eliminated by overlapping either the input blocks or the

output blocks. To help explain and compare the methods, we discuss them both in the context of

an h sequence of length 201 and an FFT size of N = 1024.

Input Parameter:

Enter the First Sequence x1[n] =[1 2 3 4 5]

Enter the Second Sequence x2[n] =[5 4 3 2 1]

 45.0000 40.0000 40.0000 45.0000 55.0000

Code:

% To calculate Circular Convolution of Two Equal length Sequences
% using DFT and IDFT
x1=input('Enter the First Sequence =');
x2=input('Enter the Second Sequence =');
N=length(x1);
n=[0:1:N-1];
k=[0:1:N-1];
nk=n'*k;

https://en.wikipedia.org/wiki/Convolution
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform
https://en.wikipedia.org/wiki/Periodic_summation
https://en.wikipedia.org/wiki/DTFT#Definition
https://en.wikipedia.org/wiki/DTFT#Definition
https://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/Finite_impulse_response
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/Discrete_Fourier_transform#Circular_convolution_theorem_and_cross-correlation_theorem

WN=exp(-1j*2*pi/N);
WNnk=WN.^nk;
% DFT of x1 and x2 is Xk1 and Xk2 respectively
Xk1=x1*WNnk;
Xk2=x2*WNnk;
% Multiplication of Two DFTs
Yk=Xk1.*Xk2;
% IDFT of Yk
WNI=exp(1j*2*pi/N);
WNInk=WNI.^nk;
yc=(Yk*WNInk)/N;
disp(abs(yc));

subplot(2,2,1);

stem(n,x1);

subplot(2,2,2);

stem(n,x2);

subplot(2,2,3);

stem(n,abs(yc));

Result and Observations:

Conclusion: Hence the Circular Convolution of Two Equal Sequence is calculated using DFT & IDFT.

Experiment No. 6
Aim: Write a MATLAB Program to Compute DFT & IDFT using Fast Fourier Transform (FFT)

Algorithm and Inverse Fast Fourier Transform (IFFT) Algorithm

Tool used: MATLAB

Theory:

A Fast Fourier transform (FFT) is an algorithm that calculates the Discrete Fourier Transform

(DFT) of Discrete Periodic Sequence of length N. Discrete Fourier transform is a tool to convert

specific types of sequences of functions into other types of representations. Another way to explain

discrete Fourier transform is that it transforms the structure of the cycle of a waveform into sine

components. Fast Fourier transform is an algorithm to compute DFT with less time complexity

hence it can be used predominantly in signal processing. It may be useful in reading things like

sound waves, or for any image-processing technologies. Discrete Fourier Transform can be used

to solve various types of equations, or show various types of frequency activity in useful ways.

As an extremely mathematical part of both computing and electrical engineering, fast Fourier

transform and the DFT are largely the province of engineers and mathematicians looking to change

or develop elements of various technologies. For example, Discrete Fourier transform might be

helpful in sound engineering, seismology or in voltage measurements. The main advantage of

having DFT is that through it, we can design the FIR filters. The expression for Discrete Fourier

Transform (DFT) is as follows

 X[k] = ∑ 𝑥[𝑛]𝑊𝑁
𝑛𝑘𝑁−1

𝑘=0

Where, Twiddle factor 𝑊𝑁 = 𝑒−𝑗
2𝜋

𝑁 and N is the Discrete Periodic Time Interval.

The value of N should be taken as power of 2 while calculating the DFT using FFT algorithm.

Inverse Fast Fourier transform (IFFT) is an algorithm to compute IDFT. It is also known as

backward Fourier transform. It converts a space or time signal to a signal of the frequency domain.

The DFT signal is generated by the distribution of value sequences to different frequency

components. Working directly to convert on Fourier transform is computationally too expensive.

So, Fast Fourier transform is used as it rapidly computes by factorizing the DFT matrix as the

product of sparse factors. As a result, it reduces the DFT computation complexity from O(N2)

to O(N log N). And this is a huge difference when working on a large dataset. Also, FFT

algorithms are very accurate as compared to the DFT definition directly, in the presence of

round-off error.

x[n] =
1

𝑁
 ∑ 𝑋[𝑘]𝑊𝑁

−𝑛𝑘𝑁−1
𝑘=0

Code:

MATLAB Program:

N=input('Enter the value of Time Period N which should be the power of two, N=');

x=input('Enter the Input Sequence of length N in []=');

n=0:1:N-1;

subplot(4,1,1);

stem(n,x);

title('Input Sequence x(n)');

y=fft(x,N);

disp(y);

subplot(4,1,2);

stem(real(y));

title('Real Part of X(k)');

subplot(4,1,3);

stem(imag(y));

title('Imaginary Part of X(k)');

z=ifft(y,N);

disp(z);

subplot(4,1,4);

stem(n,z);

title('IFFT of X(k)');

Input Variables:

1. Time Period N (Must be the Power of Two)

2. Input Discrete Sequence x[n]

Results and Observations:

Fig 1 Plots of FFT and IFFT of sequence x[n]=[2 3 7 8]

Conclusion: Thus the plots of Fast Fourier Transform and the Inverse Fast Fourier Transform of

the input discrete sequence x[n]=[2 3 7 8] are obtained as shown in Fig 1

