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Pitch Estimation 
 

 
When looking at audio signals, one possible signal model is to distinguish between harmonic  

components and noise like components. The harmonic components exhibit a periodic structure 
in time and it is of course of interest to express this periodicity via the fundamental frequency 
F0, i.e. the frequency of the first sinusoidal component of the harmonic source.  This funda- 
mental frequency is closely related to the so called pitch of the source. The pitch is defined as 
how ”low” or ”high” a harmonic or tone-like source is perceived. Although strictly speaking 
this is a perceptual property, and is not necessarily equal to the fundamental frequency, it is 
often used as a synonym for the fundamental frequency. We will use the term pitch in this way 
in the remaining text. It is also of interest how the relationships in terms of energy between 
the harmonic and noise like components of an audio signal are. One feature expressing this 
relationship is the Harmonic to Noise Ratio (HNR). The estimation of the pitch and the HNR 
then can be used e.g. for efficiently coding the signal, or to generate a synthetic signal based 
on this and other information gained from analysing the signal. In this laboratory we will 
concentrate on a single audio source, and we will restrict ourselves to speech, which is the 
primary mode of human interaction. We will use this signals to develop simple estimators for 
both features and compare the results to state-of-the-art solutions for estimating the pitch and 
the HNR. 

 
 

 
 
 



1 Pitch Estimation 

As stated above, we model an audio, or to be more specific, an speech signal as a mixture of a 
harmonic signal and a noise signal: 

s(t) = h(t) + n(t) (1) 

where s(t) is the speech signal, h(t) is the harmonic component, and n(t) ist the noise component. 
For time-discrete signal (and in digital signal processing of course we deal with such time-discrete 
signals) the equation becomes: 

s[k] = h[k] + n[k] (2) 

k being the samples index. 
In this section we will have a closer look at the harmonic component h(t), which can be expressed 

as the sum of its partial tones, which are sinusoidals where the frequencies of the individual partial 
tones are integer multiples of the fundamental frequency: 

 
 

where an are the individual amplitudes and φn are additional phases for the individual partial tones. 
Unfortunately in real world signals like speech typically neither the amplitudes nor the fundamental 
frequency stay constant over the whole duration of the signal. But when looking closer at for e.g. 
speech, we see that this parameters normally only change slowly over time. This behaviour gives 
us the possibility to assume that the parameters stay constant if we compart the signals into small 
enough sections in time. Such signals are called quasi-stationary. So the first step towards a pitch 
estimation is to divide the signal into small enough blocks.  The length of the block is determined 
by the lowest pitch we like to detect, for most algorithms at least two periods of the signal should 
be contained within one block to give a reliable estimate.  Table 1 gives a rough overview of the 
pitch ranges in human speech. 

  



Σ 

 lower limit upper limit 
male 75 Hz 150 Hz 

female 125 Hz 250 Hz 
child  600 Hz 

 

Table 1: typical fundamental frequencies in human speech 
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Figure 1: Comparison of the biased and unbiased autocorrelation sequence for a periodic signal 
(part of a vowel of a male speaker). 

 

The simplest way would now be to just use the zero crossings of the signal. But although 
this method is very efficient it is not well suited if higher partials have amplitudes or if the noise 
component is very strong. 

So most pitch algorithms are based on other methods, for a simple overview go to [1]. 
In this laboratory we will develop a estimation algorithm based on the autocorrelation [2]. For 

discrete time signals the autocorrelation is defined as: 

 
 

where l is the so called lag. Of course this is the definition for signals of infinite length, but 
we already divided our signal into blocks of length N each, so the autocorrelation becomes (in its 
biased form): 

 

Rxx 

 1 
[l] = 

N 

N−1 

x[k]x[k − l] (5) 
k=l 

We only consider positive lags since the resulting autocorrelation sequence is symmetric around 
l = 0. Another form of the autocorrelation is the so called unbiased autocorrelation sequence 
 

 

The difference between unbiased and biased autocorrelation is that the unbiased takes the decreasing 
number of samples involved in the summation into account. When looking at figure 1 we observe 
the difference between the biased and the unbiased autocorrelation, the biased tapers off towards 
high lags. When we compare the autocorrelation equations with our assumption that the signal is 

  biased 

  unbiased 



periodic with a periodicity T0 = 1/F0: 

x[k] ≈ [k + mT0], m ∈  Z (7) 

we see that for such a signal we can expect local maxima of the autocorrelation sequence for lags 
that are a multiple of T0. By finding the maximum of the autocorrelation we get an estimate 
of the fundamental frequency.  Note that the autocorrelation function always has a maximum at 
l = 0, so to not erroneously detecting the zero lag as maximum,  it is wise to restrict the search 
within lags that correspond to the upper and lower limits of the fundamental frequency range under 
consideration. Also the found global maximum might not be at the lag corresponding to the true 
fundamental frequency but can possibly be an integer multiple of that. Furthermore note that due 
to this, the estimate can jump between lags in consecutive frames leading also to jumps in the F0-
estimate. For a more robust estimation this must be taken into account. 

 

 

 

 
 

 



 
 
 

Pitch Estimation based on Comb Filter: 

 

The fundamental frequency is the lowest frequency component of a complex 

waveform that determines its perceived pitch. When you hear a musical note or any 

sound with a discernible pitch, what you're essentially hearing is the fundamental 

frequency of the sound wave. 

For example, when you pluck a guitar string, the vibration produced by the string 

generates a complex waveform. This waveform consists of a fundamental frequency 

(the pitch you hear as the note) and various harmonics, which are integer multiples of 

the fundamental frequency. The fundamental frequency corresponds to the pitch of 

the note produced by the guitar string. 

The fundamental frequency is called "fundamental" because it's the primary or 

foundational frequency upon which the other harmonics are built. It's often the most 

prominent frequency component in a sound wave and plays a crucial role in 

determining the perceived pitch of the sound. 

 
 

 

Pitch estimation based on a comb filter is a technique commonly used in digital signal 

processing to determine the fundamental frequency (pitch) of a signal, particularly in 

the context of audio processing. The comb filter method relies on the principle of 

spectral analysis to identify the periodicity of a signal, which corresponds to its pitch. 

Here's a detailed explanation of how pitch estimation using a comb filter works: 

1. Basic Concept of Comb Filtering: 

 A comb filter is a type of filter characterized by regularly spaced notches or 

peaks in its frequency response. These notches or peaks resemble the teeth of 

a comb, hence the name. 

 In the context of pitch estimation, the comb filter is designed to emphasize or 

accentuate harmonics that are integer multiples of the fundamental frequency 

of the signal. 

2. Algorithm Overview: 

 The basic idea is to create a comb filter with a fundamental frequency that is 

adjustable. This filter is then applied to the input signal. 

 By varying the spacing between the notches or peaks of the comb filter, the 

algorithm tries to find the spacing that best aligns with the harmonics present 

in the input signal. This spacing corresponds to the estimated fundamental 

frequency or pitch. 

3. Implementation Steps: 



 Designing the Comb Filter: 

 Choose a suitable comb filter structure. One common choice is the Finite 

Impulse Response (FIR) comb filter. 

 Determine the spacing between the notches or peaks of the comb filter. 

This spacing corresponds to the expected fundamental frequency range 

of the input signal. 

 Design the filter coefficients to create the desired comb filter response. 

 Applying the Comb Filter: 

 Convolve the input signal with the comb filter. This operation 

accentuates the harmonics aligned with the spacing of the comb filter 

while attenuating others. 

 The result of this convolution will have peaks or energy spikes at 

frequencies corresponding to the harmonics of the fundamental 

frequency. 

 Pitch Estimation: 

 Analyze the output of the comb filtering operation to identify the peaks. 

 Determine the spacing between the peaks. This spacing corresponds to 

the estimated fundamental frequency. 

 Convert the spacing to a frequency value, which represents the 

estimated pitch of the input signal. 

4. Refinement Techniques: 

 Peak Picking: Apply techniques such as peak picking to accurately identify the 

peaks in the output spectrum of the comb filter. 

 Interpolation: Use interpolation methods to refine the estimated fundamental 

frequency by interpolating between the peaks in the output spectrum. 

5. Challenges and Considerations: 

 Noise Sensitivity: Comb filter-based pitch estimation can be sensitive to noise, 

which may introduce spurious peaks in the output spectrum. 

 Resolution: The accuracy of the pitch estimation depends on the resolution of 

the comb filter and the spacing between its notches or peaks. 

 Computational Complexity: Depending on the implementation, comb filter-

based pitch estimation can be computationally intensive, especially for real-

time applications. 

6. Applications: 

 Pitch correction in audio processing applications. 

 Music transcription and analysis. 

 Speech processing for tasks such as speech recognition and synthesis. 

 

Overall, pitch estimation using a comb filter is a powerful technique for extracting the 

fundamental frequency of a signal, particularly in scenarios where the signal contains 

harmonics with a clear periodic structure. However, like any pitch estimation method, 

it has its limitations and requires careful consideration of factors such as noise 

robustness and computational efficiency. 

 Pitch estimation using a comb filter. 

1. Comb Filter Equation: 



A comb filter can be represented mathematically as a system with impulse responses 

spaced at regular intervals. The impulse response of a comb filter can be described as: 

h(n)=δ(n)+δ(n−D)+δ(n−2D)+… 

where: 

 : h(n) is the impulse response of the comb filter, 

 δ(n) is the Dirac delta function, 

 D is the spacing between the notches or peaks in the comb filter. 

2. Convolution 

To apply the comb filter to an input signal x(n), we perform convolution: 

y(n)=∑k=−∞∞x(k)⋅h(n−k) 

where: 

 y(n) is the output signal, 

 x(n) is the input signal, 

 h(n) is the impulse response of the comb filter. 

3. Peak Detection: 

After applying the comb filter, we look for peaks in the filtered signal y(n). Peaks in 

the filtered signal correspond to constructive interference between the comb filter 

and the harmonics present in the input signal. 

4. Pitch Estimation: 

The spacing between adjacent peaks in the filtered signal corresponds to the 

fundamental period of the input signal. We can estimate the pitch f0 using this period: 

f0= 1/ T0 

where: 

 f0 is the fundamental frequency (pitch), 

 T0 is the period between adjacent peaks. 

5. Refinement: 

Depending on the application, further refinement steps may be applied. For example, 

you might use interpolation techniques to estimate the exact position of the peaks, 

especially if they fall between discrete samples. 

6. Comb Filter Design: 



The design of the comb filter involves selecting an appropriate spacing D between 

the notches or peaks. This spacing depends on the expected range of pitches in the 

input signal and the resolution required for accurate pitch estimation. 

By adjusting the parameters of the comb filter and analyzing the peaks in the filtered 

signal, we can estimate the pitch of the input signal. However, it's worth noting that 

pitch estimation based solely on comb filtering may have limitations, especially in the 

presence of noise or complex audio signals. In practice, it's often used as part of a 

larger pitch estimation system that incorporates multiple techniques for improved 

accuracy and robustness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Pitch estimation based on a harmonic sine wave model 

 

Pitch estimation based on a harmonic sine wave model is a fundamental technique used in various 

audio processing applications, particularly in music and speech processing. The goal is to estimate 

the fundamental frequency (pitch) of a given audio signal, which represents the perceived pitch of 

the sound. Here's how it can be done using a harmonic sine wave model: 

1. Preprocessing: 

 Convert the audio signal into a time-domain representation, typically a sequence of 

samples. 

 Apply any necessary preprocessing steps such as noise reduction, filtering, or 

normalization to enhance the quality of the signal. 

2. Frame Segmentation: 

 Divide the signal into smaller frames of fixed duration (e.g., 10-30 milliseconds). 

 Overlapping frames are often used for smoother analysis. 

3. Windowing: 

 Apply a window function (e.g., Hamming, Hanning) to each frame to reduce spectral 

leakage. 

4. Frequency Domain Analysis: 

 Apply the Fourier Transform (usually Fast Fourier Transform, FFT) to each frame to convert 

it from the time domain to the frequency domain. 

 Calculate the magnitude spectrum of each frame. 

5. Harmonic Model: 

 Identify the peaks in the magnitude spectrum corresponding to harmonic frequencies. 

 Harmonic frequencies are integer multiples of the fundamental frequency. 

 Use methods like peak picking or spectral peak tracking to detect harmonic peaks. 

6. Pitch Estimation: 

 Once harmonic peaks are detected, estimate the fundamental frequency (pitch). 

 The fundamental frequency can be estimated by analyzing the spacing between harmonic 

peaks. 

 Common methods include autocorrelation, cepstral analysis, or using the average spacing 

between harmonic peaks. 

7. Refinement: 

 Refine the estimated pitch by considering factors such as the strength of harmonic peaks, 

presence of noise, and temporal continuity. 

 Techniques like pitch tracking algorithms (e.g., Kalman filtering, dynamic programming) 

can be employed for better accuracy and smoothness in pitch tracking. 

8. Post-processing: 

 Perform any necessary post-processing steps, such as smoothing or interpolation, to 

improve the accuracy and stability of the estimated pitch trajectory. 

9. Output: 

 Output the estimated pitch trajectory over time, which represents the perceived pitch 

contour of the audio signal. 

10. Evaluation: 

 Evaluate the performance of the pitch estimation algorithm using metrics such as pitch 

tracking error, accuracy, and robustness to various audio conditions (e.g., noise, pitch 

variation). 

By following these steps, a pitch estimation algorithm based on a harmonic sine wave model can 

accurately estimate the fundamental frequency of audio signals, which is crucial for applications 

like music transcription, speech analysis, and pitch correction. 



 

 

1. Signal Representation: 

 The input audio signal x(t) is represented as a discrete-time signal, typically sampled at a 

rate of fs Hz. Let x[n] denote the discrete signal. 

2. Frame Segmentation: 

 Divide the signal x[n] into frames of length N samples with a hop size H samples between 

consecutive frames. 

3. Windowing: 

 Apply a window function w[n] to each frame xw[n]=x[n]⋅w[n], where n=0,1,2,...,N−1. 

 Common window functions include Hamming w[n]=0.54−0.46cos(N−12πn)) or  

 Hanning w[n]=0.5−0.5cos(N−12πn)). 

4. Frequency Domain Analysis: 

 Compute the Discrete Fourier Transform (DFT) of each windowed frame xw[n] using FFT: 

Xw[k]=∑n=0N−1xw[n]⋅e−j2πnk/N 

 Calculate the magnitude spectrum ∣∣Xw[k]∣ for each frame. 

5. Harmonic Model: 

 Identify peaks in the magnitude spectrum corresponding to harmonic frequencies. 

 Harmonic frequencies are integer multiples of the fundamental frequency f0. 

 Let f0 denote the estimated fundamental frequency. 

6. Pitch Estimation: 

 Estimate f0 based on the spacing between harmonic peaks. 

 Common methods include autocorrelation and cepstral analysis. 

7. Refinement: 

 Refine the estimated pitch considering factors such as peak magnitude, noise, and 

temporal continuity. 

 Apply techniques like pitch tracking algorithms (e.g., Kalman filtering, dynamic 

programming) for refinement. 

8. Output: 

 Output the estimated fundamental frequency f0 over time, representing the pitch contour 

of the audio signal. 

Mathematically, the pitch estimation involves analyzing the harmonic structure of the signal's 

spectrum to determine the fundamental frequency. This often requires careful peak detection, 

frequency analysis, and refinement techniques to accurately estimate the pitch, especially in the 

presence of noise or varying signal characteristics. 

The actual implementation may vary depending on the specific requirements and the chosen 

algorithm for pitch estimation. 

 
 


