Discrete Signal and Discrete Time Signal

The discrete signal is a function of a discrete independent variable. The independent variable is
divided into uniform intervals and each interval is represented by an integer. The letter "n" is used to denote
the independent variable. The discrete or digital signal is denoted by x(n).

The discrete signal is defined for every integer value of the independent variable "n". The magnitude
(or value) of discrete signal can take any discrete value in the specified range. Here both the value of the
signal and the independent variable are discrete. The discrete signal can be represented by a one-dimensional
array as shown in the following example.

Example :
xin={2,4,-1,3,3 4}
Here the discrete signal x(n) is defined for, n=0,1,2,3,4,5
\ X0)=2; x(=4; x@2=-1; x3)=3; x4=3; xi5=4.

When the independent variable is time t, the discrete signal is called discrete time signal. In discrete
time signal, the time is divided uniformly using the relation t = nT, where T is the sampling time period. (The
sampling time period is the inverse of sampling frequency). The discrete time signal is denoted by x(n) or x(nT).



2.8 Classification of Discrete Time Systems

The discrete time systems are classified based on their characteristics. Some of the classifications of
discrete time systems are,

—

Static and dynamic systems

9

Time invariant and time variant systems
Linear and nonlinear systems

Causal and noncausal systems

Stable and unstable systems

FIR and IR systems

NP oew

Recursive and nonrecursive systems

2.8.1 Static and Dynamic Systems

A discrete time system is called static or memaoryless system if its output at any instant n depends at
most on the input sample at the same time but not on the past or future samples of the input. In any other case,
the system is said 10 be dyramic or 10 have memory.

Example :
yinl =axin) } Static systems
yinl = n xinl + 6 x(n)
yin} = xinl + 3 xin = 1)
Finite memory Is required

N
yin) = Y xin—mi
m-0 Dynamic systems

yin) = 2 il }Inﬁwemmtylsreqwed
m=0




Digital Signal

The digital signal is same as discrete signal except that the magnitude of the signal is quantized. The
magnitude of the signal can take one of the values in a set of quantized values. Here quantization is necessary
to represent the signal in binary codes.

The generation of a discrete time signal by sampling a continuous time signal and then quantizing the
samples in order to convert the signal to digital signal is shown in the following example.
Let, x(t) = Continuous time signal
T = Sampling time

A typical continuous time signal and the sampling of this continuous time signal at uniform interval
are shown in fig 2.1a and fig 2.1b respectively. The samples of the continuous time signal as a function of
sampling time instants are shown in fig 2.1c. (In fig 2.1¢, 1T, 2T, 3T, ....etc., represents sampling time instants
and the value of the samples are functions of this sampling time instants).
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Fig 2.1 : Sampling a continuous time signal to generate discrete time signal.



2.2.2 Representation of Discrete Time Signals

The discrete time signal can be represented by the following methods.

1. Functional representation

In functional representation, the signal is represented as a mathematical equation. as shown in the

following example. X(n A
xnl = - 05 n . =-2 s T
= 18 5 no==1 1.0 &
=10 5 n = 0 0.6
= 06 3 n = ] I
= 12 n = 2 >
= 15 ; n = 3 21 TR B
- 0 ; othern 0.5
1.0

Fig 2.2 : Graphical representation of a
2. Graphical representation discreie time signal.

In graphical representation, the signal s represented in a two-dimensional plane. The independent
variable is represented in the horizontal axis and the value of the signal is represented in the vertical axis as
shownin fig 2.2.

3. Tabular representation

In tabular representation, two rows of a tahle are used to represent a discrete time signal. In the first
row, the independent variahle "n" is tabulated and in the second row the value of the signal for each value of
"n" are tabulated as shown in the following table.

n,. | St =211 01 |2 3
X | wmenss 05| 1Ol -1.0| 0.6 | L2|L5

4. Sequence representation

In sequence representation, the discrete time signal is represented as a one-dimensional array as
shown in the following examples.

Aninfinite duration discrete time signal with the time origin, n =0, indicated by the symbal - is represented as,

xin={...-05,10,-1.0,06,12,15, ...}

An infinite duration discrete fime signal that satisfies the condition xin) = 0 for n < 0 is represented as,

xin)={-1.0,06,12,15, ..} or x{n} ={1.0,0.6,1.2, 1.5, ...}

A finite duration discrele time signal with the time origin, n = 0, indicated by the symbol - is represented as,

Xxin)={-0.510,-10,06,12,151}

A finite duration discrete time signal that satisfies the condition x(nl = 0 for n < 0 is represented as,
xin) ={-10,-06,12,15} ot x(n) ={-1.0, 0.6, 1.2, 1.5}




223 Standard Discrete Time Signals

1. Digital impulse signal or unit sample sequence 8(o) u(n)
1 1
Impulse signal, 8(n)=1 : n = 0 l l l l l
=0 ;n#0 [ 2 oizztsf
Fig 2.3 : Digital impulse  Fig 2.4 : Unit step signal.
2. Unit step signal signal,

Unit step signal, u(n)= 1;n 2 0
=0;n<0

3. Ramp signal

Ramp signal. u (n)=n :n 2 0
=0:n<?0 Fig 2.5 : Ramp signal,
4. Exponential signal

Exponential signal, &n)= a® in 2 0

g(n)4 =0 in<0 g(n)
Decaxt ‘,' a»1
T2 3 4 5t % © 1 2 3 4
Fig 2.6a : Decreasing exponential signal. Fig 2.6b : Increasing exponential signal.

Fig 2.6 : Exponential signal,



1) Linearity
The linearity property states that if

z
x1(n) ¢—mo X1(z) And
z
20) — X2(z) Then
Then z

al x1(n) + a2 x2(n) 4———» al X1(z)+alX2(z)
z Transform of linear combination of two or more signals is equal to the same linear combination of z
transform of individual signals.

2) Time shifting
The Time shifting property states that if
z
%) «— 5 X(z) And
z
Then x(n-k) — X(2) ¥

Thus shifting the sequence circularly by _k* samples is equivalent to multiplying its z transform by z &

3) Scaling in z domain
This property states that if

z
%(n) ——— 5 X(z) And
z
Then a® x(n) —  px(z/a)

Thus scaling in z transform is equivalent to multiplying by a® in time domain.

4) Time reversal Property
The Time reversal property states that if
z
%(n) ——— »X(z) And
z
Then x(-n) — px(Y)
It means that if the sequence is folded it is equivalent to replacing z by z? in z domain.

5) Differentiation in z domain
The Differentiation property states that if

z
x(n) — 3 X(z) And
z
Then n x(n) — -z d/dz (X(z))



6) Convolution Theorem
The Circular property states that if

z
x1(n) ¢—ouoo— X1(z) And
z
2(n) —  » X2(z) Then
z
Then x1(n) * x2(n) — R Xl(z)X2

Convolution of two sequences in time domain corresponds to multiplication of its Z transform sequence
i frequency domain,

7) Correlation Property
The Correlation of two sequences states that if

z
xl(n) ¢—m—ou X1(z) And
z
2(n) ¢— X2(z) Then
oo z
then 2 x1 (1) =2(-1) — X1(z) x2(z1)

n=-00

8) Initial value Theorem
Initial value theorem states that if

%(n) — X(z) And
then
x(0) = limX(Z)
z>00

9) Final value Theorem
Final value theorem states that if

z
X(n) ¢— 5 X(z) And
then
lim x(n) = lim(z-1) X(z)
z2>00 z=>1

Find the Z-transform of the following sequence

x(n)=u(n)—u(n—4)



The given sequence is:
x(n)=u(n)—u(n—4)

From Figure 3.4, we notice that the sequence values are:
x(n)=1, for0<n<3

=0, otherwise

“ L

210 12 3 45 n
(a)

un—4) ‘ ‘

21 0 1 2 3 4 5 5
(b)

un)—un—4) ‘ I ‘ |

2 =1 0 1 2 3 n

(c)

Figure 3.4 Sequences (a) u(n), (b) uln — 4) and (c) u(n) — uln - 4).

We know that

oe

X@)= Y x(n)z™"

n=—sa

Substituting the sequence values, we get
X@=1+z"+z2+7"

The ROC is entire z-plane except at z = 0.



EXAMPLE 3.10 Find the Z-transform of the following sequences:
(@) u(n)—u(n—4) (b) u(—n)—u(-n-3) © u@-n)—u(=2-n)

Solution:
(a) The given sequence is:

x(n)=u(n)—u(n—4)
From Figure 3.4, we notice that the sequence values are:
x(m)=1, for 0<n<3

=0, otherwise

u(n)

2 -1 012 3 4 5 n
(a)

u(n—4) ‘ ‘

210 1 2 3 4 5 n
(b)

un)=un—4) ’ | ‘ ‘
wy e O I 2 3 n

(c)
Figure 3.4 Sequences (a) u(n), (b) u(n — 4) and (c) u(n) — u(n - 4).

We know that

)

X@= Y x(mz™"

= —

Substituting the sequence values, we get

X@=1+z"+72+77

e |

The ROC is entire z-plane except at z = 0.



(b) The given sequence is:
x(n)=u(-n)—u(-n-3)
From Figure 3.5, we notice that the sequence values are:
‘x(n) =1, for-2<n<0

=0, otherwise

L

4 3 2 -1 0 1 2n
()

u(=n=—13) ‘

4 3 20 1 2n
(b)
u(—n)—u(—n—3)| ’ ‘

4 3 2 -1 0 1 2n
(c)

Figure 3.5 Sequences (a) u(-n), (b) u(=n — 3) and (c) u(-=n) — u(=n - 3).

We know that X(z)= Z x(n)z™"

==

Substituting the sequence values, we get
X@)=1+z7+7
The ROC is entire z-plane except at z = eo.
(c) The given sequence is_:
x(n) =u(2 —n)—u(-2—n)
From Figure 3.6, we nptice that the sequence values are:
x(n)=1, for -1€n<2

=0, otherwise



Substituting the sequence values, we get
X@=z+1+7+ 7

2

The ROC is entire z-plane except at z = 0 and z = eo.
u(2=n)

-3 =2 -1 0 1 2 n
(a)
u(=2—-n)

32 10 1 2 =
(b)

u(Z—n)—u(-2—n)

-1 0 1 2 n
(c)

Figure 3.6 Sequences (a) u(2 — n), (b) u(=2 — n) and (c) u(2 — n) — u(-2 - n).

Inverse z-Transform

The z-transform of the sequence x(n) and the inverse z-transform of the function
X(z) are defined as, respectively,

X(2) = Z(x()) (5.7)
and x(n) = Z"Y(X(2)), (5.8)
where Z( ) is the z-transform operator, while Z~( ) is the inverse z-transform

operator.
The inverse z-transform may be obtained by at least three methods:

1. Partial fraction expansion and look-up table

2. Power series expansion

3. Residue method.



TABLE 5.3 Partial fraction(s) and formulas for constant(s).

Partial fraction with the first-order real pole:

R Xiz
R= (-2
z—p

Z |z=p

Partial fraction with mth-order real poles:

Ry =

Ry, R, R 1 k=1
+ 1 ) 1 € (( —p)"

z-p) G-pF  G-p (k— D)ldz*!

X(2)

)

z=p




a. Find the inverse of the following z-transform:

1
1 —z-h)(1—05z-1)

X(z)= (
Solution:

a. Eliminating the negative power of z by multiplying the numerator and
denominator by z* yields

2.2
2(1 —z- (1 - 0.5z-1)
2

X(z) =

_ z
C(z—1D(z—0.5)
Dividing both sides by z leads to
X(z) z
z (z—1)}z—-0.5)

Again, we write

X@) A B
z G- Ez-05)

Then A and B are constants found using the formula in Table 5.3, that is,
X {z)| B z |

A=(z—-1 = =2,
{ ) 2 Iz:l {2 _ﬂ‘S}Izzl
X(z2) z
B=(z—-0.5 = = —1.
) Z 05 (2 Dlogs
Thus
X(z) 2 —1

z  (z- 1)+{z—{].5)'
Multiplying z on both sides gives
2z N -z
(z—1) (z—05)

X(z) =



TABLE 5.4  Determined sequence in Example 5.9.

n 0 1 2 3 4 e oo
x(n) 1.0 1.5 1.75 1.875 1.9375 .. 2.0

x(n) = 2u(n) — (0.5)"u(n).

Tabulating this solution in terms of integer values of n, we obtain the
results m Table 5.4.

The situation dealing with the real repeated poles is presented in Example 5.11.

Example 5.11.
a. Find x(n) if X(z) =
Solution:

22

(z— 1)z — 0.5¢

a. Dividing both sides of the previous z-transform by z yields
X(2) z A B C
== = == -+ -+ 5
z z—-1(z-05° z—1 z-05 (z-0.5)

X(z)| z
.1 (z—0.5)

Using the formulas for mth-order real poles in Table 5.3, where m = 2 and
p = 0.5, to determine B and C yields

L df L XE)
B‘&‘@—nuﬁ%z{mfz kﬂs

d
=E(zil)

where A =(z—1) 4,

=]

—1

w05 (—1)7°

z=0.5



I & X(2)
C_Rl_{l_l)!@{{z—ﬂ.ﬁ)z - }ZZM

z

= = —1.
z—1

=05

4z —4z —1z
Then X(z) = .
en X2 =5 +z—{].5+{z_{],5)2
The inverse z-transform for each term on the right-hand side of Equation
(5.9) can be achieved by the result listed in Table 5.1, that is,

(5.9)

z =} = um,

z—1

71y} = 05w

z! {m} = 2n(0.5)"u(n).

From these results, it follows that

x(n) = 4u(n) — (0.5 u(n) — 2n(0.5)"u(n).



3.4.1 Inverse z-transform by Contour integration

Cauchy residue Theorem:
Let f(z) be a function of the complex variable zand C be a

closed path in the z-plane.

If the derivative df(z)/d=exists on and inside the contour C

and if f(zhas no poles at z=Zzj then
A T (:) e = f (:0) if z, is inside C
21 fe z—z, | 0. if z,is outside C

More generally, if the (k+1)-order derivative of f(z)exists
and f(z) has no poles at - = -, then

= 1 "’Hf(:o)
l‘{c f(-)k :_[(/\'—1) = |__.=_.0.

7 - S = =~
I 27 (- -0‘) 1 0. if =, is outside C

<0

if z, is inside C




In more generalized form, the integrand of the contour integral is P(z)= f(z)/g(z)
wheref{:) has no poles inside the contour C andg(z) is a polynomial with distinct

(simple) roots Z1-Z2-7""- 2, inside C. Then

27 € ofz) 2 1z, :(___;)f(:)
), e
a2mCz -z,
:i“‘if(::}

The values {4.(z, )jare residues of the corresponding poles at

c=cz..i=12---_n.

'

The values of the contour integral is equal to the sum of the
residues of all poles inside the contour C.

e

In case that the poles{%-} are simples,
x(n)= L { X(z)""dx
27 €

= X [res-fdue of X(:]:”_1 atz = :!.]
all poles
Ij }Di'nsfdef.'

= ;(:—;)X(-')-'H_l z=z

If x(z)z""hasno polesinside the contour C for one or

more values of n, thenx(n)=0 for these values.



EXAMPLE 3.37 Determine the inverse Z-transform using the complex integral

-1
X(z) =3Z—- ROC; |z|

92 SR
[1-Q/2) 7P 4

Solution: We know that the inverse Z-transform of X(z) can be obtained using the
equation:

' 1
x(n)=— ¢ X(2) 2" ' dz
(n) ZnJi @

at the poles inside ¢ where ¢ is a circle in the z-plane in the ROC of X(z).
This can be evaluated by finding the sum of all residues of the poles that are inside the
circle ¢. Therefore, the above equation can be written as:

x(n) = z Residues of X(z)z"™" at the poles inside ¢

=Y @-z)X@)""

=z

If there is a pole of multiplicity &, then the residue at that pole is:

1 dk—l
*k—D! gk [(z—z,)* X(z)z"] at the pole z = z;
'%z"
Given X(2) 2 3z

TTN-2 P z-aP
The given X(z) has a pole of order 2 at z = 1/2.
X() = > Residues of X(z)z"™" at its poles
=Y Residue of 3z"/[z — (1/2)F at the pole z = (1/2) of multiplicity 2

[r 12 3 ]

1 d
x(n)=—— |z——) —_—
l!dzl\ 2 [z2—(1/2)F |

=12

3 "-'| 3 ”)H (n)
= JNZ =imn|— un

lz) o
=172
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