
Speech contains many characteristics that are specific to each individual, many of which are 

independent of the linguistic message for an utterance. some of these characteristics from the 

perspective of speech recognition, for which they generally are a source of degradation. For 

instance, each utterance from an individual is produced by the same vocal tract, tends to have a 

typical pitch range (particularly for each gender), and has a characteristic articulator movement 

that is associated with speaker, dialect, or gender. All of these factors have a strong effect on the 

speech that is highly correlated with the particular individual who is speaking. For this reason, 

listeners are often 

able to recognize the speaker identity fairly quickly, even over the telephone. Artificial systems 

recognizing speakers rather than speech have been the subject of much research over the past 30 

years, and multiple commercial systems are currently in use. 

 

Speaker recognition has many potential applications, including the authentication (e.g., telephone 

and banking applications), access control, parole monitoring, fraud detection, and intelligence. 

 

Speaker recognition generally requires the calculation of a score reflecting the similarity between 

two speech segments: a test segment and a training (or enrollment) segment. The basic task is that 

of detection: to tell whether the segments were spoken by the same of by different speakers. This 

task can be directly used for verification or authentication purposes. The detection score can also 

be used as the basis for speaker identification, but here we will concentrate on the more general 

detection task. The main challenge in speaker recognition is to distinguish the variability due to 

the difference in speakers from the variability due to other factors. These confounding variabilities 

can be intrinsic, such as the physical, medical or emotional state of the speaker, 

the content, the language spoken, the effort at which speech is produced; or extrinsic, such as the 

recording conditions including acoustics, transducers, recording equipment, transmission channel 

and noise. For better performance, there can be multiple training segments, preferably recorded in 

different sessions. 

 

 

 



 

 
 

Speaker recognition systems utilize various spectral features extracted from speech signals to 

distinguish between different speakers. These features are crucial for accurately identifying and 

verifying the identity of a speaker. Here are some commonly used spectral features and their 

roles: 

1. Short-Time Fourier Transform (STFT): 

 The STFT is often used as the initial step in extracting spectral features from speech 

signals. 

 It represents the frequency content of the speech signal over short time intervals by 

decomposing the signal into its constituent frequency components. 



2. Mel-Frequency Cepstral Coefficients (MFCCs): 

 MFCCs are widely used spectral features in speaker recognition. 

 They are derived from the magnitude spectrum of the STFT using a series of processing 

steps, including the Mel frequency scale and discrete cosine transform (DCT). 

 MFCCs capture the characteristics of the human auditory system and are effective in 

representing the spectral envelope of speech signals. 

 They are robust to variations in speech due to factors like speaker identity, channel 

conditions, and background noise. 

3. Linear Predictive Coding (LPC) Coefficients: 

 LPC coefficients are derived from the prediction of future samples in a speech signal 

using a linear prediction model. 

 These coefficients represent the spectral envelope of speech and are particularly useful 

for capturing the formant structure of speech sounds. 

 LPC coefficients are sensitive to speaker-specific characteristics and can be used for 

speaker recognition tasks. 

4. Perceptual Linear Prediction (PLP) Coefficients: 

 PLP coefficients are derived by modeling the human auditory system's perception of 

speech. 

 They are based on a combination of linear prediction and perceptual weighting 

techniques. 

 PLP coefficients provide a more compact representation of speech compared to MFCCs 

and are often used in speaker recognition systems. 

5. Relative Spectral Phase (RSP): 

 RSP represents the phase difference between different frequency bands of a speech 

signal. 

 It captures fine-grained temporal information and is robust to variations caused by factors 

like channel distortion and background noise. 

 RSP has been shown to improve the performance of speaker recognition systems, 

especially in challenging conditions. 

6. Spectral Subband Centroids (SSCs): 

 SSCs are computed by dividing the speech spectrum into subbands and calculating the 

centroids of each subband. 

 They capture information about the distribution of spectral energy across different 

frequency regions. 

 SSCs are useful for discriminating between speakers with different vocal characteristics. 



Overall, these spectral features play a crucial role in speaker recognition systems by capturing 

different aspects of speech signals that are relevant for distinguishing between speakers. By 

extracting and analyzing these features, speaker recognition systems can accurately identify and 

verify speaker identities in various applications, including security systems, forensic analysis, 

and human-computer interaction. 

 

Certainly! Let's delve into the mathematical formulations behind some of the spectral features 

commonly used in speaker recognition systems: 

1. Short-Time Fourier Transform (STFT): 

The STFT of a signal x(t) is computed by applying the Fourier Transform to short, overlapping 

windows of the signal. Mathematically, for a window function w(t), the STFT X(ω,τ) is 

calculated as: 

X(ω,τ)=∫−∞∞x(t)⋅w(t−τ)⋅e−jωtdt 

Where: 

 ω represents frequency. 

 τ represents time. 

 x(t) is the signal. 

 w(t) is the window function. 

2. Mel-Frequency Cepstral Coefficients (MFCCs): 

MFCCs are computed using the following steps: a. Pre-emphasis: xpreemph(t)=x(t)−α⋅x(t−1) 

where α is a pre-emphasis coefficient typically set to 0.97. b. Frame blocking: The pre-

emphasized signal is divided into frames of fixed duration. c. Windowing: Each frame is 

windowed using a window function. d. FFT: Compute the magnitude spectrum by taking the 

FFT of each windowed frame. e. Mel Filterbank: Apply a Mel filterbank to the magnitude 

spectrum. f. Logarithm: Take the logarithm of the filterbank energies. g. Discrete Cosine 

Transform (DCT): Apply DCT to decorrelate the filterbank energies. 

Mathematically, the MFCC computation involves a series of operations as described above. 

3. Linear Predictive Coding (LPC) Coefficients: 

LPC modeling involves modeling a speech signal x(t) as the output of a linear time-invariant 

(LTI) system. Mathematically, this can be represented as: 

x(t)=∑i=1paix(t−i)+e(t) 



where: 

 p is the order of the prediction. 

 ai are the LPC coefficients. 

 e(t) is the prediction error. 

LPC coefficients are typically estimated using methods such as the autocorrelation method or the 

covariance method. 

4. Perceptual Linear Prediction (PLP) Coefficients: 

PLP coefficients are computed similarly to MFCCs but incorporate perceptual weighting. The 

PLP spectrum is obtained by applying a filterbank to the power spectrum of the pre-emphasized 

signal. The PLP cepstral coefficients are obtained by applying a discrete cosine transform (DCT) 

to the log PLP spectrum. 

These mathematical formulations provide a foundation for understanding how spectral features 

are extracted from speech signals in speaker recognition systems. By manipulating and analyzing 

these features, systems can effectively distinguish between different speakers. 

 

Wiener filter: 

Wiener filtering is a widely used method for estimating a clean signal from its noisy version. It's 

particularly effective when the statistical properties of the signal and the noise are known or can 

be estimated. The Wiener filter minimizes the mean square error between the estimated clean 

signal and the true clean signal. 

Given a noisy signal y(t), the Wiener filter estimates the clean signal x(t) as follows: 

x^(t)=W(y(t))=H(ω)Y(ω) 

Where: 

 x^(t) is the estimated clean signal. 

 W(y(t)) is the Wiener filter. 

 H(ω) is the frequency response of the Wiener filter. 

 Y(ω) is the Fourier Transform of the noisy signal y(t). 

The frequency response of the Wiener filter H(ω) is given by: 

H(ω)=Syy(ω)Sxx(ω) 



Where: 

 Sxx(ω) is the power spectral density (PSD) of the clean signal. 

 Syy(ω) is the PSD of the noisy signal. 

 Sxx(ω) and Syy(ω) can be estimated using methods such as periodogram estimation or 

parametric methods like autoregressive (AR) modeling. 

The Wiener filter minimizes the mean square error (MSE) between the estimated clean signal 

and the true clean signal, given by: 

MSE=E[∣X(ω)−X^(ω)∣2] 

Where: 

 X(ω) is the Fourier Transform of the true clean signal x(t). 

 X^(ω) is the Fourier Transform of the estimated clean signal x^(t). 

 [⋅]E[⋅] denotes the expected value operator. 

To implement Wiener filtering in practice, one typically estimates the PSDs Sxx(ω) and Syy(ω) 

from the noisy signal y(t). Then, the frequency response H(ω) is computed, and the estimated 

clean signal x^(t) is obtained by multiplying H(ω) with the Fourier transform of the noisy 

signal Y(ω). Finally, the inverse Fourier transform of x^(t) yields the estimated clean signal in 

the time domain. 

It's important to note that Wiener filtering assumes stationary signals and stationary noise. If the 

statistical properties of the signal and noise vary over time, adaptive Wiener filtering methods 

may be employed. 

 

 


