
PPS-Unit 4(DICTIONARIES)

Dictionaries:

Dictionaries store collection of items in the form of key-value pairs. Keys and

values are for each item is separated with a colon ‘:’. Each element is separated

from the other by a comma. The comma separated list of items is enclosed by

braces. Dictionaries are mutable, which means that you can update or delete an

item from a dictionary and can also add new items to a dictionary.

Creating a Dictionary

cars = {'name':'Honda', 'model':2013, 'color':'Yellow', 'Air bags': True}

type(cars)

Accessing Dictionary items:

Items within a dictionary can be accessed by passing key as index.

cars = {'name':'Honda', 'model':2013, 'color':'Yellow', 'Air bags': True}

model = cars['model']

print(model)

You can also access all the keys and values within a dictionary using keys and

values function as shown below:

print(cars.keys()) # Accessing keys from dictionary

print(cars.values()) # Accessing values from dictionary

You can also get items from a dictionary in the form of key-value pairs using items

function.

print(cars.items()) # Accessing items from dictionary

Iterating over Dictionary Items, Keys and Values

The ‘items’, ‘keys’ and ‘values’ functions return sequences that can be iterated

using for loops.

cars = {'name':'Honda', 'model':2013, 'color':'Yellow', 'Air bags': True}

for item in cars.items():

 print(item)

for keys

for key in cars.keys():

 print(key)

for Values

cars = {'name':'Honda', 'model':2013, 'color':'Yellow', 'Air bags': True}

for value in cars.values():

 print(value)

Adding Item to a dictionary

You simply have to pass new key in index and assign it some value.

cars = {'name':'Honda', 'model':2013, 'color':'Yellow', 'Air bags': True}

cars['capacity'] = 500

print(cars)

Updating a Dictionary

To update the dictionary, use the key for which you want to change the meaning

as the index and add a new value to it

cars = {'name':'Honda', 'model':2013, 'color':'Yellow', 'Air bags': True}

print(cars)

cars['model'] = 2015

print(cars)

Deleting Dictionary Items

cars = {'name':'Honda', 'model':2013, 'color':'Yellow', 'Air bags': True}

print(cars)

del cars['model']

print(cars)

You can also delete all the items in a dictionary using clear function.

cars = {'name':'Honda', 'model':2013, 'color':'Yellow', 'Air bags': True}

print(cars)

cars.clear()

print(cars)

Finding Dictionary Length

cars = {'name':'Honda', 'model':2013, 'color':'Yellow', 'Air bags': True}

print(len(cars))

Checking the existence of an Item in Dictionary

cars = {'name':'Honda', 'model':2013, 'color':'Yellow', 'Air bags': True}

print('color' in cars)

print('model' not in cars)

Copying Dictionaries

To copy one dictionary to the other, you can use copy function

cars = {'name':'Honda', 'model':2013, 'color':'Yellow', 'Air bags': True}

cars2 = cars.copy()

print(cars2)

A Python list comprehension consists of brackets containing the expression, which

is executed for each element along with the for loop to iterate over each element

in the Python list.

Lists

Creating a List:

The easiest way to make a list is to enclose a comma-separated list of things

within square brackets and assign it to a variable,

colors = ['Red', 'Green', 'Blue', 'Yellow', 'White']

Accessing List Elements

we will access the 2nd element of the list colors:
colors = ['Red', 'Green', 'Blue', 'Yellow', 'White']
print(colors[1])

you can also access range of items from a list using slice operator.
colors = ['Red', 'Green', 'Blue', 'Yellow', 'White']
sublist = colors[2:4]
print(sublist)

Appending elements to a list

The append function can be used to append elements to a list. The item to
append is passed as parameter to the ‘append’ function.
colors = ['Red', 'Green', 'Blue', 'Yellow', 'White']
print(colors)
colors.append('Orange')
print(colors)

The remove function is used to remove element from a list.
colors = ['Red', 'Green', 'Blue', 'Yellow', 'White']
print(colors)
colors.remove('Blue')
print(colors)

List elements can also be deleted using index numbers.
colors = ['Red', 'Green', 'Blue', 'Yellow', 'White']
print(colors)
del colors[2]
print(colors)

Concatenating List
nums1 = [2, 4, 6, 8, 10]
nums2 = [1, 3, 5, 7, 9]
result = nums1 + nums2
print(result)

Finding length of List
colors = ['Red', 'Green', 'Blue', 'Yellow', 'White']
print(len(colors))

Sorting a List
colors = ['Red', 'Green', 'Blue', 'Yellow', 'White']
colors.sort()
print(colors)
nums = [12, 4, 66, 35, 7]
nums.sort()
print(nums)

Python List Comprehension Syntax

Syntax: newList = [expression(element) for element in oldList if condition]

Parameter:

 expression: Represents the operation you want to execute on every item within
the iterable.

 element: The term “variable” refers to each value taken from the iterable.
 iterable: specify the sequence of elements you want to iterate through.(e.g., a

list, tuple, or string).
 condition: (Optional) A filter helps decide whether or not an element should be

added to the new list.

Return:The return value of a list comprehension is a new list containing the
modified elements that satisfy the given criteria.
Python List comprehension provides a much more short syntax for creating a new
list based on the values of an existing list.

List Comprehension in Python Example

numbers = [1, 2, 3, 4, 5]
squared = [x ** 2 for x in numbers]
print(squared)

Iteration with List Comprehension

Using list comprehension to iterate through loop
List = [character for character in [1, 2, 3]]

Displaying list
print(List)

Even list using List Comprehension

list = [i for i in range(11) if i % 2 == 0]
print(list)

Matrix using List Comprehension

matrix = [[j for j in range(3)] for i in range(3)]

print(matrix)

List Comprehensions translate the traditional iteration approach using for loop into a

simple formula hence making them easy to use.

Using list comprehension to iterate through loop
List = [character for character in 'Geeks 4 Geeks!']

Displaying list
print(List)

Output
['G', 'e', 'e', 'k', 's', ' ', '4', ' ', 'G', 'e', 'e', 'k', 's', '!']

Python List Comprehension using If-else:

lis = ["Even number" if i % 2 == 0

 else "Odd number" for i in range(8)]

print(lis)

Advantages of List Comprehension:

 More time-efficient and space-efficient than loops.
 Require fewer lines of code.
 Transforms iterative statement into a formula.

Dictionary Manipulation Techniques:

Here’s an example of how to define a dictionary in Python:

Define a dictionary

person = {

 "name": "John",

 "age": 30,

 "gender": "Male"

}

In this example, the dictionary person contains three key-value pairs. The keys are
“name”, “age”, and “gender”, and the values are “John”, 30, and “Male”, respectively.

You can access the values of a dictionary by using the keys, like this:

https://www.geeksforgeeks.org/python-for-loops/

Accessing values

print(person["name"]) # Output: John

print(person["age"]) # Output: 30

print(person["gender"]) # Output: Male

To add a new key-value pair to a dictionary, you can simply assign a value to a new
key

Adding a new key-value pair

person["occupation"] = "Engineer"

print(person) # Output: {'name': 'John', 'age': 30, 'gender': 'Male', 'occupation': 'Engineer'}

To modify an existing value in a dictionary

Modifying an existing value

person["age"] = 35

print(person) # Output: {'name': 'John', 'age': 35, 'gender': 'Male', 'occupation': 'Engineer'}

To remove a key-value pair from a dictionary, you can use the del keyword

Removing a key-value pair

del person["gender"]

print(person) # Output: {'name': 'John', 'age': 35, 'occupation': 'Engineer'}

You can also use various dictionary methods to manipulate dictionaries, such
as keys(), values(), items(), get(), pop(), clear(), and others. These methods allow you
to access the keys, values, and items (key-value pairs) of a dictionary, get the value of
a key (with a default value if the key does not exist), remove a key-value pair from a
dictionary and return its value, and clear all key-value pairs from a dictionary,
respectively.

Using dictionary methods

print(person.keys()) # Output: dict_keys(['name', 'age', 'occupation'])

print(person.values()) # Output: dict_values(['John', 35, 'Engineer'])

print(person.items()) # Output: dict_items([('name', 'John'), ('age', 35), ('occupation',

'Engineer')])

print(person.get("gender", "Unknown")) # Output: Unknown

print(person.pop("occupation")) # Output: Engineer

print(person) # Output: {'name': 'John', 'age': 35}

person.clear()

print(person) # Output: {}

Python Object Oriented Programming

Python is a versatile programming language that supports various
programming styles, including object-oriented programming (OOP) through
the use of objects and classes.
An object is any entity that has attributes and behaviors. For example,
a parrot is an object. It has

 attributes - name, age, color, etc.

 behavior - dancing, singing, etc.

Similarly, a class is a blueprint for that object.

class Parrot:

 # class attribute
 name = ""
 age = 0

create parrot1 object
parrot1 = Parrot()
parrot1.name = "Blu"
parrot1.age = 10

create another object parrot2
parrot2 = Parrot()
parrot2.name = "Woo"
parrot2.age = 15

access attributes
print(f"{parrot1.name} is {parrot1.age} years old")
print(f"{parrot2.name} is {parrot2.age} years old")

Output

Blu is 10 years old

Woo is 15 years old

In the above example, we created a class with the name Parrot with two

attributes: name and age.

Then, we create instances of the Parrot class. Here, parrot1 and parrot2 are

references (value) to our new objects.

We then accessed and assigned different values to the instance attributes

using the objects name and the . notation.

Python Inheritance

Inheritance is a way of creating a new class for using details of an existing

class without modifying it.

The newly formed class is a derived class (or child class). Similarly, the

existing class is a base class (or parent class).

How Inheritance works
Inheritance is a feature used in object-oriented programming; it refers
to defining a new class with less or no modification to an existing
class. The new class is called derived class and from one which it
inherits is called the base. Python supports inheritance; it also
supports multiple inheritances. A class can inherit attributes and
behavior methods from another class called subclass or heir class.

Example 2: Use of Inheritance in Python

base class
class Animal:

 def eat(self):
 print("I can eat!")

 def sleep(self):
 print("I can sleep!")

derived class
class Dog(Animal):

 def bark(self):
 print("I can bark! Woof woof!!")

Create object of the Dog class
dog1 = Dog()

Calling members of the base class
dog1.eat()
dog1.sleep()

Calling member of the derived class
dog1.bark();

Output

I can eat!

I can sleep!

I can bark! Woof woof!!

Here, dog1 (the object of derived class Dog) can access members of the base

class Animal. It's because Dog is inherited from Animal.

Calling members of the Animal class

dog1.eat()

dog1.sleep()

Python Encapsulation:

Encapsulation is one of the key features of object-oriented programming.
Encapsulation refers to the bundling of attributes and methods inside a single
class.

It prevents outer classes from accessing and changing attributes and methods
of a class. This also helps to achieve data hiding.
In Python, we denote private attributes using underscore as the prefix i.e
single _ or double __. For example,

class Computer:

 def __init__(self):
 self.__maxprice = 900

 def sell(self):
 print("Selling Price: {}".format(self.__maxprice))

 def setMaxPrice(self, price):
 self.__maxprice = price

c = Computer()
c.sell()

change the price
c.__maxprice = 1000
c.sell()

using setter function
c.setMaxPrice(1000)
c.sell()

Output

Selling Price: 900

Selling Price: 900

Selling Price: 1000

In the above program, we defined a Computer class.

We used __init__() method to store the maximum selling price of Computer. Here, notice the code

c.__maxprice = 1000

Here, we have tried to modify the value of __maxprice outside of the class. However, since __maxprice is a private

variable, this modification is not seen on the output.

As shown, to change the value, we have to use a setter function i.e setMaxPrice() which takes price as a parameter.

Polymorphism

Polymorphism is another important concept of object-oriented programming. It simply means more than one form.

That is, the same entity (method or operator or object) can perform different operations in different scenarios.

Let's see an example,

class Polygon:
 # method to render a shape
 def render(self):
 print("Rendering Polygon...")

class Square(Polygon):
 # renders Square
 def render(self):
 print("Rendering Square...")

class Circle(Polygon):
 # renders circle
 def render(self):
 print("Rendering Circle...")

create an object of Square
s1 = Square()
s1.render()

create an object of Circle
c1 = Circle()
c1.render()

Output

Rendering Square...

Rendering Circle...

In the above example, we have created a superclass: Polygon and two

subclasses: Square and Circle. Notice the use of the render() method.

The main purpose of the render() method is to render the shape. However, the

process of rendering a square is different from the process of rendering a

circle.

Hence, the render() method behaves differently in different classes. Or, we

can say render() is polymorphic.

Key Points to Remember:

 Object-Oriented Programming makes the program easy to understand as well

as efficient.

 Since the class is sharable, the code can be reused.

 Data is safe and secure with data abstraction.

 Polymorphism allows the same interface for different objects, so programmers

can write efficient code.

