Scientific Discourse

Chemistry Series

3-Atomic Orbitals

Sam K. Tahmassebi

RECAP

So far, the hero of our story has discovered that:

- Chemistry is the study of how new substance(s) is/are formed from old substance(s)
 - A substance is a molecule.
 - A substance is something that is made up of two or more atoms.
- The solar system model of the atom
 - Protons
 - Positively charged particles
 - Concentrated in the nucleus
 - The Sun
 - Electrons
 - Negatively charged particles
 - Surround the nucleus.
 - The Planets

Why doesn't the electron spiral into the nucleus?

FLAME ATOMIC EMISSION SPECTROSCOPY

Spectrum of Neon

Spectrum of Nitrogen

 $E = energy m^2 kg s^{-2} = joule$

```
h = Planck's constant = 6.6 \times 10^{-34} \text{ m}^2 \text{ kg s}^{-1}
```

v = (nu) light frequency s^{-1}

- hv is a discrete packet of energy.
- Each packet of energy has a discrete quantity of energy.
- A discrete quantity of something is a quantum of that thing.
- Hence, quantum mechanics.

Schrodinger's Equation

Slide 8

- Schrodinger's equation is solved for psi (Ψ).
- Psi (Ψ) is a function of both time and space.
- It determines the shape of the wave function at any point in time and at any point in space.
- The shape of the wave function is related to the probability of the wave function existing at any point of time and at any point in space.
- The wave function is the same thing as the electron.

Orbital: space where the probability of finding the wave function (i.e., the electron) is ≥50%.

- We can think of an orbital from different perspectives:
 - The energy level of an electron
 - The spatial position of the electron cloud
 - The probability of finding an electron

- Shell: Collection of nearby energy states.
 - So far we have 7 shells

- Orbital: Energy states within each shell.
 - 0
 - There are four orbital types: s, p, d, and f
 - Note: Mathematically we can have additional orbitals in case a lot more elements are discovered.

Shell	Orbital Types
1	S
2	s, p
3	s, p, d
4	s, p, d, f
5-7	s, p, d, f, ?

Orbital Type	Number of Orbital	Number of Electrons					
S	1	2					
р	3	6					
d	5	10					
f	7	14					

Maximum of TWO electrons per each orbital. Hund's Rule.

Slide 13B

The Aufbau Principle: Gives us the relative energies of orbitals in a hydrogenic shell model (single proton, single atom, gas phase, in vacuum).

- Flawed. Fails for d and f block elements.
- Only works well for hydrogen.
- It has been significantly modified since the introduction of supercomputers.
 - Originally developed by Bohr and Pauli using a slide rule!
- Still used as a teaching tool.

Slide 15	s ¹	Helium is 1s ² and not 1p ⁶ . p ⁶																
1	H	s ²											p ¹	p ²	p ³	p ⁴	р ⁵	e He netum
2	' Li Ithum	Be											B boron	° C carbon	7 N nitragen	° O cxygen	F nuccine	Ne neon
3	"Na sodum	¹⁹ Mg magnesium	d ¹	d ²	d ³	d ⁴	d ⁵	d ⁶	d ⁷	d ⁸	d ⁹	d ¹⁰	u auninum	" Si atteon	в Р phospharus	s S sutur	enterne	" Ar
4	* K potassium	²⁰ Ca calcum	BC second.um	Ti tianum	20 V venadum	ehromhan	³⁵ Mn manganece	Fe	cebatt	nicker	copper	³⁰ Zn ^{pro}	"Ga satur	³² Ge germanium	AS arsenic	Se selerium	Br bromine	* Kr krypton
5	Rb rubidhum	Sr strontum	Attuinte M	⁴³ Zr zkoonium	* Nb roblum	MO molybdenum	TC technolium	** Ru ruthenium	* Rh	Pd potestum	Ag silver	"Cd casmium	** In Indum	⁵⁰ Sn	Sb antimory	Te teturium	¹⁰ I iocine	Xe xentin
6	** Cs	™ Ba Darium		²² Hf natrium	Ta tanta.um	Va Bungater	Re	osmium	" Ir indum	78 Pt pictinum	"Au	Hg	"TI motum	Pb lead	Bi blemuth	Po	"At assatree	Rn
7	** Fr transister	Ra		Rf rutherfordium	Db autonum	Sg seobicrigium	Bh bohnum	HS HS hobsum	Mt meimerium	DS dormstodilum	"Rg	Cn copernicium	ninonium	FI Herovium	MC moscovium	us LV livermortum	TS tennesche	ogoneseon
			²⁷ La Ianthanum	terium	Pr Pr pratecdymium	eo Nd neodymium	er Pm promethium	samarium	** Eu europlue	Gd geoteinium	** Tb retblutt	Dy dysprosium	Ho	Er erbarm	** Tm rusum	²² Yb ytterteces	* Lu	
			* Ac	"Th thorium	Pa protactinium	92 U uranium	Np neptunium	Pu Butonium	** Am americium	™ Cm curtum	** Bk berkelum	eatitormium	einsteinium	Fm Fm	Md mendelexium	No	Internation	
			d ¹	f ¹	f ²	f ³	f ⁴	f ⁵	f ⁶								f ¹⁴	

Take away lessons:

- The shapes of orbitals are graphic representation of the 50% probability space for finding electrons.
- Chemists approximate that electrons are clouds represented by orbitals.
- Different orbitals have different energy levels.
- Each orbital can have a maximum of two electrons.

Next time:

- The Octet Rule
- Hybridization
- Molecular orbitals
- Molecular geometry