| Test Organisms | Dried Virus
Control | Sample | Result | Log
Reduction | CrossOver to Swine Pathogen
Based on Viral Family | | |---|------------------------|-------------------|-----------------------------|------------------------------|--|--| | Avian Infectious Bronchitis virus | 6.42 Log ₁₀ | А | <=0.5 Log ₁₀ | >=5.92 Log ₁₀ | | | | Beaudette IB42 | | В | <=0.5 Log ₁₀ | >=5.92 Log ₁₀ | TGE andPED | | | | 6.5 Log ₁₀ | С | <=0.5 Log ₁₀ | >=6.0 Log ₁₀ | | | | Avian Influenza A (H3N2) virus | | А | <=0.5 Log ₁₀ | >=4.25 Log ₁₀ | | | | (Avian Reassortant) (ATCC VR-
2072) | 4.75 Log ₁₀ | В | <=0.5 Log ₁₀ | >=4.25 Log ₁₀ | | | | | | С | <=0.5 Log ₁₀ | >=4.25 Log ₁₀ | Swine Influenza | | | Avian Influenza A (H5N1) virus | 6.75 Log ₁₀ | А | <=0.5 Log ₁₀ | >=6.25 Log ₁₀ | | | | Avian iniluenza A (H5N1) virus | 6.75 LOg ₁₀ | В | <=0.5 Log ₁₀ | >=6.25 Log ₁₀ | | | | | 4.5 Log ₁₀ | А | <=0.5 Log ₁₀ | >=4.0 Log ₁₀ | | | | Canine Coronavirus ATCC VR-
809 | | В | <=0.5 Log ₁₀ | >=4.0 Log ₁₀ | TGE and PED | | | | 4.75 Log ₁₀ | С | <=0.5 Log ₁₀ | >=4.25 Log ₁₀ | | | | Canine Distemper virus | 6.25 Log ₁₀ | А | <=0.5 Log ₁₀ | >=05.75
Log ₁₀ | | | | | 3 - | В | <=0.5 Log ₁₀ | >=5.75 Log ₁₀ | Nipah Virus | | | | 6.75 Log ₁₀ | С | <=0.5 Log ₁₀ | >=6.25 Log ₁₀ | | | | | 4.5 Log ₁₀ | А | <=0.5 Log ₁₀ | >=4.0 Log ₁₀ | | | | Feline Picornavirus | | В | <=0.5 Log ₁₀ | >=4.0 Log ₁₀ | Swine Vesicular Exanthema | | | i eine i icomaviius | 5.75 Log ₁₀ | С | <=0.5 Log ₁₀ | >=5.25 Log ₁₀ | | | | | 5.06 Log ₁₀ | А | <=0.27
Log ₁₀ | >=4.79 Log ₁₀ | | | | Hepatitis B Virus | 5.20 Log ₁₀ | В | <=0.41Log ₁₀ | >=4.79 Log ₁₀ | No Crossover | | | | 5.06 Log ₁₀ | Confirmatory
B | <=0.27
Log ₁₀ | >=4.79 Log ₁₀ | | | | | 6.21 Log ₁₀ | А | <=0.24
Log ₁₀ | >=5.97 Log ₁₀ | | | | Hepatitis C Virus | 6.21 Log ₁₀ | В | <=0.42
Log ₁₀ | >=5.79 Log ₁₀ | Classical Swine Fever | | | riopanno o virao | 6.06 Log ₁₀ | Confirmatory
B | <=0.13
Log ₁₀ | >=5.93 Log ₁₀ | | | Xtreme raw material Base was evaluated in the presence of 5% serum and 400 ppm hard water with 10 minute contact time and found to be effective against the above noted viruses on hard, nonporous environmental surfaces. Xtreme Virucidal Data 06/03/2008 Environmental Manufacturing Solutions, LLC Testing is performed per EPA Guideance DIS/TSS-7 3 lots and 4-Log reduction for Canada | | 9 | , - | | | | 3 | |--|-----------------------------|-----------------------|---|-------------------------|-------------------------|--------------| | | | 5.5 Log ₁₀ | Α | <=0.5 Log ₁₀ | >=5.0 Log ₁₀ | | | | Herpes Simplex Virus Type 1 | | В | <=0.5 Log ₁₀ | >=5.0 Log ₁₀ | No Crossover | | | | 6.0 Log ₁₀ | С | <=0.5 Log ₁₀ | >=5.5 Log ₁₀ | | | | 0.01 | Α | <=0.5 Log ₁₀ | >=5.5 Log ₁₀ | | |--|------------------------|---|-------------------------|--------------------------|---------------------| | | 6.0 Log ₁₀ | В | <=0.5 Log ₁₀ | >=5.5 Log ₁₀ | No Crossover | | Herpes Simplex Virus Type 2 | 5.75 Log ₁₀ | С | <=0.5 Log ₁₀ | >=5.25 Log ₁₀ | | | | 4.5 Log ₁₀ | Α | <=0.5 Log ₁₀ | >=4.0 Log ₁₀ | No Crossover | | Human Oananaimus | | В | <=0.5 Log ₁₀ | >=4.0 Log ₁₀ | | | Human Coronavirus | 4.5 Log ₁₀ | | <=0.5 Log ₁₀ | >=4.0 Log ₁₀ | | | | 5.75 | Α | <=1.5 Log ₁₀ | >=4.25 Log ₁₀ | No Crossover | | Human Immunodeficiency Virus type 1 (HIV 1) | | В | <=1.5 Log ₁₀ | >=4.25 Log ₁₀ | | | Human immunodeliciency virus type 1 (HiV 1) | 5.75 Log ₁₀ | С | <=1.5 Log ₁₀ | >=4.25 Log ₁₀ | | | | 4.5 Log ₁₀ | Α | <=0.0 Log ₁₀ | >=4.0 Log ₁₀ | See
Pseudorabies | | Infectious Bovine Rhinotracheitis virus | | В | <=0.0 Log ₁₀ | >=4.0 Log ₁₀ | | | iniectious bovine Rhinotracheitis virus | 4.75 Log ₁₀ | С | <=0.0 Log ₁₀ | >=4.25 Log ₁₀ | | | | 6.5 Log ₁₀ | Α | <=0.0 Log ₁₀ | >=6.0 Log ₁₀ | Swine Influenza | | Influenza A virus | | В | <=0.0 Log ₁₀ | >=6.0 Log ₁₀ | | | iniluenza A virus | 6.0 Log ₁₀ | С | <=0.0 Log ₁₀ | >=5.5 Log ₁₀ | | | | 6.25 Log10 | Α | <=0.5 Log ₁₀ | >=5.75 Log ₁₀ | Swine Pathogen | | Pseudorabies virus | 0.23 L0g10 | В | <=0.5 Log ₁₀ | >=5.75 Log ₁₀ | | | rseudorables virus | 5.5 Log10 | С | <=0.5 Log ₁₀ | >=5.0 Log ₁₀ | | | | 4.5 Log10 | Α | <=0.5 Log ₁₀ | >=4.0 Log ₁₀ | Blue eye
disease | | Respiratory Syncytial virus ATCC VR-26 | 4.5 L0g10 | В | <=0.5 Log ₁₀ | >=4.0 Log ₁₀ | | | Respiratory Syncytial Virus ATCC VR-26 | 5.0 Log10 | С | <=0.5 Log ₁₀ | >=4.5 Log ₁₀ | | | | 4.75 0.040 | Α | <=0.5 Log ₁₀ | >=4.35 Log ₁₀ | Swine Pathogen | | Transmissible Gastroenteritis virus | 4.75 Log10 | В | <=0.5 Log ₁₀ | >=4.25 Log ₁₀ | | | Transmissible Gastroententis virus | 6.25 Log10 | С | <=05 Log ₁₀ | >=5.75 Log ₁₀ | | | | 6.75 Log10 | Α | <=0.5 Log ₁₀ | >=6.25 Log ₁₀ | Swine Pox | | Vaccinia virus | | В | <=0.5 Log ₁₀ | >=6.25 Log ₁₀ | | | vaccinia viius | 6.5 Log10 | С | <=0.5 Log ₁₀ | >=6.0 Log ₁₀ | | Xtreme raw material Base was evaluated in the presence of 5% serum and 400 ppm hard water with 10 minute contact time and found to be effective against the above noted viruses on hard, nonporous environmental surfaces. | Test Organisms | Dried Virus Control | Sample | Result | Log Reduction | | | |---------------------------|---------------------|--------|-------------------------|-------------------------|------------|--| | Canine Parvovirus Type 2b | 7.5 Log10 | А | <=3.5 Log ₁₀ | >=4.0 Log ₁₀ | Swine | | | | | В | <=3.5 Log ₁₀ | >=4.0 Log ₁₀ | Parvovirus | |