Aim: What are complex numbers? (Section 4-8)

Do Now: What are the roots for $5x^2+20$?

I- Complex Numbers

1- Powers i

The **imaginary unit** *i* is the complex number whose square is -1. So, $i^2 = -1$, and $i = \sqrt{-1}$.

2) Circle of answers

3) Simplify each number by using the imaginary number *i*.

1. $\sqrt{-100}$ **2.** $\sqrt{-2}$ **3.** $\sqrt{-48}$ **4.** $\sqrt{-36}$ $\sqrt{-1 \times \sqrt{100}}$

II – Graphing Complex Numbers

Plot each complex number and find its absolute value.

5. 5i **6.** 3 + 2i **7.** 7 - 1i **8.** -4 + 9i

Aim: What are complex numbers? (Section 4-8)

III – Operations with Complex Numbers

1- Simplify each expression.

9. (9+6i) + (2-i)(9+2) + (6i-i)**10.** (-12i) - (3+3i)**11.** (-2i)(5+4i)

Write each quotient as a complex number.

12.
$$\frac{5+4i}{7i}$$
13. $\frac{-1+5i}{3-2i}$
14. $\frac{2-6i}{2-3i}$
 $\frac{5+4i}{7i} \underbrace{e}_{0} \frac{-7i}{7i} \underbrace{o}_{0}^{+}$

15. Error Analysis Robert solved the equation $2x^2 + 16 = 0$. His solution was $x = \pm \sqrt{-8i}$. What errors did Robert make? What is the correct solution?